tg2sip/libtgvoip/webrtc_dsp/absl/memory/memory.h

698 lines
25 KiB
C
Raw Normal View History

Squashed 'libtgvoip/' changes from 6053cf5..cfd62e6 cfd62e6 Why did it change the OS X project 3a58a16 2.4.3 c4a48b3 Updated OS X project 564eada Fix #63 4f64e2e fixes 0c732e2 fixes 12e76ed better logging f015b79 Merge pull request #62 from xvitaly/big-endian a1df90f Set preferred audio session parameters on iOS 59a975b Fixes 8fd89fc Fixes, mic level testing and volume adjustment 243acfa Backported WebRTC upstream patch with Big Endian support. fed3bb7 Detect when proxy does not support UDP and persist that across calls a7546d4 Merge commit '6d03dd9ae4bf48d7344341cdd2d055ebd3a6a42e' into public 6d03dd9 version 69adf70 Use server config for APM + iOS crash fix 0b42ec8 Update iOS project f1b9e63 packet logging beeea45 I apparently still suck at C++ memory management 24fceba Update project 7f54b91 crash fix f85ce99 Save more data in data saving mode f4c4f79 Collect packet stats and accept json string for server config 78e584c New protocol version: optimized packet size 8cf9177 Fixed build on iOS 9dd089d fixed build on android 5caaaaf Updated WebRTC APM cc0cf35 fixed deadlock 02f4835 Rearranged VoIPController methods and added sections 912f73d Updated OS X project 39376df Fixed audio glitches on Windows dfe1f03 Updated project 81daf3f fix 296187a Merge pull request #58 from telegramdesktop/tdesktop 44956ac Merge pull request #57 from UnigramDev/public fb0a2b0 Fix build for Linux. d6cf1b7 Updated UWP wrapper 0f06289 Merge branch 'public' of github.com:grishka/libtgvoip into public dcfad91 Fix #54 162f447 Merge pull request #56 from telegramdesktop/tdesktop a7ee511 Merge remote-tracking branch 'origin/tdesktop' into HEAD 467b148 Removed unused files b1a0b3d 2.3 9b292fd Fix warning in Xcode 10. 8d8522a Merge pull request #53 from UnigramDev/public 646f7d6 Merge branch 'public' into public 14d782b Fixes 68acf59 Added GetSignalBarsCount and GetConnectionState to CXWrapper 761c586 Added GetStats to CXWrapper f643b02 Prevent crash if UWP WASAPI devices aren't found b2ac10e Fixed UWP project 9a1ec51 Fixed build for Windows Phone, fixed some warnings 4aea54f fix git-subtree-dir: libtgvoip git-subtree-split: cfd62e66a825348ac51f49e5d20bf8827fef7a38
2019-02-06 18:22:38 +00:00
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: memory.h
// -----------------------------------------------------------------------------
//
// This header file contains utility functions for managing the creation and
// conversion of smart pointers. This file is an extension to the C++
// standard <memory> library header file.
#ifndef ABSL_MEMORY_MEMORY_H_
#define ABSL_MEMORY_MEMORY_H_
#include <cstddef>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/macros.h"
#include "absl/meta/type_traits.h"
namespace absl {
// -----------------------------------------------------------------------------
// Function Template: WrapUnique()
// -----------------------------------------------------------------------------
//
// Adopts ownership from a raw pointer and transfers it to the returned
// `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*
// specify the template type `T` when calling `WrapUnique`.
//
// Example:
// X* NewX(int, int);
// auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>.
//
// The purpose of WrapUnique is to automatically deduce the pointer type. If you
// wish to make the type explicit, for readability reasons or because you prefer
// to use a base-class pointer rather than a derived one, just use
// `std::unique_ptr` directly.
//
// Example:
// X* Factory(int, int);
// auto x = std::unique_ptr<X>(Factory(1, 2));
// - or -
// std::unique_ptr<X> x(Factory(1, 2));
//
// This has the added advantage of working whether Factory returns a raw
// pointer or a `std::unique_ptr`.
//
// While `absl::WrapUnique` is useful for capturing the output of a raw
// pointer factory, prefer 'absl::make_unique<T>(args...)' over
// 'absl::WrapUnique(new T(args...))'.
//
// auto x = WrapUnique(new X(1, 2)); // works, but nonideal.
// auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'.
