tg2sip/webrtc_dsp/modules/audio_processing/aec3/aec_state.cc

607 lines
22 KiB
C++
Raw Normal View History

Squashed 'libtgvoip/' changes from 6053cf5..cfd62e6 cfd62e6 Why did it change the OS X project 3a58a16 2.4.3 c4a48b3 Updated OS X project 564eada Fix #63 4f64e2e fixes 0c732e2 fixes 12e76ed better logging f015b79 Merge pull request #62 from xvitaly/big-endian a1df90f Set preferred audio session parameters on iOS 59a975b Fixes 8fd89fc Fixes, mic level testing and volume adjustment 243acfa Backported WebRTC upstream patch with Big Endian support. fed3bb7 Detect when proxy does not support UDP and persist that across calls a7546d4 Merge commit '6d03dd9ae4bf48d7344341cdd2d055ebd3a6a42e' into public 6d03dd9 version 69adf70 Use server config for APM + iOS crash fix 0b42ec8 Update iOS project f1b9e63 packet logging beeea45 I apparently still suck at C++ memory management 24fceba Update project 7f54b91 crash fix f85ce99 Save more data in data saving mode f4c4f79 Collect packet stats and accept json string for server config 78e584c New protocol version: optimized packet size 8cf9177 Fixed build on iOS 9dd089d fixed build on android 5caaaaf Updated WebRTC APM cc0cf35 fixed deadlock 02f4835 Rearranged VoIPController methods and added sections 912f73d Updated OS X project 39376df Fixed audio glitches on Windows dfe1f03 Updated project 81daf3f fix 296187a Merge pull request #58 from telegramdesktop/tdesktop 44956ac Merge pull request #57 from UnigramDev/public fb0a2b0 Fix build for Linux. d6cf1b7 Updated UWP wrapper 0f06289 Merge branch 'public' of github.com:grishka/libtgvoip into public dcfad91 Fix #54 162f447 Merge pull request #56 from telegramdesktop/tdesktop a7ee511 Merge remote-tracking branch 'origin/tdesktop' into HEAD 467b148 Removed unused files b1a0b3d 2.3 9b292fd Fix warning in Xcode 10. 8d8522a Merge pull request #53 from UnigramDev/public 646f7d6 Merge branch 'public' into public 14d782b Fixes 68acf59 Added GetSignalBarsCount and GetConnectionState to CXWrapper 761c586 Added GetStats to CXWrapper f643b02 Prevent crash if UWP WASAPI devices aren't found b2ac10e Fixed UWP project 9a1ec51 Fixed build for Windows Phone, fixed some warnings 4aea54f fix git-subtree-dir: libtgvoip git-subtree-split: cfd62e66a825348ac51f49e5d20bf8827fef7a38
2019-02-06 18:22:38 +00:00
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <algorithm>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableErleResetsAtGainChanges() {
return !field_trial::IsEnabled("WebRTC-Aec3ResetErleAtGainChangesKillSwitch");
}
bool UseLegacyFilterQualityState() {
return field_trial::IsEnabled("WebRTC-Aec3FilterQualityStateKillSwitch");
}
bool EnableLegacySaturationBehavior() {
return field_trial::IsEnabled("WebRTC-Aec3NewSaturationBehaviorKillSwitch");
}
bool UseSuppressionGainLimiter() {
return field_trial::IsEnabled("WebRTC-Aec3GainLimiterDeactivationKillSwitch");
}
bool EnableErleUpdatesDuringReverb() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EnableErleUpdatesDuringReverbKillSwitch");
}
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
} // namespace
int AecState::instance_count_ = 0;
void AecState::GetResidualEchoScaling(
rtc::ArrayView<float> residual_scaling) const {
bool filter_has_had_time_to_converge;
if (config_.filter.conservative_initial_phase) {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
}
echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
residual_scaling);
}
absl::optional<float> AecState::ErleUncertainty() const {
