#!/usr/bin/env perl # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for AVX-512F. # # July 2017. # # Below code is KECCAK_1X_ALT implementation (see sha/keccak1600.c). # Pretty straightforward, the only "magic" is data layout in registers. # It's impossible to have one that is optimal for every step, hence # it's changing as algorithm progresses. Data is saved in linear order, # but in-register order morphs between rounds. Even rounds take in # linear layout, and odd rounds - transposed, or "verticaly-shaped"... # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(*) # # Knights Landing 7.6 # Skylake-X 5.7 # # (*) Corresponds to SHA3-256. ######################################################################## # Below code is combination of two ideas. One is taken from Keccak Code # Package, hereafter KCP, and another one from initial version of this # module. What is common is observation that Pi's input and output are # "mostly transposed", i.e. if input is aligned by x coordinate, then # output is [mostly] aligned by y. Both versions, KCP and predecessor, # were trying to use one of them from round to round, which resulted in # some kind of transposition in each round. This version still does # transpose data, but only every second round. Another essential factor # is that KCP transposition has to be performed with instructions that # turned to be rather expensive on Knights Landing, both latency- and # throughput-wise. Not to mention that some of them have to depend on # each other. On the other hand initial version of this module was # relying heavily on blend instructions. There were lots of them, # resulting in higher instruction count, yet it performed better on # Knights Landing, because processor can execute pair of them each # cycle and they have minimal latency. This module is an attempt to # bring best parts together:-) # # Coordinates below correspond to those in sha/keccak1600.c. Input # layout is straight linear: # # [0][4] [0][3] [0][2] [0][1] [0][0] # [1][4] [1][3] [1][2] [1][1] [1][0] # [2][4] [2][3] [2][2] [2][1] [2][0] # [3][4] [3][3] [3][2] [3][1] [3][0] # [4][4] [4][3] [4][2] [4][1] [4][0] # # It's perfect for Theta, while Pi is reduced to intra-register # permutations which yield layout perfect for Chi: # # [4][0] [3][0] [2][0] [1][0] [0][0] # [4][1] [3][1] [2][1] [1][1] [0][1] # [4][2] [3][2] [2][2] [1][2] [0][2] # [4][3] [3][3] [2][3] [1][3] [0][3] # [4][4] [3][4] [2][4] [1][4] [0][4] # # Now instead of performing full transposition and feeding it to next # identical round, we perform kind of diagonal transposition to layout # from initial version of this module, and make it suitable for Theta: # # [4][4] [3][3] [2][2] [1][1] [0][0]>4.3.2.1.0>[4][4] [3][3] [2][2] [1][1] [0][0] # [4][0] [3][4] [2][3] [1][2] [0][1]>3.2.1.0.4>[3][4] [2][3] [1][2] [0][1] [4][0] # [4][1] [3][0] [2][4] [1][3] [0][2]>2.1.0.4.3>[2][4] [1][3] [0][2] [4][1] [3][0] # [4][2] [3][1] [2][0] [1][4] [0][3]>1.0.4.3.2>[1][4] [0][3] [4][2] [3][1] [2][0] # [4][3] [3][2] [2][1] [1][0] [0][4]>0.4.3.2.1>[0][4] [4][3] [3][2] [2][1] [1][0] # # Now