3391 lines
106 KiB
C
3391 lines
106 KiB
C
|
/*
|
||
|
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
||
|
*
|
||
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
||
|
* this file except in compliance with the License. You can obtain a copy
|
||
|
* in the file LICENSE in the source distribution or at
|
||
|
* https://www.openssl.org/source/license.html
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <time.h>
|
||
|
#include <errno.h>
|
||
|
#include <limits.h>
|
||
|
|
||
|
#include "crypto/ctype.h"
|
||
|
#include "internal/cryptlib.h"
|
||
|
#include <openssl/crypto.h>
|
||
|
#include <openssl/buffer.h>
|
||
|
#include <openssl/evp.h>
|
||
|
#include <openssl/asn1.h>
|
||
|
#include <openssl/x509.h>
|
||
|
#include <openssl/x509v3.h>
|
||
|
#include <openssl/objects.h>
|
||
|
#include "internal/dane.h"
|
||
|
#include "crypto/x509.h"
|
||
|
#include "x509_local.h"
|
||
|
|
||
|
/* CRL score values */
|
||
|
|
||
|
/* No unhandled critical extensions */
|
||
|
|
||
|
#define CRL_SCORE_NOCRITICAL 0x100
|
||
|
|
||
|
/* certificate is within CRL scope */
|
||
|
|
||
|
#define CRL_SCORE_SCOPE 0x080
|
||
|
|
||
|
/* CRL times valid */
|
||
|
|
||
|
#define CRL_SCORE_TIME 0x040
|
||
|
|
||
|
/* Issuer name matches certificate */
|
||
|
|
||
|
#define CRL_SCORE_ISSUER_NAME 0x020
|
||
|
|
||
|
/* If this score or above CRL is probably valid */
|
||
|
|
||
|
#define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE)
|
||
|
|
||
|
/* CRL issuer is certificate issuer */
|
||
|
|
||
|
#define CRL_SCORE_ISSUER_CERT 0x018
|
||
|
|
||
|
/* CRL issuer is on certificate path */
|
||
|
|
||
|
#define CRL_SCORE_SAME_PATH 0x008
|
||
|
|
||
|
/* CRL issuer matches CRL AKID */
|
||
|
|
||
|
#define CRL_SCORE_AKID 0x004
|
||
|
|
||
|
/* Have a delta CRL with valid times */
|
||
|
|
||
|
#define CRL_SCORE_TIME_DELTA 0x002
|
||
|
|
||
|
static int build_chain(X509_STORE_CTX *ctx);
|
||
|
static int verify_chain(X509_STORE_CTX *ctx);
|
||
|
static int dane_verify(X509_STORE_CTX *ctx);
|
||
|
static int null_callback(int ok, X509_STORE_CTX *e);
|
||
|
static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer);
|
||
|
static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
|
||
|
static int check_chain_extensions(X509_STORE_CTX *ctx);
|
||
|
static int check_name_constraints(X509_STORE_CTX *ctx);
|
||
|
static int check_id(X509_STORE_CTX *ctx);
|
||
|
static int check_trust(X509_STORE_CTX *ctx, int num_untrusted);
|
||
|
static int check_revocation(X509_STORE_CTX *ctx);
|
||
|
static int check_cert(X509_STORE_CTX *ctx);
|
||
|
static int check_policy(X509_STORE_CTX *ctx);
|
||
|
static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x);
|
||
|
static int check_dane_issuer(X509_STORE_CTX *ctx, int depth);
|
||
|
static int check_key_level(X509_STORE_CTX *ctx, X509 *cert);
|
||
|
static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert);
|
||
|
static int check_curve(X509 *cert);
|
||
|
|
||
|
static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
|
||
|
unsigned int *preasons, X509_CRL *crl, X509 *x);
|
||
|
static int get_crl_delta(X509_STORE_CTX *ctx,
|
||
|
X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x);
|
||
|
static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl,
|
||
|
int *pcrl_score, X509_CRL *base,
|
||
|
STACK_OF(X509_CRL) *crls);
|
||
|
static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer,
|
||
|
int *pcrl_score);
|
||
|
static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
|
||
|
unsigned int *preasons);
|
||
|
static int check_crl_path(X509_STORE_CTX *ctx, X509 *x);
|
||
|
static int check_crl_chain(X509_STORE_CTX *ctx,
|
||
|
STACK_OF(X509) *cert_path,
|
||
|
STACK_OF(X509) *crl_path);
|
||
|
|
||
|
static int internal_verify(X509_STORE_CTX *ctx);
|
||
|
|
||
|
static int null_callback(int ok, X509_STORE_CTX *e)
|
||
|
{
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return 1 if given cert is considered self-signed, 0 if not or on error.
|
||
|
* This does not verify self-signedness but relies on x509v3_cache_extensions()
|
||
|
* matching issuer and subject names (i.e., the cert being self-issued) and any
|
||
|
* present authority key identifier matching the subject key identifier, etc.
