/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Based on the WAV file format documentation at // https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ and // http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html #include "common_audio/wav_header.h" #include #include #include #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/sanitizer.h" #include "rtc_base/system/arch.h" namespace webrtc { namespace { struct ChunkHeader { uint32_t ID; uint32_t Size; }; static_assert(sizeof(ChunkHeader) == 8, "ChunkHeader size"); struct RiffHeader { ChunkHeader header; uint32_t Format; }; // We can't nest this definition in WavHeader, because VS2013 gives an error // on sizeof(WavHeader::fmt): "error C2070: 'unknown': illegal sizeof operand". struct FmtSubchunk { ChunkHeader header; uint16_t AudioFormat; uint16_t NumChannels; uint32_t SampleRate; uint32_t ByteRate; uint16_t BlockAlign; uint16_t BitsPerSample; }; static_assert(sizeof(FmtSubchunk) == 24, "FmtSubchunk size"); const uint32_t kFmtSubchunkSize = sizeof(FmtSubchunk) - sizeof(ChunkHeader); // Simple wav header. It does not include chunks that are not essential to read // audio samples. struct WavHeader { WavHeader(const WavHeader&) = default; WavHeader& operator=(const WavHeader&) = default; RiffHeader riff; FmtSubchunk fmt; struct { ChunkHeader header; } data; }; static_assert(sizeof(WavHeader) == kWavHeaderSize, "no padding in header"); #ifdef WEBRTC_ARCH_LITTLE_ENDIAN static inline void WriteLE16(uint16_t* f, uint16_t x) { *f = x; } static inline void WriteLE32(uint32_t* f, uint32_t x) { *f = x; } static inline void WriteFourCC(uint32_t* f, char a, char b, char c, char d) { *f = static_cast(a) | static_cast(b) << 8 | static_cast(c) << 16 | static_cast(d) << 24; } static inline uint16_t ReadLE16(uint16_t x) { return x; } static inline uint32_t ReadLE32(uint32_t x) { return x; } static inline std::string ReadFourCC(uint32_t x) { return std::string(reinterpret_cast(&x), 4); } #else static inline void WriteLE16(uint16_t* f, uint16_t x) { *f = ((x << 8) & 0xff00) | ( ( x >> 8) & 0x00ff); } static inline void WriteLE32(uint32_t* f, uint32_t x) { *f = ( (x & 0x000000ff) << 24 ) | ((x & 0x0000ff00) << 8) | ((x & 0x00ff0000) >> 8) | ((x & 0xff000000) >> 24 ); } static inline void WriteFourCC(uint32_t* f, char a, char b, char c, char d) { *f = (static_cast(a) << 24 ) | (static_cast(b) << 16) | (static_cast(c) << 8) | (static_cast(d) ); } static inline uint16_t ReadLE16(uint16_t x) { return (( x & 0x00ff) << 8 )| ((x & 0xff00)>>8); } static inline uint32_t ReadLE32(uint32_t x) { return ( (x & 0x000000ff) << 24 ) | ( (x & 0x0000ff00) << 8 ) | ( (x & 0x00ff0000) >> 8) | ( (x & 0xff000000) >> 24 ); } static inline std::string ReadFourCC(uint32_t x) { x = ReadLE32(x); return std::string(reinterpret_cast(&x), 4); } #endif static inline uint32_t RiffChunkSize(size_t bytes_in_payload) { return static_cast(bytes_in_payload + kWavHeaderSize - sizeof(ChunkHeader)); } static inline uint32_t ByteRate(size_t num_channels, int sample_rate, size_t bytes_per_sample) { return static_cast(num_channels * sample_rate * bytes_per_sample); } static inline uint16_t BlockAlign(size_t num_channels, size_t bytes_per_sample) { return static_cast(num_channels * bytes_per_sample); } // Finds a chunk having the sought ID. If found, then |readable| points to the // first byte of the sought chunk data. If not found, the end of the file is // reached. void FindWaveChunk(ChunkHeader* chunk_header, ReadableWav* readable, const std::string sought_chunk_id) { RTC_DCHECK_EQ(sought_chunk_id.size(), 4); while (!readable->Eof()) { if (readable->Read(chunk_header, sizeof(*chunk_header)) != sizeof(*chunk_header)) return; // EOF. if (ReadFourCC(chunk_header->ID) == sought_chunk_id) return; // Sought chunk found. // Ignore current chunk by skipping its payload. if (!readable->SeekForward(chunk_header->Size)) return; // EOF or error. } return; // EOF. } bool ReadFmtChunkData(FmtSubchunk* fmt_subchunk, ReadableWav* readable) { // Reads "fmt " chunk payload. if (readable->Read(&(fmt_subchunk->AudioFormat), kFmtSubchunkSize) != kFmtSubchunkSize) return false; const uint32_t fmt_size = ReadLE32(fmt_subchunk->header.Size); if (fmt_size != kFmtSubchunkSize) { // There is an optional two-byte extension field permitted to be present // with PCM, but which must be zero. int16_t ext_size; if (kFmtSubchunkSize + sizeof(ext_size) != fmt_size) return false; if (readable->Read(&ext_size, sizeof(ext_size)) != sizeof(ext_size)) return false; if (ext_size != 0) return false; } return true; } } // namespace bool CheckWavParameters(size_t num_channels, int sample_rate, WavFormat format, size_t bytes_per_sample, size_t