intra-register permutations yield initial [almost] straight # linear layout: # # [4][4] [3][3] [2][2] [1][1] [0][0] ##[0][4] [0][3] [0][2] [0][1] [0][0] # [3][4] [2][3] [1][2] [0][1] [4][0] ##[2][3] [2][2] [2][1] [2][0] [2][4] # [2][4] [1][3] [0][2] [4][1] [3][0] ##[4][2] [4][1] [4][0] [4][4] [4][3] # [1][4] [0][3] [4][2] [3][1] [2][0] ##[1][1] [1][0] [1][4] [1][3] [1][2] # [0][4] [4][3] [3][2] [2][1] [1][0] ##[3][0] [3][4] [3][3] [3][2] [3][1] # # This means that odd round Chi is performed in less suitable layout, # with a number of additional permutations. But overall it turned to be # a win. Permutations are fastest possible on Knights Landing and they # are laid down to be independent of each other. In the essence I traded # 20 blend instructions for 3 permutations. The result is 13% faster # than KCP on Skylake-X, and >40% on Knights Landing. # # As implied, data is loaded in straight linear order. Digits in # variables' names represent coordinates of right-most element of # loaded data chunk: my ($A00, # [0][4] [0][3] [0][2] [0][1] [0][0] $A10, # [1][4] [1][3] [1][2] [1][1] [1][0] $A20, # [2][4] [2][3] [2][2] [2][1] [2][0] $A30, # [3][4] [3][3] [3][2] [3][1] [3][0] $A40) = # [4][4] [4][3] [4][2] [4][1] [4][0] map("%zmm$_",(0..4)); # We also need to map the magic order into offsets within structure: my @A_jagged = ([0,0], [0,1], [0,2], [0,3], [0,4], [1,0], [1,1], [1,2], [1,3], [1,4], [2,0], [2,1], [2,2], [2,3], [2,4], [3,0], [3,1], [3,2], [3,3], [3,4], [4,0], [4,1], [4,2], [4,3], [4,4]); @A_jagged = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear my @T = map("%zmm$_",(5..12)); my @Theta = map("%zmm$_",(33,13..16)); # invalid @Theta[0] is not typo my @Pi0 = map("%zmm$_",(17..21)); my @Rhotate0 = map("%zmm$_",(22..26)); my @Rhotate1 = map("%zmm$_",(27..31)); my ($C00,$D00) = @T[0..1]; my ($k00001,$k00010,$k00100,$k01000,$k10000,$k11111) = map("%k$_",(1..6)); $code.=<<___; .text .type __KeccakF1600,\@function .align 32 __KeccakF1600: lea iotas(%rip),%r10 mov \$12,%eax jmp .Loop_avx512 .align 32 .Loop_avx512: ######################################### Theta, even round vmovdqa64 $A00,@T[0] # put aside original A00 vpternlogq \$0x96,$A20,$A10,$A00 # and use it as "C00" vpternlogq \$0x96,$A40,$A30,$A00 vprolq \$1,$A00,$D00 vpermq $A00,@Theta[1],$A00 vpermq $D00,@Theta[4],$D00 vpternlogq \$0x96,$A00,$D00,@T[0] # T[0] is original A00 vpternlogq \$0x96,$A00,$D00,$A10 vpternlogq \$0x96,$A00,$D00,$A20 vpternlogq \$0x96,$A00,$D00,$A30 vpternlogq \$0x96,$A00,$D00,$A40 ######################################### Rho vprolvq @Rhotate0[0],@T[0],$A00 # T[0] is original A00 vprolvq @Rhotate0[1],$A10,$A10 vprolvq @Rhotate0[2],$A20,$A20 vprolvq @Rhotate0[3],$A30,$A30 vprolvq @Rhotate0[4],$A40,$A40 ######################################### Pi vpermq $A00,@Pi0[0],$A00 vpermq $A10,@Pi0[1],$A10 vpermq $A20,@Pi0[2],$A20 vpermq $A30,@Pi0[3],$A30 vpermq $A40,@Pi0[4],$A40 ######################################### Chi