if (SaturatedEcho() && use_legacy_saturation_behavior_) {
return 1.f;
}
return absl::nullopt;
}
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
use_legacy_saturation_behavior_(EnableLegacySaturationBehavior()),
enable_erle_resets_at_gain_changes_(EnableErleResetsAtGainChanges()),
enable_erle_updates_during_reverb_(EnableErleUpdatesDuringReverb()),
use_legacy_filter_quality_(UseLegacyFilterQualityState()),
use_suppressor_gain_limiter_(UseSuppressionGainLimiter()),
initial_state_(config_),
delay_state_(config_),
transparent_state_(config_),
filter_quality_state_(config_),
legacy_filter_quality_state_(config_),
legacy_saturation_detector_(config_),
erl_estimator_(2 * kNumBlocksPerSecond),
erle_estimator_(2 * kNumBlocksPerSecond,
config_.erle.min,
config_.erle.max_l,
config_.erle.max_h),
suppression_gain_limiter_(config_),
filter_analyzer_(config_),
echo_audibility_(
config_.echo_audibility.use_stationarity_properties_at_init),
reverb_model_estimator_(config_) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
capture_signal_saturation_ = false;
strong_not_saturated_render_blocks_ = 0;
blocks_with_active_render_ = 0;
if (use_suppressor_gain_limiter_) {
suppression_gain_limiter_.Reset();
}
initial_state_.Reset();
transparent_state_.Reset();
if (use_legacy_saturation_behavior_) {
legacy_saturation_detector_.Reset();
}
erle_estimator_.Reset(true);
erl_estimator_.Reset();
if (use_legacy_filter_quality_) {
legacy_filter_quality_state_.Reset();
} else {
filter_quality_state_.Reset();
}
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
} else if (enable_erle_resets_at_gain_changes_ &&
echo_path_variability.gain_change) {
erle_estimator_.Reset(false);
}
subtractor_output_analyzer_.HandleEchoPathChange();
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y) {
// Analyze the filter output.
subtractor_output_analyzer_.Update(subtractor_output);
// Analyze the properties of the filter.
filter_analyzer_.Update(adaptive_filter_impulse_response,
adaptive_filter_frequency_response, render_buffer);
// Estimate the direct path delay of the filter.
delay_state_.Update(filter_analyzer_, external_delay,
strong_not_saturated_render_blocks_);
const std::vector<float>& aligned_render_block =
render_buffer.Block(-delay_state_.DirectPathFilterDelay())[0];
// Update render counters.
const float render_energy = std::inner_product(
aligned_render_block.begin(), aligned_render_block.end(),
aligned_render_block.begin(), 0.f);
const bool active_render =
render_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
blocks_with_active_render_ += active_render ? 1 : 0;
strong_not_saturated_render_blocks_ +=
active_render && !SaturatedCapture() ? 1 : 0;
if (use_suppressor_gain_limiter_) {
// Update the limit on the echo suppression after an echo path change to
// avoid an initial echo burst.
suppression_gain_limiter_.Update(render_buffer.GetRenderActivity(),
TransparentMode());
if (subtractor_output_analyzer_.ConvergedFilter()) {
suppression_gain_limiter_.Deactivate();
}
}
std::array<float, kFftLengthBy2Plus1> X2_reverb;
render_reverb_.Apply(
render_buffer.GetSpectrumBuffer(), delay_state_.DirectPathFilterDelay(),
config_.ep_strength.reverb_based_on_render ? ReverbDecay() : 0.f,
X2_reverb);
if (config_.echo_audibility.use_stationary_properties) {
// Update the echo audibility evaluator.
echo_audibility_.Update(render_buffer,
render_reverb_.GetReverbContributionPowerSpectrum(),
delay_state_.DirectPathFilterDelay(),
delay_state_.ExternalDelayReported());
}
// Update the ERL and ERLE measures.
