376 lines
14 KiB
C++
376 lines
14 KiB
C++
|
/*
|
||
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
// Modified from the Chromium original:
|
||
|
// src/media/base/sinc_resampler.cc
|
||
|
|
||
|
// Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
|
||
|
// and r4_ will move after the first load):
|
||
|
//
|
||
|
// |----------------|-----------------------------------------|----------------|
|
||
|
//
|
||
|
// request_frames_
|
||
|
// <--------------------------------------------------------->
|
||
|
// r0_ (during first load)
|
||
|
//
|
||
|
// kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
|
||
|
// <---------------> <---------------> <---------------> <--------------->
|
||
|
// r1_ r2_ r3_ r4_
|
||
|
//
|
||
|
// block_size_ == r4_ - r2_
|
||
|
// <--------------------------------------->
|
||
|
//
|
||
|
// request_frames_
|
||
|
// <------------------ ... ----------------->
|
||
|
// r0_ (during second load)
|
||
|
//
|
||
|
// On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
|
||
|
// and block_size_ are reinitialized via step (3) in the algorithm below.
|
||
|
//
|
||
|
// These new regions remain constant until a Flush() occurs. While complicated,
|
||
|
// this allows us to reduce jitter by always requesting the same amount from the
|
||
|
// provided callback.
|
||
|
//
|
||
|
// The algorithm:
|
||
|
//
|
||
|
// 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
|
||
|
// there's enough room to read request_frames_ from the callback into region
|
||
|
// r0_ (which will move between the first and subsequent passes).
|
||
|
//
|
||
|
// 2) Let r1_, r2_ each represent half the kernel centered around r0_:
|
||
|
//
|
||
|
// r0_ = input_buffer_ + kKernelSize / 2
|
||
|
// r1_ = input_buffer_
|
||
|
// r2_ = r0_
|
||
|
//
|
||
|
// r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in
|
||
|
// size. r1_ must be zero initialized to avoid convolution with garbage (see
|
||
|
// step (5) for why).
|
||
|
//
|
||
|
// 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
|
||
|
// r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
|
||
|
//
|
||
|
// r3_ = r0_ + request_frames_ - kKernelSize
|
||
|
// r4_ = r0_ + request_frames_ - kKernelSize / 2
|
||
|
// block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
|
||
|
//
|
||
|
// 4) Consume request_frames_ frames into r0_.
|
||
|
//
|
||
|
// 5) Position kernel centered at start of r2_ and generate output frames until
|
||
|
// the kernel is centered at the start of r4_ or we've finished generating
|
||
|
// all the output frames.
|
||
|
//
|
||
|
// 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
|
||
|
//
|
||
|
// 7) If we're on the second load, in order to avoid overwriting the frames we
|
||
|
// just wrapped from r4_ we need to slide r0_ to the right by the size of
|
||
|
// r4_, which is kKernelSize / 2:
|
||
|
//
|
||
|
// r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
|
||
|
//
|
||
|
// r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
|
||
|
//
|
||
|
// 8) Else, if we're not on the second load, goto (4).
|
||
|
//
|
||
|
// Note: we're glossing over how the sub-sample handling works with
|
||
|
// |virtual_source_idx_|, etc.
|
||
|
|
||
|
// MSVC++ requires this to be set before any other includes to get M_PI.
|
||
|
#define _USE_MATH_DEFINES
|
||
|
|
||
|
#include "common_audio/resampler/sinc_resampler.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <stdint.h>
|
||
|
#include <string.h>
|
||
|
#include <limits>
|
||
|
|
||
|
#include "rtc_base/checks.h"
|
||
|
#include "rtc_base/system/arch.h"
|
||
|
#include "system_wrappers/include/cpu_features_wrapper.h" // kSSE2, WebRtc_G...