vmovdqa64 $A00,@T[0] vmovdqa64 $A10,@T[1] vpternlogq \$0xD2,$A20,$A10,$A00 vpternlogq \$0xD2,$A30,$A20,$A10 vpternlogq \$0xD2,$A40,$A30,$A20 vpternlogq \$0xD2,@T[0],$A40,$A30 vpternlogq \$0xD2,@T[1],@T[0],$A40 ######################################### Iota vpxorq (%r10),$A00,${A00}{$k00001} lea 16(%r10),%r10 ######################################### Harmonize rounds vpblendmq $A20,$A10,@{T[1]}{$k00010} vpblendmq $A30,$A20,@{T[2]}{$k00010} vpblendmq $A40,$A30,@{T[3]}{$k00010} vpblendmq $A10,$A00,@{T[0]}{$k00010} vpblendmq $A00,$A40,@{T[4]}{$k00010} vpblendmq $A30,@T[1],@{T[1]}{$k00100} vpblendmq $A40,@T[2],@{T[2]}{$k00100} vpblendmq $A20,@T[0],@{T[0]}{$k00100} vpblendmq $A00,@T[3],@{T[3]}{$k00100} vpblendmq $A10,@T[4],@{T[4]}{$k00100} vpblendmq $A40,@T[1],@{T[1]}{$k01000} vpblendmq $A30,@T[0],@{T[0]}{$k01000} vpblendmq $A00,@T[2],@{T[2]}{$k01000} vpblendmq $A10,@T[3],@{T[3]}{$k01000} vpblendmq $A20,@T[4],@{T[4]}{$k01000} vpblendmq $A40,@T[0],@{T[0]}{$k10000} vpblendmq $A00,@T[1],@{T[1]}{$k10000} vpblendmq $A10,@T[2],@{T[2]}{$k10000} vpblendmq $A20,@T[3],@{T[3]}{$k10000} vpblendmq $A30,@T[4],@{T[4]}{$k10000} #vpermq @T[0],@Theta[0],$A00 # doesn't actually change order vpermq @T[1],@Theta[1],$A10 vpermq @T[2],@Theta[2],$A20 vpermq @T[3],@Theta[3],$A30 vpermq @T[4],@Theta[4],$A40 ######################################### Theta, odd round vmovdqa64 $T[0],$A00 # real A00 vpternlogq \$0x96,$A20,$A10,$C00 # C00 is @T[0]'s alias vpternlogq \$0x96,$A40,$A30,$C00 vprolq \$1,$C00,$D00 vpermq $C00,@Theta[1],$C00 vpermq $D00,@Theta[4],$D00 vpternlogq \$0x96,$C00,$D00,$A00 vpternlogq \$0x96,$C00,$D00,$A30 vpternlogq \$0x96,$C00,$D00,$A10 vpternlogq \$0x96,$C00,$D00,$A40 vpternlogq \$0x96,$C00,$D00,$A20 ######################################### Rho vprolvq @Rhotate1[0],$A00,$A00 vprolvq @Rhotate1[3],$A30,@T[1] vprolvq @Rhotate1[1],$A10,@T[2] vprolvq @Rhotate1[4],$A40,@T[3] vprolvq @Rhotate1[2],$A20,@T[4] vpermq $A00,@Theta[4],@T[5] vpermq $A00,@Theta[3],@T[6] ######################################### Iota vpxorq -8(%r10),$A00,${A00}{$k00001} ######################################### Pi vpermq @T[1],@Theta[2],$A10 vpermq @T[2],@Theta[4],$A20 vpermq @T[3],@Theta[1],$A30 vpermq @T[4],@Theta[3],$A40 ######################################### Chi vpternlogq \$0xD2,@T[6],@T[5],$A00 vpermq @T[1],@Theta[1],@T[7] #vpermq @T[1],@Theta[0],@T[1] vpternlogq \$0xD2,@T[1],@T[7],$A10 vpermq @T[2],@Theta[3],@T[0] vpermq @T[2],@Theta[2],@T[2] vpternlogq \$0xD2,@T[2],@T[0],$A20 #vpermq @T[3],@Theta[0],@T[3] vpermq @T[3],@Theta[4],@T[1] vpternlogq \$0xD2,@T[1],@T[3],$A30 vpermq @T[4],@Theta[2],@T[0] vpermq @T[4],@Theta[1],@T[4] vpternlogq \$0xD2,@T[4],@T[0],$A40 dec %eax jnz .Loop_avx512 ret .size __KeccakF1600,.