//
// Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid
// expression. In particular, `absl::WrapUnique()` cannot wrap pointers to
// arrays, functions or void, and it must not be used to capture pointers
// obtained from array-new expressions (even though that would compile!).
template <typename T>
std::unique_ptr<T> WrapUnique(T* ptr) {
static_assert(!std::is_array<T>::value, "array types are unsupported");
static_assert(std::is_object<T>::value, "non-object types are unsupported");
return std::unique_ptr<T>(ptr);
}
namespace memory_internal {
// Traits to select proper overload and return type for `absl::make_unique<>`.
template <typename T>
struct MakeUniqueResult {
using scalar = std::unique_ptr<T>;
};
template <typename T>
struct MakeUniqueResult<T[]> {
using array = std::unique_ptr<T[]>;
};
template <typename T, size_t N>
struct MakeUniqueResult<T[N]> {
using invalid = void;
};
} // namespace memory_internal
// gcc 4.8 has __cplusplus at 201301 but doesn't define make_unique. Other
// supported compilers either just define __cplusplus as 201103 but have
// make_unique (msvc), or have make_unique whenever __cplusplus > 201103 (clang)
#if (__cplusplus > 201103L || defined(_MSC_VER)) && \
!(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8)
using std::make_unique;
#else
// -----------------------------------------------------------------------------
// Function Template: make_unique<T>()
// -----------------------------------------------------------------------------
//
// Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
// during the construction process. `absl::make_unique<>` also avoids redundant
// type declarations, by avoiding the need to explicitly use the `new` operator.
//
// This implementation of `absl::make_unique<>` is designed for C++11 code and
// will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction.
// `absl::make_unique<>` is designed to be 100% compatible with
// `std::make_unique<>` so that the eventual migration will involve a simple
// rename operation.
//
// For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
// see Herb Sutter's explanation on
// (Exception-Safe Function Calls)[http://herbsutter.com/gotw/_102/].
// (In general, reviewers should treat `new T(a,b)` with scrutiny.)
//
// Example usage:
//
// auto p = make_unique<X>(args...); // 'p' is a std::unique_ptr<X>
// auto pa = make_unique<X[]>(5); // 'pa' is a std::unique_ptr<X[]>
//
// Three overloads of `absl::make_unique` are required:
//
// - For non-array T:
//
// Allocates a T with `new T(std::forward<Args> args...)`,
// forwarding all `args` to T's constructor.
// Returns a `std::unique_ptr<T>` owning that object.
//
// - For an array of unknown bounds T[]:
//
// `absl::make_unique<>` will allocate an array T of type U[] with
// `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array.
//
// Note that 'U[n]()' is different from 'U[n]', and elements will be
// value-initialized. Note as well that `std::unique_ptr` will perform its
// own destruction of the array elements upon leaving scope, even though
// the array [] does not have a default destructor.
//
// NOTE: an array of unknown bounds T[] may still be (and often will be)
// initialized to have a size, and will still use this overload. E.g:
//
// auto my_array = absl::make_unique<int[]>(10);
//
// - For an array of known bounds T[N]:
//
// `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as
// this overload is not useful.
//
// NOTE: an array of known bounds T[N] is not considered a useful
// construction, and may cause undefined behavior in templates. E.g:
//
// auto my_array = absl::make_unique<int[10]>();
//
// In those cases, of course, you can still use the overload above and
// simply initialize it to its desired size:
//
// auto my_array = absl::make_unique<int[]>(10);
// `absl::make_unique` overload for non-array types.
template <typename T, typename... Args>
typename memory_internal::MakeUniqueResult<T>::scalar make_unique(
Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
// `absl::make_unique` overload for an array T[] of unknown bounds.
// The array allocation needs to use the `new T[size]` form and cannot take
// element constructor arguments. The `std::unique_ptr` will manage destructing
// these array elements.
template <typename T>
typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) {
return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]());
}
// `absl::make_unique` overload for an array T[N] of known bounds.
// This construction will be rejected.
template <typename T, typename... Args>
typename memory_internal::MakeUniqueResult<T>::invalid make_unique(
Args&&... /* args */) = delete;
#endif
// -----------------------------------------------------------------------------
// Function Template: RawPtr()
// -----------------------------------------------------------------------------
//
// Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is
// useful within templates that need to handle a complement of raw pointers,
// `std::nullptr_t`, and smart pointers.
template <typename T>
auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {
// ptr is a forwarding reference to support Ts with non-const operators.
return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;
}
inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
// -----------------------------------------------------------------------------
// Function Template: ShareUniquePtr()
// -----------------------------------------------------------------------------
//
// Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced
// type. Ownership (if any) of the held value is transferred to the returned
// shared pointer.