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
double SincScaleFactor(double io_ratio) {
|
||
|
// |sinc_scale_factor| is basically the normalized cutoff frequency of the
|
||
|
// low-pass filter.
|
||
|
double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
|
||
|
|
||
|
// The sinc function is an idealized brick-wall filter, but since we're
|
||
|
// windowing it the transition from pass to stop does not happen right away.
|
||
|
// So we should adjust the low pass filter cutoff slightly downward to avoid
|
||
|
// some aliasing at the very high-end.
|
||
|
// TODO(crogers): this value is empirical and to be more exact should vary
|
||
|
// depending on kKernelSize.
|
||
|
sinc_scale_factor *= 0.9;
|
||
|
|
||
|
return sinc_scale_factor;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
const size_t SincResampler::kKernelSize;
|
||
|
|
||
|
// If we know the minimum architecture at compile time, avoid CPU detection.
|
||
|
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||
|
#if defined(__SSE2__)
|
||
|
#define CONVOLVE_FUNC Convolve_SSE
|
||
|
void SincResampler::InitializeCPUSpecificFeatures() {}
|
||
|
#else
|
||
|
// x86 CPU detection required. Function will be set by
|
||
|
// InitializeCPUSpecificFeatures().
|
||
|
// TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
|
||
|
#define CONVOLVE_FUNC convolve_proc_
|
||
|
|
||
|
void SincResampler::InitializeCPUSpecificFeatures() {
|
||
|
convolve_proc_ = WebRtc_GetCPUInfo(kSSE2) ? Convolve_SSE : Convolve_C;
|
||
|
}
|
||
|
#endif
|
||
|
#elif defined(WEBRTC_HAS_NEON)
|
||
|
#define CONVOLVE_FUNC Convolve_NEON
|
||
|
void SincResampler::InitializeCPUSpecificFeatures() {}
|
||
|
#else
|
||
|
// Unknown architecture.
|
||
|
#define CONVOLVE_FUNC Convolve_C
|
||
|
void SincResampler::InitializeCPUSpecificFeatures() {}
|
||
|
#endif
|
||
|
|
||
|
SincResampler::SincResampler(double io_sample_rate_ratio,
|
||
|
size_t request_frames,
|
||
|
SincResamplerCallback* read_cb)
|
||
|
: io_sample_rate_ratio_(io_sample_rate_ratio),
|
||
|
read_cb_(read_cb),
|
||
|
request_frames_(request_frames),
|
||
|
input_buffer_size_(request_frames_ + kKernelSize),
|
||
|
// Create input buffers with a 16-byte alignment for SSE optimizations.
|
||
|
kernel_storage_(static_cast<float*>(
|
||
|
AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
|
||
|
kernel_pre_sinc_storage_(static_cast<float*>(
|
||
|
AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
|
||
|
kernel_window_storage_(static_cast<float*>(
|
||
|
AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
|
||
|
input_buffer_(static_cast<float*>(
|
||
|
AlignedMalloc(sizeof(float) * input_buffer_size_, 16))),
|
||
|
#if defined(WEBRTC_ARCH_X86_FAMILY) && !defined(__SSE2__)
|
||
|
convolve_proc_(nullptr),
|
||
|
#endif
|
||
|
r1_(input_buffer_.get()),
|
||
|
r2_(input_buffer_.get() + kKernelSize / 2) {
|
||
|
#if defined(WEBRTC_ARCH_X86_FAMILY) && !defined(__SSE2__)
|
||
|
InitializeCPUSpecificFeatures();
|
||
|
RTC_DCHECK(convolve_proc_);
|
||
|
#endif
|
||
|
RTC_DCHECK_GT(request_frames_, 0);
|
||
|
Flush();
|
||
|
RTC_DCHECK_GT(block_size_, kKernelSize);
|
||
|
|
||
|
memset(kernel_storage_.get(), 0,
|
||
|
sizeof(*kernel_storage_.get()) * kKernelStorageSize);
|
||
|
memset(kernel_pre_sinc_storage_.get(), 0,
|
||
|
sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
|
||
|
memset(kernel_window_storage_.get(), 0,
|
||
|
sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
|
||
|
|
||
|
InitializeKernel();
|
||
|
}
|
||
|
|
||
|
SincResampler::~SincResampler() {}
|
||
|
|
||
|
void SincResampler::UpdateRegions(bool second_load) {
|
||
|
// Setup various region pointers in the buffer (see diagram above). If we're
|
||
|
// on the second load we need to slide r0_ to the right by kKernelSize / 2.