-__KeccakF1600 ___ my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); my $out = $inp; # in squeeze $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 32 SHA3_absorb: mov %rsp,%r11 lea -320(%rsp),%rsp and \$-64,%rsp lea 96($A_flat),$A_flat lea 96($inp),$inp lea 128(%rsp),%r9 lea theta_perm(%rip),%r8 kxnorw $k11111,$k11111,$k11111 kshiftrw \$15,$k11111,$k00001 kshiftrw \$11,$k11111,$k11111 kshiftlw \$1,$k00001,$k00010 kshiftlw \$2,$k00001,$k00100 kshiftlw \$3,$k00001,$k01000 kshiftlw \$4,$k00001,$k10000 #vmovdqa64 64*0(%r8),@Theta[0] vmovdqa64 64*1(%r8),@Theta[1] vmovdqa64 64*2(%r8),@Theta[2] vmovdqa64 64*3(%r8),@Theta[3] vmovdqa64 64*4(%r8),@Theta[4] vmovdqa64 64*5(%r8),@Rhotate1[0] vmovdqa64 64*6(%r8),@Rhotate1[1] vmovdqa64 64*7(%r8),@Rhotate1[2] vmovdqa64 64*8(%r8),@Rhotate1[3] vmovdqa64 64*9(%r8),@Rhotate1[4] vmovdqa64 64*10(%r8),@Rhotate0[0] vmovdqa64 64*11(%r8),@Rhotate0[1] vmovdqa64 64*12(%r8),@Rhotate0[2] vmovdqa64 64*13(%r8),@Rhotate0[3] vmovdqa64 64*14(%r8),@Rhotate0[4] vmovdqa64 64*15(%r8),@Pi0[0] vmovdqa64 64*16(%r8),@Pi0[1] vmovdqa64 64*17(%r8),@Pi0[2] vmovdqa64 64*18(%r8),@Pi0[3] vmovdqa64 64*19(%r8),@Pi0[4] vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z} vpxorq @T[0],@T[0],@T[0] vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z} vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z} vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z} vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z} vmovdqa64 @T[0],0*64-128(%r9) # zero transfer area on stack vmovdqa64 @T[0],1*64-128(%r9) vmovdqa64 @T[0],2*64-128(%r9) vmovdqa64 @T[0],3*64-128(%r9) vmovdqa64 @T[0],4*64-128(%r9) jmp .Loop_absorb_avx512 .align 32 .Loop_absorb_avx512: mov $bsz,%rax sub $bsz,$len jc .Ldone_absorb_avx512 shr \$3,%eax ___ for(my $i=0; $i<25; $i++) { $code.=<<___ mov 8*$i-96($inp),%r8 mov %r8,$A_jagged[$i]-128(%r9) dec %eax jz .Labsorved_avx512 ___ } $code.=<<___; .Labsorved_avx512: lea ($inp,$bsz),$inp vpxorq 64*0-128(%r9),$A00,$A00 vpxorq 64*1-128(%r9),$A10,$A10 vpxorq 64*2-128(%r9),$A20,$A20 vpxorq 64*3-128(%r9),$A30,$A30 vpxorq 64*4-128(%r9),$A40,$A40 call __KeccakF1600 jmp .Loop_absorb_avx512 .align 32 .Ldone_absorb_avx512: vmovdqu64 $A00,40*0-96($A_flat){$k11111} vmovdqu64 $A10,40*1-96($A_flat){$k11111} vmovdqu64 $A20,40*2-96($A_flat){$k11111} vmovdqu64 $A30,40*3-96($A_flat){$k11111} vmovdqu64 $A40,40*4-96($A_flat){$k11111} vzeroupper lea (%r11),%rsp lea ($len,$bsz),%rax # return value ret .size SHA3_absorb,.-SHA3_absorb .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 32 SHA3_squeeze: mov %rsp,%r11 lea 96($A_flat),$A_flat cmp $bsz,$len jbe .Lno_output_extension_avx512 lea theta_perm(%rip),%r8 kxnorw $k11111,$k11111,$k11111 kshiftrw \$15,$k11111,$k00001 kshiftrw \$11,$k11111,$k11111 kshiftlw \$1,$k00001,$k00010 kshiftlw \$2,$k00001,$k00100 kshiftlw \$3,$k00001,$k01000 kshiftlw \$4,$k00001,$k10000 #vmovdqa64 64*0(%r8),@Theta[0] vmovdqa64 64*1(%r8),@Theta[1] vmovdqa64 64*2(%r8),@Theta[2] vmovdqa64 64*3(%r8),@Theta[3] vmovdqa64 64*4(%r8),@Theta[4] vmovdqa64 64*5(%r8),@Rhotate1[0] vmovdqa64 64*6(%r8),@Rhotate1[1] vmovdqa64 64*7(%r8),@Rhotate1[2] vmovdqa64 64*8(%r8),@Rhotate1[3] vmovdqa64 64*9(%r8),@Rhotate1[4] vmovdqa64 64*10(%r8),@Rhotate0[0] vmovdqa64 64*11(%r8),@Rhotate0[1] vmovdqa64 64*12(%r8),@Rhotate0[2] vmovdqa64 64*13(%r8),@Rhotate0[3] vmovdqa64 