//
// Example:
//
// auto up = absl::make_unique<int>(10);
// auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int>
// CHECK_EQ(*sp, 10);
// CHECK(up == nullptr);
//
// Note that this conversion is correct even when T is an array type, and more
// generally it works for *any* deleter of the `unique_ptr` (single-object
// deleter, array deleter, or any custom deleter), since the deleter is adopted
// by the shared pointer as well. The deleter is copied (unless it is a
// reference).
//
// Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
// null shared pointer does not attempt to call the deleter.
template <typename T, typename D>
std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
}
// -----------------------------------------------------------------------------
// Function Template: WeakenPtr()
// -----------------------------------------------------------------------------
//
// Creates a weak pointer associated with a given shared pointer. The returned
// value is a `std::weak_ptr` of deduced type.
//
// Example:
//
// auto sp = std::make_shared<int>(10);
// auto wp = absl::WeakenPtr(sp);
// CHECK_EQ(sp.get(), wp.lock().get());
// sp.reset();
// CHECK(wp.lock() == nullptr);
//
template <typename T>
std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
return std::weak_ptr<T>(ptr);
}
namespace memory_internal {
// ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
template <template <typename> class Extract, typename Obj, typename Default,
typename>
struct ExtractOr {
using type = Default;
};
template <template <typename> class Extract, typename Obj, typename Default>
struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
using type = Extract<Obj>;
};
template <template <typename> class Extract, typename Obj, typename Default>
using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
// Extractors for the features of allocators.
template <typename T>
using GetPointer = typename T::pointer;
template <typename T>
using GetConstPointer = typename T::const_pointer;
template <typename T>
using GetVoidPointer = typename T::void_pointer;
template <typename T>
using GetConstVoidPointer = typename T::const_void_pointer;
template <typename T>
using GetDifferenceType = typename T::difference_type;
template <typename T>
using GetSizeType = typename T::size_type;
template <typename T>
using GetPropagateOnContainerCopyAssignment =
typename T::propagate_on_container_copy_assignment;
template <typename T>
using GetPropagateOnContainerMoveAssignment =
typename T::propagate_on_container_move_assignment;
template <typename T>
using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap;
template <typename T>
using GetIsAlwaysEqual = typename T::is_always_equal;
template <typename T>
struct GetFirstArg;
template <template <typename...> class Class, typename T, typename... Args>
struct GetFirstArg<Class<T, Args...>> {
using type = T;
};
template <typename Ptr, typename = void>
struct ElementType {
using type = typename GetFirstArg<Ptr>::type;
};
template <typename T>
struct ElementType<T, void_t<typename T::element_type>> {
using type = typename T::element_type;
};
template <typename T, typename U>
struct RebindFirstArg;
template <template <typename...> class Class, typename T, typename... Args,
typename U>
struct RebindFirstArg<Class<T, Args...>, U> {
using type = Class<U, Args...>;
};
template <typename T, typename U, typename = void>
struct RebindPtr {
using type = typename RebindFirstArg<T, U>::type;
};
template <typename T, typename U>
struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> {
using type = typename T::template rebind<U>;
};
template <typename T, typename U>
constexpr bool HasRebindAlloc(...) {
return false;
}
template <typename T, typename U>
constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) {
return true;
}
template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)>
struct RebindAlloc {
using type = typename RebindFirstArg<T, U>::type;
};
template <typename T, typename U>
struct RebindAlloc<T, U, true> {
using type = typename T::template rebind<U>::other;
};
} // namespace memory_internal
// -----------------------------------------------------------------------------
// Class Template: pointer_traits
// -----------------------------------------------------------------------------
//
// An implementation of C++11's std::pointer_traits.
//
// Provided for portability on toolchains that have a working C++11 compiler,
// but the standard library is lacking in C++11 support. For example, some
// version of the Android NDK.
//
template <typename Ptr>
struct pointer_traits {
using pointer = Ptr;
// element_type:
// Ptr::element_type if present. Otherwise T if Ptr is a template
// instantiation Template<T, Args...>
using element_type = typename memory_internal::ElementType<Ptr>::type;
// difference_type:
// Ptr::difference_type if present, otherwise std::ptrdiff_t
using difference_type =
memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr,
std::ptrdiff_t>;
// rebind:
// Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a
// template instantiation Template<T, Args...>
template <typename U>
using rebind = typename memory_internal::RebindPtr<Ptr, U>::type;
// pointer_to:
// Calls Ptr::pointer_to(r)
static pointer pointer_to(element_type& r) { // NOLINT(runtime/references)
return Ptr::pointer_to(r);
}
};
// Specialization for T*.
template <typename T>
struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = std::ptrdiff_t;
template <typename U>
using rebind = U*;
// pointer_to:
// Calls std::addressof(r)
static pointer pointer_to(
element_type& r) noexcept { // NOLINT(runtime/references)
return std::addressof(r);
}
};
// -----------------------------------------------------------------------------
// Class Template: allocator_traits
// -----------------------------------------------------------------------------
//
// A C++11 compatible implementation of C++17's std::allocator_traits.