if (initial_state_.TransitionTriggered()) {
erle_estimator_.Reset(false);
}
const auto& X2 = render_buffer.Spectrum(delay_state_.DirectPathFilterDelay());
const auto& X2_input_erle =
enable_erle_updates_during_reverb_ ? X2_reverb : X2;
erle_estimator_.Update(X2_input_erle, Y2, E2_main,
subtractor_output_analyzer_.ConvergedFilter(),
config_.erle.onset_detection);
erl_estimator_.Update(subtractor_output_analyzer_.ConvergedFilter(), X2, Y2);
// Detect and flag echo saturation.
if (use_legacy_saturation_behavior_) {
legacy_saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
EchoPathGain());
} else {
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
UsableLinearEstimate(), subtractor_output,
EchoPathGain());
}
// Update the decision on whether to use the initial state parameter set.
initial_state_.Update(active_render, SaturatedCapture());
// Detect whether the transparent mode should be activated.
transparent_state_.Update(delay_state_.DirectPathFilterDelay(),
filter_analyzer_.Consistent(),
subtractor_output_analyzer_.ConvergedFilter(),
subtractor_output_analyzer_.DivergedFilter(),
active_render, SaturatedCapture());
// Analyze the quality of the filter.
if (use_legacy_filter_quality_) {
legacy_filter_quality_state_.Update(
SaturatedEcho(), active_render, SaturatedCapture(), TransparentMode(),
external_delay, subtractor_output_analyzer_.ConvergedFilter(),
subtractor_output_analyzer_.DivergedFilter());
} else {
filter_quality_state_.Update(active_render, TransparentMode(),
SaturatedCapture(),
filter_analyzer_.Consistent(), external_delay,
subtractor_output_analyzer_.ConvergedFilter());
}
// Update the reverb estimate.
const bool stationary_block =
config_.echo_audibility.use_stationary_properties &&
echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(filter_analyzer_.GetAdjustedFilter(),
adaptive_filter_frequency_response,
erle_estimator_.GetInstLinearQualityEstimate(),
delay_state_.DirectPathFilterDelay(),
UsableLinearEstimate(), stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", TransparentMode());
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
data_dumper_->DumpRaw("aec3_consistent_filter",
filter_analyzer_.Consistent());
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
data_dumper_->DumpRaw("aec3_initial_state",
initial_state_.InitialStateActive());
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
data_dumper_->DumpRaw("aec3_converged_filter",
subtractor_output_analyzer_.ConvergedFilter());
data_dumper_->DumpRaw("aec3_diverged_filter",
subtractor_output_analyzer_.DivergedFilter());
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_suppresion_gain_limiter_running",
IsSuppressionGainLimitActive());
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
}
AecState::InitialState::InitialState(const EchoCanceller3Config& config)
: conservative_initial_phase_(config.filter.conservative_initial_phase),
initial_state_seconds_(config.filter.initial_state_seconds) {
Reset();
}
void AecState::InitialState::InitialState::Reset() {
initial_state_ = true;
strong_not_saturated_render_blocks_ = 0;
}
void AecState::InitialState::InitialState::Update(bool active_render,
bool saturated_capture) {
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
// Flag whether the initial state is still active.
bool prev_initial_state = initial_state_;
if (conservative_initial_phase_) {
initial_state_ =
strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
} else {
initial_state_ = strong_not_saturated_render_blocks_ <
initial_state_seconds_ * kNumBlocksPerSecond;
}
// Flag whether the transition from the initial state has started.
transition_triggered_ = !initial_state_ && prev_initial_state;
}
AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config)
: delay_headroom_blocks_(config.delay.delay_headroom_blocks) {}
void AecState::FilterDelay::Update(
const FilterAnalyzer& filter_analyzer,
const absl::optional<DelayEstimate>& external_delay,
size_t blocks_with_proper_filter_adaptation) {
// Update the delay based on the external delay.