64*14(%r8),@Rhotate0[4] vmovdqa64 64*15(%r8),@Pi0[0] vmovdqa64 64*16(%r8),@Pi0[1] vmovdqa64 64*17(%r8),@Pi0[2] vmovdqa64 64*18(%r8),@Pi0[3] vmovdqa64 64*19(%r8),@Pi0[4] vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z} vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z} vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z} vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z} vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z} .Lno_output_extension_avx512: shr \$3,$bsz lea -96($A_flat),%r9 mov $bsz,%rax jmp .Loop_squeeze_avx512 .align 32 .Loop_squeeze_avx512: cmp \$8,$len jb .Ltail_squeeze_avx512 mov (%r9),%r8 lea 8(%r9),%r9 mov %r8,($out) lea 8($out),$out sub \$8,$len # len -= 8 jz .Ldone_squeeze_avx512 sub \$1,%rax # bsz-- jnz .Loop_squeeze_avx512 #vpermq @Theta[4],@Theta[4],@Theta[3] #vpermq @Theta[3],@Theta[4],@Theta[2] #vpermq @Theta[3],@Theta[3],@Theta[1] call __KeccakF1600 vmovdqu64 $A00,40*0-96($A_flat){$k11111} vmovdqu64 $A10,40*1-96($A_flat){$k11111} vmovdqu64 $A20,40*2-96($A_flat){$k11111} vmovdqu64 $A30,40*3-96($A_flat){$k11111} vmovdqu64 $A40,40*4-96($A_flat){$k11111} lea -96($A_flat),%r9 mov $bsz,%rax jmp .Loop_squeeze_avx512 .Ltail_squeeze_avx512: mov $out,%rdi mov %r9,%rsi mov $len,%rcx .byte 0xf3,0xa4 # rep movsb .Ldone_squeeze_avx512: vzeroupper lea (%r11),%rsp ret .size SHA3_squeeze,.-SHA3_squeeze .align 64 theta_perm: .quad 0, 1, 2, 3, 4, 5, 6, 7 # [not used] .quad 4, 0, 1, 2, 3, 5, 6, 7 .quad 3, 4, 0, 1, 2, 5, 6, 7 .quad 2, 3, 4, 0, 1, 5, 6, 7 .quad 1, 2, 3, 4, 0, 5, 6, 7 rhotates1: .quad 0, 44, 43, 21, 14, 0, 0, 0 # [0][0] [1][1] [2][2] [3][3] [4][4] .quad 18, 1, 6, 25, 8, 0, 0, 0 # [4][0] [0][1] [1][2] [2][3] [3][4] .quad 41, 2, 62, 55, 39, 0, 0, 0 # [3][0] [4][1] [0][2] [1][3] [2][4] .quad 3, 45, 61, 28, 20, 0, 0, 0 # [2][0] [3][1] [4][2] [0][3] [1][4] .quad 36, 10, 15, 56, 27, 0, 0, 0 # [1][0] [2][1] [3][2] [4][3] [0][4] rhotates0: .quad 0, 1, 62, 28, 27, 0, 0, 0 .quad 36, 44, 6, 55, 20, 0, 0, 0 .quad 3, 10, 43, 25, 39, 0, 0, 0 .quad 41, 45, 15, 21, 8, 0, 0, 0 .quad 18, 2, 61, 56, 14, 0, 0, 0 pi0_perm: .quad 0, 3, 1, 4, 2, 5, 6, 7 .quad 1, 4, 2, 0, 3, 5, 6, 7 .quad 2, 0, 3, 1, 4, 5, 6, 7 .quad 3, 1, 4, 2, 0, 5, 6, 7 .quad 4, 2, 0, 3, 1, 5, 6, 7 iotas: .quad 0x0000000000000001 .quad 0x0000000000008082 .quad 0x800000000000808a .quad 0x8000000080008000 .quad 0x000000000000808b .quad 0x0000000080000001 .quad 0x8000000080008081 .quad 0x8000000000008009 .quad 0x000000000000008a .quad 0x0000000000000088 .quad 0x0000000080008009 .quad 0x000000008000000a .quad 0x000000008000808b .quad 0x800000000000008b .quad 0x8000000000008089 .quad 0x8000000000008003 .quad 0x8000000000008002 .quad 0x8000000000000080 .quad 0x000000000000800a .quad 0x800000008000000a .quad 0x8000000080008081 .quad 0x8000000000008080 .quad 0x0000000080000001 .quad 0x8000000080008008 .asciz "Keccak-1600 absorb and squeeze for AVX-512F, CRYPTOGAMS by " ___ $output=pop; open STDOUT,">$output"; print $code; close STDOUT or die "error closing STDOUT: $!";