num_samples) { // num_channels, sample_rate, and bytes_per_sample must be positive, must fit // in their respective fields, and their product must fit in the 32-bit // ByteRate field. if (num_channels == 0 || sample_rate <= 0 || bytes_per_sample == 0) return false; if (static_cast(sample_rate) > std::numeric_limits::max()) return false; if (num_channels > std::numeric_limits::max()) return false; if (static_cast(bytes_per_sample) * 8 > std::numeric_limits::max()) return false; if (static_cast(sample_rate) * num_channels * bytes_per_sample > std::numeric_limits::max()) return false; // format and bytes_per_sample must agree. switch (format) { case kWavFormatPcm: // Other values may be OK, but for now we're conservative: if (bytes_per_sample != 1 && bytes_per_sample != 2) return false; break; case kWavFormatALaw: case kWavFormatMuLaw: if (bytes_per_sample != 1) return false; break; default: return false; } // The number of bytes in the file, not counting the first ChunkHeader, must // be less than 2^32; otherwise, the ChunkSize field overflows. const size_t header_size = kWavHeaderSize - sizeof(ChunkHeader); const size_t max_samples = (std::numeric_limits::max() - header_size) / bytes_per_sample; if (num_samples > max_samples) return false; // Each channel must have the same number of samples. if (num_samples % num_channels != 0) return false; return true; } void WriteWavHeader(uint8_t* buf, size_t num_channels, int sample_rate, WavFormat format, size_t bytes_per_sample, size_t num_samples) { RTC_CHECK(CheckWavParameters(num_channels, sample_rate, format, bytes_per_sample, num_samples)); auto header = rtc::MsanUninitialized({}); const size_t bytes_in_payload = bytes_per_sample * num_samples; WriteFourCC(&header.riff.header.ID, 'R', 'I', 'F', 'F'); WriteLE32(&header.riff.header.Size, RiffChunkSize(bytes_in_payload)); WriteFourCC(&header.riff.Format, 'W', 'A', 'V', 'E'); WriteFourCC(&header.fmt.header.ID, 'f', 'm', 't', ' '); WriteLE32(&header.fmt.header.Size, kFmtSubchunkSize); WriteLE16(&header.fmt.AudioFormat, format); WriteLE16(&header.fmt.NumChannels, static_cast(num_channels)); WriteLE32(&header.fmt.SampleRate, sample_rate); WriteLE32(&header.fmt.ByteRate, ByteRate(num_channels, sample_rate, bytes_per_sample)); WriteLE16(&header.fmt.BlockAlign, BlockAlign(num_channels, bytes_per_sample)); WriteLE16(&header.fmt.BitsPerSample, static_cast(8 * bytes_per_sample)); WriteFourCC(&header.data.header.ID, 'd', 'a', 't', 'a'); WriteLE32(&header.data.header.Size, static_cast(bytes_in_payload)); // Do an extra copy rather than writing everything to buf directly, since buf // might not be correctly aligned. memcpy(buf, &header, kWavHeaderSize); } bool ReadWavHeader(ReadableWav* readable, size_t* num_channels, int* sample_rate, WavFormat* format, size_t* bytes_per_sample, size_t* num_samples) { auto header = rtc::MsanUninitialized({}); // Read RIFF chunk. if (readable->Read(&header.riff, sizeof(header.riff)) != sizeof(header.riff)) return false; if (ReadFourCC(header.riff.header.ID) != "RIFF") return false; if (ReadFourCC(header.riff.Format) != "WAVE") return false; // Find "fmt " and "data" chunks. While the official Wave file specification // does not put requirements on the chunks order, it is uncommon to find the // "data" chunk before the "fmt " one. The code below fails if this is not the // case. FindWaveChunk(&header.fmt.header, readable, "fmt "); if (ReadFourCC(header.fmt.header.ID) != "fmt ") { RTC_LOG(LS_ERROR) << "Cannot find 'fmt ' chunk."; return false; } if (!ReadFmtChunkData(&header.fmt, readable)) { RTC_LOG(LS_ERROR) << "Cannot read 'fmt ' chunk."; return false; } if (readable->Eof()) { RTC_LOG(LS_ERROR) << "'fmt ' chunk placed after 'data' chunk."; return false; } FindWaveChunk(&header.data.header, readable, "data"); if (ReadFourCC(header.data.header.ID) != "data") { RTC_LOG(LS_ERROR) << "Cannot find 'data' chunk."; return false; } // Parse needed fields. *format = static_cast(ReadLE16(header.fmt.AudioFormat)); *num_channels = ReadLE16(header.fmt.NumChannels); *sample_rate = ReadLE32(header.fmt.SampleRate); *bytes_per_sample = ReadLE16(header.fmt.BitsPerSample) / 8; const size_t bytes_in_payload = ReadLE32(header.data.header.Size); if (*bytes_per_sample == 0) return false; *num_samples = bytes_in_payload / *bytes_per_sample; if (ReadLE32(header.riff.header.Size) < RiffChunkSize(bytes_in_payload)) return false; if (ReadLE32(header.fmt.ByteRate) != ByteRate(*num_channels, *sample_rate, *bytes_per_sample)) return false; if (ReadLE16(header.fmt.BlockAlign) != BlockAlign(*num_channels, *bytes_per_sample)) return false; return CheckWavParameters(*num_channels, *sample_rate, *format, *bytes_per_sample, *num_samples); } } // namespace webrtc