|
||
|
r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
|
||
|
r3_ = r0_ + request_frames_ - kKernelSize;
|
||
|
r4_ = r0_ + request_frames_ - kKernelSize / 2;
|
||
|
block_size_ = r4_ - r2_;
|
||
|
|
||
|
// r1_ at the beginning of the buffer.
|
||
|
RTC_DCHECK_EQ(r1_, input_buffer_.get());
|
||
|
// r1_ left of r2_, r4_ left of r3_ and size correct.
|
||
|
RTC_DCHECK_EQ(r2_ - r1_, r4_ - r3_);
|
||
|
// r2_ left of r3.
|
||
|
RTC_DCHECK_LT(r2_, r3_);
|
||
|
}
|
||
|
|
||
|
void SincResampler::InitializeKernel() {
|
||
|
// Blackman window parameters.
|
||
|
static const double kAlpha = 0.16;
|
||
|
static const double kA0 = 0.5 * (1.0 - kAlpha);
|
||
|
static const double kA1 = 0.5;
|
||
|
static const double kA2 = 0.5 * kAlpha;
|
||
|
|
||
|
// Generates a set of windowed sinc() kernels.
|
||
|
// We generate a range of sub-sample offsets from 0.0 to 1.0.
|
||
|
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
|
||
|
for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
|
||
|
const float subsample_offset =
|
||
|
static_cast<float>(offset_idx) / kKernelOffsetCount;
|
||
|
|
||
|
for (size_t i = 0; i < kKernelSize; ++i) {
|
||
|
const size_t idx = i + offset_idx * kKernelSize;
|
||
|
const float pre_sinc = static_cast<float>(
|
||
|
M_PI * (static_cast<int>(i) - static_cast<int>(kKernelSize / 2) -
|
||
|
subsample_offset));
|
||
|
kernel_pre_sinc_storage_[idx] = pre_sinc;
|
||
|
|
||
|
// Compute Blackman window, matching the offset of the sinc().
|
||
|
const float x = (i - subsample_offset) / kKernelSize;
|
||
|
const float window = static_cast<float>(kA0 - kA1 * cos(2.0 * M_PI * x) +
|
||
|
kA2 * cos(4.0 * M_PI * x));
|
||
|
kernel_window_storage_[idx] = window;
|
||
|
|
||
|
// Compute the sinc with offset, then window the sinc() function and store
|
||
|
// at the correct offset.
|
||
|
kernel_storage_[idx] = static_cast<float>(
|
||
|
window * ((pre_sinc == 0)
|
||
|
? sinc_scale_factor
|
||
|
: (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SincResampler::SetRatio(double io_sample_rate_ratio) {
|
||
|
if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
|
||
|
std::numeric_limits<double>::epsilon()) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
io_sample_rate_ratio_ = io_sample_rate_ratio;
|
||
|
|
||
|
// Optimize reinitialization by reusing values which are independent of
|
||
|
// |sinc_scale_factor|. Provides a 3x speedup.
|
||
|
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
|
||
|
for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
|
||
|
for (size_t i = 0; i < kKernelSize; ++i) {
|
||
|
const size_t idx = i + offset_idx * kKernelSize;
|
||
|
const float window = kernel_window_storage_[idx];
|
||
|
const float pre_sinc = kernel_pre_sinc_storage_[idx];
|
||
|
|
||
|
kernel_storage_[idx] = static_cast<float>(
|
||
|
window * ((pre_sinc == 0)
|
||
|
? sinc_scale_factor
|
||
|
: (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SincResampler::Resample(size_t frames, float* destination) {
|
||
|
size_t remaining_frames = frames;
|
||
|
|
||
|
// Step (1) -- Prime the input buffer at the start of the input stream.
|
||
|
if (!buffer_primed_ && remaining_frames) {
|
||
|
read_cb_->Run(request_frames_, r0_);
|
||
|
buffer_primed_ = true;
|
||
|
}
|
||
|
|
||
|
// Step (2) -- Resample! const what we can outside of the loop for speed. It
|
||
|
// actually has an impact on ARM performance. See inner loop comment below.
|
||
|
const double current_io_ratio = io_sample_rate_ratio_;
|
||
|
const float* const kernel_ptr = kernel_storage_.get();
|
||
|
while (remaining_frames) {
|
||
|
// |i| may be negative if the last Resample() call ended on an iteration
|
||
|
// that put |virtual_source_idx_| over the limit.