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
external_delay_ = external_delay;
external_delay_reported_ = true;
}
// Override the estimated delay if it is not certain that the filter has had
// time to converge.
const bool delay_estimator_may_not_have_converged =
blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
if (delay_estimator_may_not_have_converged && external_delay_) {
filter_delay_blocks_ = delay_headroom_blocks_;
} else {
filter_delay_blocks_ = filter_analyzer.DelayBlocks();
}
}
AecState::TransparentMode::TransparentMode(const EchoCanceller3Config& config)
: bounded_erl_(config.ep_strength.bounded_erl),
linear_and_stable_echo_path_(
config.echo_removal_control.linear_and_stable_echo_path),
active_blocks_since_sane_filter_(kBlocksSinceConsistentEstimateInit),
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
void AecState::TransparentMode::Reset() {
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
diverged_sequence_size_ = 0;
strong_not_saturated_render_blocks_ = 0;
if (linear_and_stable_echo_path_) {
recent_convergence_during_activity_ = false;
}
}
void AecState::TransparentMode::Update(int filter_delay_blocks,
bool consistent_filter,
bool converged_filter,
bool diverged_filter,
bool active_render,
bool saturated_capture) {
++capture_block_counter_;
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
if (consistent_filter && filter_delay_blocks < 5) {
sane_filter_observed_ = true;
active_blocks_since_sane_filter_ = 0;
} else if (active_render) {
++active_blocks_since_sane_filter_;
}
bool sane_filter_recently_seen;
if (!sane_filter_observed_) {
sane_filter_recently_seen =
capture_block_counter_ <= 5 * kNumBlocksPerSecond;
} else {
sane_filter_recently_seen =
active_blocks_since_sane_filter_ <= 30 * kNumBlocksPerSecond;
}
if (converged_filter) {
recent_convergence_during_activity_ = true;
active_non_converged_sequence_size_ = 0;
non_converged_sequence_size_ = 0;
++num_converged_blocks_;
} else {
if (++non_converged_sequence_size_ > 20 * kNumBlocksPerSecond) {
num_converged_blocks_ = 0;
}
if (active_render &&
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
recent_convergence_during_activity_ = false;
}
}
if (!diverged_filter) {
diverged_sequence_size_ = 0;
} else if (++diverged_sequence_size_ >= 60) {
// TODO(peah): Change these lines to ensure proper triggering of usable
// filter.
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
}
if (active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
finite_erl_recently_detected_ = false;
}
if (num_converged_blocks_ > 50) {
finite_erl_recently_detected_ = true;
}
if (bounded_erl_) {
transparency_activated_ = false;
} else if (finite_erl_recently_detected_) {
transparency_activated_ = false;
} else if (sane_filter_recently_seen && recent_convergence_during_activity_) {
transparency_activated_ = false;
} else {
const bool filter_should_have_converged =
strong_not_saturated_render_blocks_ > 6 * kNumBlocksPerSecond;
transparency_activated_ = filter_should_have_converged;
}
}
AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
const EchoCanceller3Config& config) {}
void AecState::FilteringQualityAnalyzer::Reset() {
usable_linear_estimate_ = false;
filter_update_blocks_since_reset_ = 0;
}
void AecState::FilteringQualityAnalyzer::Update(
bool active_render,
bool transparent_mode,
bool saturated_capture,
bool consistent_estimate_,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter) {
// Update blocks counter.
const bool filter_update = active_render && !saturated_capture;
filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
filter_update_blocks_since_start_ += filter_update ? 1 : 0;
// Store convergence flag when observed.
convergence_seen_ = convergence_seen_ || converged_filter;
// Verify requirements for achieving a decent filter. The requirements for
// filter adaptation at call startup are more restrictive than after an
// in-call reset.
const bool sufficient_data_to_converge_at_startup =
filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
const bool sufficient_data_to_converge_at_reset =
sufficient_data_to_converge_at_startup &&
filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
// The linear filter can only be used it has had time to converge.
usable_linear_estimate_ = sufficient_data_to_converge_at_startup &&
sufficient_data_to_converge_at_reset;
// The linear filter can only be used if an external delay or convergence have
// been identified
usable_linear_estimate_ =
usable_linear_estimate_ && (external_delay || convergence_seen_);
// If transparent mode is on, deactivate usign the linear filter.