//
template <typename Alloc>
struct allocator_traits {
using allocator_type = Alloc;
// value_type:
// Alloc::value_type
using value_type = typename Alloc::value_type;
// pointer:
// Alloc::pointer if present, otherwise value_type*
using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer,
Alloc, value_type*>;
// const_pointer:
// Alloc::const_pointer if present, otherwise
// absl::pointer_traits<pointer>::rebind<const value_type>
using const_pointer =
memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc,
typename absl::pointer_traits<pointer>::
template rebind<const value_type>>;
// void_pointer:
// Alloc::void_pointer if present, otherwise
// absl::pointer_traits<pointer>::rebind<void>
using void_pointer = memory_internal::ExtractOrT<
memory_internal::GetVoidPointer, Alloc,
typename absl::pointer_traits<pointer>::template rebind<void>>;
// const_void_pointer:
// Alloc::const_void_pointer if present, otherwise
// absl::pointer_traits<pointer>::rebind<const void>
using const_void_pointer = memory_internal::ExtractOrT<
memory_internal::GetConstVoidPointer, Alloc,
typename absl::pointer_traits<pointer>::template rebind<const void>>;
// difference_type:
// Alloc::difference_type if present, otherwise
// absl::pointer_traits<pointer>::difference_type
using difference_type = memory_internal::ExtractOrT<
memory_internal::GetDifferenceType, Alloc,
typename absl::pointer_traits<pointer>::difference_type>;
// size_type:
// Alloc::size_type if present, otherwise
// std::make_unsigned<difference_type>::type
using size_type = memory_internal::ExtractOrT<
memory_internal::GetSizeType, Alloc,
typename std::make_unsigned<difference_type>::type>;
// propagate_on_container_copy_assignment:
// Alloc::propagate_on_container_copy_assignment if present, otherwise
// std::false_type
using propagate_on_container_copy_assignment = memory_internal::ExtractOrT<
memory_internal::GetPropagateOnContainerCopyAssignment, Alloc,
std::false_type>;
// propagate_on_container_move_assignment:
// Alloc::propagate_on_container_move_assignment if present, otherwise
// std::false_type
using propagate_on_container_move_assignment = memory_internal::ExtractOrT<
memory_internal::GetPropagateOnContainerMoveAssignment, Alloc,
std::false_type>;
// propagate_on_container_swap:
// Alloc::propagate_on_container_swap if present, otherwise std::false_type
using propagate_on_container_swap =
memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap,
Alloc, std::false_type>;
// is_always_equal:
// Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type
using is_always_equal =
memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc,
typename std::is_empty<Alloc>::type>;
// rebind_alloc:
// Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc
// is Alloc<U, Args>
template <typename T>
using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type;
// rebind_traits:
// absl::allocator_traits<rebind_alloc<T>>
template <typename T>
using rebind_traits = absl::allocator_traits<rebind_alloc<T>>;
// allocate(Alloc& a, size_type n):
// Calls a.allocate(n)
static pointer allocate(Alloc& a, // NOLINT(runtime/references)
size_type n) {
return a.allocate(n);
}
// allocate(Alloc& a, size_type n, const_void_pointer hint):
// Calls a.allocate(n, hint) if possible.
// If not possible, calls a.allocate(n)
static pointer allocate(Alloc& a, size_type n, // NOLINT(runtime/references)
const_void_pointer hint) {
return allocate_impl(0, a, n, hint);
}
// deallocate(Alloc& a, pointer p, size_type n):
// Calls a.deallocate(p, n)
static void deallocate(Alloc& a, pointer p, // NOLINT(runtime/references)
size_type n) {
a.deallocate(p, n);
}
// construct(Alloc& a, T* p, Args&&... args):
// Calls a.construct(p, std::forward<Args>(args)...) if possible.