|
||
|
//
|
||
|
// Note: The loop construct here can severely impact performance on ARM
|
||
|
// or when built with clang. See https://codereview.chromium.org/18566009/
|
||
|
for (int i = static_cast<int>(
|
||
|
ceil((block_size_ - virtual_source_idx_) / current_io_ratio));
|
||
|
i > 0; --i) {
|
||
|
RTC_DCHECK_LT(virtual_source_idx_, block_size_);
|
||
|
|
||
|
// |virtual_source_idx_| lies in between two kernel offsets so figure out
|
||
|
// what they are.
|
||
|
const int source_idx = static_cast<int>(virtual_source_idx_);
|
||
|
const double subsample_remainder = virtual_source_idx_ - source_idx;
|
||
|
|
||
|
const double virtual_offset_idx =
|
||
|
subsample_remainder * kKernelOffsetCount;
|
||
|
const int offset_idx = static_cast<int>(virtual_offset_idx);
|
||
|
|
||
|
// We'll compute "convolutions" for the two kernels which straddle
|
||
|
// |virtual_source_idx_|.
|
||
|
const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
|
||
|
const float* const k2 = k1 + kKernelSize;
|
||
|
|
||
|
// Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be
|
||
|
// true so long as kKernelSize is a multiple of 16.
|
||
|
RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k1) % 16);
|
||
|
RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k2) % 16);
|
||
|
|
||
|
// Initialize input pointer based on quantized |virtual_source_idx_|.
|
||
|
const float* const input_ptr = r1_ + source_idx;
|
||
|
|
||
|
// Figure out how much to weight each kernel's "convolution".
|
||
|
const double kernel_interpolation_factor =
|
||
|
virtual_offset_idx - offset_idx;
|
||
|
*destination++ =
|
||
|
CONVOLVE_FUNC(input_ptr, k1, k2, kernel_interpolation_factor);
|
||
|
|
||
|
// Advance the virtual index.
|
||
|
virtual_source_idx_ += current_io_ratio;
|
||
|
|
||
|
if (!--remaining_frames)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Wrap back around to the start.
|
||
|
virtual_source_idx_ -= block_size_;
|
||
|
|
||
|
// Step (3) -- Copy r3_, r4_ to r1_, r2_.
|
||
|
// This wraps the last input frames back to the start of the buffer.
|
||
|
memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
|
||
|
|
||
|
// Step (4) -- Reinitialize regions if necessary.
|
||
|
if (r0_ == r2_)
|
||
|
UpdateRegions(true);
|
||
|
|
||
|
// Step (5) -- Refresh the buffer with more input.
|
||
|
read_cb_->Run(request_frames_, r0_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#undef CONVOLVE_FUNC
|
||
|
|
||
|
size_t SincResampler::ChunkSize() const {
|
||
|
return static_cast<size_t>(block_size_ / io_sample_rate_ratio_);
|
||
|
}
|
||
|
|
||
|
void SincResampler::Flush() {
|
||
|
virtual_source_idx_ = 0;
|
||
|
buffer_primed_ = false;
|
||
|
memset(input_buffer_.get(), 0,
|
||
|
sizeof(*input_buffer_.get()) * input_buffer_size_);
|
||
|
UpdateRegions(false);
|
||
|
}
|
||
|
|
||
|
float SincResampler::Convolve_C(const float* input_ptr,
|
||
|
const float* k1,
|
||
|
const float* k2,
|
||
|
double kernel_interpolation_factor) {
|
||
|
float sum1 = 0;
|
||
|
float sum2 = 0;
|
||
|
|
||
|
// Generate a single output sample. Unrolling this loop hurt performance in
|
||
|
// local testing.
|
||
|
size_t n = kKernelSize;
|
||
|
while (n--) {
|
||
|
sum1 += *input_ptr * *k1++;
|
||
|
sum2 += *input_ptr++ * *k2++;
|
||
|
}
|
||
|
|
||
|
// Linearly interpolate the two "convolutions".
|
||
|
return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
|
||
|
kernel_interpolation_factor * sum2);
|
||
|
}
|
||
|
|
||
|
} // namespace webrtc
|