usable_linear_estimate_ = usable_linear_estimate_ && !transparent_mode;
}
AecState::LegacyFilteringQualityAnalyzer::LegacyFilteringQualityAnalyzer(
const EchoCanceller3Config& config)
: conservative_initial_phase_(config.filter.conservative_initial_phase),
required_blocks_for_convergence_(
kNumBlocksPerSecond * (conservative_initial_phase_ ? 1.5f : 0.8f)),
linear_and_stable_echo_path_(
config.echo_removal_control.linear_and_stable_echo_path),
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
void AecState::LegacyFilteringQualityAnalyzer::Reset() {
usable_linear_estimate_ = false;
strong_not_saturated_render_blocks_ = 0;
if (linear_and_stable_echo_path_) {
recent_convergence_during_activity_ = false;
}
diverged_sequence_size_ = 0;
// TODO(peah): Change to ensure proper triggering of usable filter.
non_converged_sequence_size_ = 10000;
recent_convergence_ = true;
}
void AecState::LegacyFilteringQualityAnalyzer::Update(
bool saturated_echo,
bool active_render,
bool saturated_capture,
bool transparent_mode,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter,
bool diverged_filter) {
diverged_sequence_size_ = diverged_filter ? diverged_sequence_size_ + 1 : 0;
if (diverged_sequence_size_ >= 60) {
// TODO(peah): Change these lines to ensure proper triggering of usable
// filter.
non_converged_sequence_size_ = 10000;
recent_convergence_ = true;
}
if (converged_filter) {
non_converged_sequence_size_ = 0;
recent_convergence_ = true;
active_non_converged_sequence_size_ = 0;
recent_convergence_during_activity_ = true;
} else {
if (++non_converged_sequence_size_ >= 60 * kNumBlocksPerSecond) {
recent_convergence_ = false;
}
if (active_render &&
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
recent_convergence_during_activity_ = false;
}
}
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
const bool filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ > required_blocks_for_convergence_;
usable_linear_estimate_ = filter_has_had_time_to_converge && external_delay;
if (!conservative_initial_phase_ && recent_convergence_during_activity_) {
usable_linear_estimate_ = true;
}
if (!linear_and_stable_echo_path_ && !recent_convergence_) {
usable_linear_estimate_ = false;
}
if (saturated_echo || transparent_mode) {
usable_linear_estimate_ = false;
}
}
void AecState::SaturationDetector::Update(
rtc::ArrayView<const float> x,
bool saturated_capture,
bool usable_linear_estimate,
const SubtractorOutput& subtractor_output,
float echo_path_gain) {
saturated_echo_ = saturated_capture;
if (usable_linear_estimate) {
constexpr float kSaturationThreshold = 20000.f;
saturated_echo_ =
saturated_echo_ &&
(subtractor_output.s_main_max_abs > kSaturationThreshold ||
subtractor_output.s_shadow_max_abs > kSaturationThreshold);
} else {
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
saturated_echo_ = saturated_echo_ && peak_echo_amplitude > 32000;
}
}
AecState::LegacySaturationDetector::LegacySaturationDetector(
const EchoCanceller3Config& config)
: echo_can_saturate_(config.ep_strength.echo_can_saturate),
not_saturated_sequence_size_(1000) {}
void AecState::LegacySaturationDetector::Reset() {
not_saturated_sequence_size_ = 0;
}
void AecState::LegacySaturationDetector::Update(rtc::ArrayView<const float> x,
bool saturated_capture,
float echo_path_gain) {
if (!echo_can_saturate_) {
saturated_echo_ = false;
return;
}
RTC_DCHECK_LT(0, x.size());
if (saturated_capture) {
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
// Set flag for potential presence of saturated echo
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
if (peak_echo_amplitude > 32000) {
not_saturated_sequence_size_ = 0;
saturated_echo_ = true;
return;
}
}
saturated_echo_ = ++not_saturated_sequence_size_ < 5;
}
} // namespace webrtc