// If not possible, calls
// ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...)
template <typename T, typename... Args>
static void construct(Alloc& a, T* p, // NOLINT(runtime/references)
Args&&... args) {
construct_impl(0, a, p, std::forward<Args>(args)...);
}
// destroy(Alloc& a, T* p):
// Calls a.destroy(p) if possible. If not possible, calls p->~T().
template <typename T>
static void destroy(Alloc& a, T* p) { // NOLINT(runtime/references)
destroy_impl(0, a, p);
}
// max_size(const Alloc& a):
// Returns a.max_size() if possible. If not possible, returns
// std::numeric_limits<size_type>::max() / sizeof(value_type)
static size_type max_size(const Alloc& a) { return max_size_impl(0, a); }
// select_on_container_copy_construction(const Alloc& a):
// Returns a.select_on_container_copy_construction() if possible.
// If not possible, returns a.
static Alloc select_on_container_copy_construction(const Alloc& a) {
return select_on_container_copy_construction_impl(0, a);
}
private:
template <typename A>
static auto allocate_impl(int, A& a, // NOLINT(runtime/references)
size_type n, const_void_pointer hint)
-> decltype(a.allocate(n, hint)) {
return a.allocate(n, hint);
}
static pointer allocate_impl(char, Alloc& a, // NOLINT(runtime/references)
size_type n, const_void_pointer) {
return a.allocate(n);
}
template <typename A, typename... Args>
static auto construct_impl(int, A& a, // NOLINT(runtime/references)
Args&&... args)
-> decltype(a.construct(std::forward<Args>(args)...)) {
a.construct(std::forward<Args>(args)...);
}
template <typename T, typename... Args>
static void construct_impl(char, Alloc&, T* p, Args&&... args) {
::new (static_cast<void*>(p)) T(std::forward<Args>(args)...);
}
template <typename A, typename T>
static auto destroy_impl(int, A& a, // NOLINT(runtime/references)
T* p) -> decltype(a.destroy(p)) {
a.destroy(p);
}
template <typename T>
static void destroy_impl(char, Alloc&, T* p) {
p->~T();
}
template <typename A>
static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) {
return a.max_size();
}
static size_type max_size_impl(char, const Alloc&) {
return (std::numeric_limits<size_type>::max)() / sizeof(value_type);
}
template <typename A>
static auto select_on_container_copy_construction_impl(int, const A& a)
-> decltype(a.select_on_container_copy_construction()) {
return a.select_on_container_copy_construction();
}
static Alloc select_on_container_copy_construction_impl(char,
const Alloc& a) {
return a;
}
};
namespace memory_internal {
// This template alias transforms Alloc::is_nothrow into a metafunction with
// Alloc as a parameter so it can be used with ExtractOrT<>.
template <typename Alloc>
using GetIsNothrow = typename Alloc::is_nothrow;
} // namespace memory_internal
// ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
// specify whether the default allocation function can throw or never throws.
// If the allocation function never throws, user should define it to a non-zero
// value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
// If the allocation function can throw, user should leave it undefined or
// define it to zero.
//
// allocator_is_nothrow<Alloc> is a traits class that derives from
// Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
// for Alloc = std::allocator<T> for any type T according to the state of
// ABSL_ALLOCATOR_NOTHROW.
//
// default_allocator_is_nothrow is a class that derives from std::true_type
// when the default allocator (global operator new) never throws, and
// std::false_type when it can throw. It is a convenience shorthand for writing
// allocator_is_nothrow<std::allocator<T>> (T can be any type).
// NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
// the same type for all T, because users should specialize neither
// allocator_is_nothrow nor std::allocator.
template <typename Alloc>
struct allocator_is_nothrow
: memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
std::false_type> {};
#if ABSL_ALLOCATOR_NOTHROW
template <typename T>
struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
struct default_allocator_is_nothrow : std::true_type {};
#else
struct default_allocator_is_nothrow : std::false_type {};
#endif
namespace memory_internal {
template <typename Allocator, typename Iterator, typename... Args>
void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
const Args&... args) {
for (Iterator cur = first; cur != last; ++cur) {
ABSL_INTERNAL_TRY {
std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
args...);
}
ABSL_INTERNAL_CATCH_ANY {
while (cur != first) {
--cur;
std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
}
ABSL_INTERNAL_RETHROW;
}
}
}
template <typename Allocator, typename Iterator, typename InputIterator>
void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
InputIterator last) {
for (Iterator cur = destination; first != last;
static_cast<void>(++cur), static_cast<void>(++first)) {
ABSL_INTERNAL_TRY {
std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
*first);
}
ABSL_INTERNAL_CATCH_ANY {
while (cur != destination) {
--cur;
std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
}
ABSL_INTERNAL_RETHROW;
}
}
}
} // namespace memory_internal
} // namespace absl
#endif // ABSL_MEMORY_MEMORY_H_