|
||
|
*/
|
||
|
static int cert_self_signed(X509 *x)
|
||
|
{
|
||
|
if (X509_check_purpose(x, -1, 0) != 1)
|
||
|
return 0;
|
||
|
if (x->ex_flags & EXFLAG_SS)
|
||
|
return 1;
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Given a certificate try and find an exact match in the store */
|
||
|
|
||
|
static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x)
|
||
|
{
|
||
|
STACK_OF(X509) *certs;
|
||
|
X509 *xtmp = NULL;
|
||
|
int i;
|
||
|
/* Lookup all certs with matching subject name */
|
||
|
certs = ctx->lookup_certs(ctx, X509_get_subject_name(x));
|
||
|
if (certs == NULL)
|
||
|
return NULL;
|
||
|
/* Look for exact match */
|
||
|
for (i = 0; i < sk_X509_num(certs); i++) {
|
||
|
xtmp = sk_X509_value(certs, i);
|
||
|
if (!X509_cmp(xtmp, x))
|
||
|
break;
|
||
|
xtmp = NULL;
|
||
|
}
|
||
|
if (xtmp != NULL && !X509_up_ref(xtmp))
|
||
|
xtmp = NULL;
|
||
|
sk_X509_pop_free(certs, X509_free);
|
||
|
return xtmp;
|
||
|
}
|
||
|
|
||
|
/*-
|
||
|
* Inform the verify callback of an error.
|
||
|
* If B<x> is not NULL it is the error cert, otherwise use the chain cert at
|
||
|
* B<depth>.
|
||
|
* If B<err> is not X509_V_OK, that's the error value, otherwise leave
|
||
|
* unchanged (presumably set by the caller).
|
||
|
*
|
||
|
* Returns 0 to abort verification with an error, non-zero to continue.
|
||
|
*/
|
||
|
static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err)
|
||
|
{
|
||
|
ctx->error_depth = depth;
|
||
|
ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth);
|
||
|
if (err != X509_V_OK)
|
||
|
ctx->error = err;
|
||
|
return ctx->verify_cb(0, ctx);
|
||
|
}
|
||
|
|
||
|
/*-
|
||
|
* Inform the verify callback of an error, CRL-specific variant. Here, the
|
||
|
* error depth and certificate are already set, we just specify the error
|
||
|
* number.
|
||
|
*
|
||
|
* Returns 0 to abort verification with an error, non-zero to continue.
|
||
|
*/
|
||
|
static int verify_cb_crl(X509_STORE_CTX *ctx, int err)
|
||
|
{
|
||
|
ctx->error = err;
|
||
|
return ctx->verify_cb(0, ctx);
|
||
|
}
|
||
|
|
||
|
static int check_auth_level(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int i;
|
||
|
int num = sk_X509_num(ctx->chain);
|
||
|
|
||
|
if (ctx->param->auth_level <= 0)
|
||
|
return 1;
|
||
|
|
||
|
for (i = 0; i < num; ++i) {
|
||
|
X509 *cert = sk_X509_value(ctx->chain, i);
|
||
|
|
||
|
/*
|
||
|
* We've already checked the security of the leaf key, so here we only
|
||
|
* check the security of issuer keys.
|
||
|
*/
|
||
|
if (i > 0 && !check_key_level(ctx, cert) &&
|
||
|
verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0)
|
||
|
return 0;
|
||
|
/*
|
||
|
* We also check the signature algorithm security of all certificates
|
||
|
* except those of the trust anchor at index num-1.
|
||
|
*/
|
||
|
if (i < num - 1 && !check_sig_level(ctx, cert) &&
|
||
|
verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0)
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int verify_chain(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int err;
|
||
|
int ok;
|
||
|
|
||
|
/*
|
||
|
* Before either returning with an error, or continuing with CRL checks,
|
||
|
* instantiate chain public key parameters.
|
||
|
*/
|
||
|
if ((ok = build_chain(ctx)) == 0 ||
|
||
|
(ok = check_chain_extensions(ctx)) == 0 ||
|
||
|
(ok = check_auth_level(ctx)) == 0 ||
|
||
|
(ok = check_id(ctx)) == 0 || 1)
|
||
|
X509_get_pubkey_parameters(NULL, ctx->chain);
|
||
|
if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0)
|
||
|
return ok;
|
||
|
|
||
|
err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain,
|
||
|
ctx->param->flags);
|
||
|
if (err != X509_V_OK) {
|
||
|
if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0)
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
/* Verify chain signatures and expiration times */
|
||
|
ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx);
|
||
|
if (!ok)
|
||
|
return ok;
|
||
|
|
||
|
if ((ok = check_name_constraints(ctx)) == 0)
|
||
|
return ok;
|
||
|
|
||
|
#ifndef OPENSSL_NO_RFC3779
|
||
|
/* RFC 3779 path validation, now that CRL check has been done */
|
||
|
if ((ok = X509v3_asid_validate_path(ctx)) == 0)
|
||
|
return ok;
|
||
|
if ((ok = X509v3_addr_validate_path(ctx)) == 0)
|
||
|
return ok;
|
||
|
#endif
|
||
|
|
||
|
/* If we get this far evaluate policies */
|
||
|
if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK)
|
||
|
ok = ctx->check_policy(ctx);
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
int X509_verify_cert(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
int ret;
|
||
|
|
||
|
if (ctx->cert == NULL) {
|
||
|
X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
|
||
|
ctx->error = X509_V_ERR_INVALID_CALL;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (ctx->chain != NULL) {
|
||
|
/*
|
||
|
* This X509_STORE_CTX has already been used to verify a cert. We
|
||
|
* cannot do another one.
|
||
|
*/
|
||
|
X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
||
|
ctx->error = X509_V_ERR_INVALID_CALL;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (!X509_up_ref(ctx->cert)) {
|
||
|
X509err(X509_F_X509_VERIFY_CERT, ERR_R_INTERNAL_ERROR);
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* first we make sure the chain we are going to build is present and that
|
||
|
* the first entry is in place
|
||
|
*/
|
||
|
if ((ctx->chain = sk_X509_new_null()) == NULL
|
||
|
|| !sk_X509_push(ctx->chain, ctx->cert)) {
|
||
|
X509_free(ctx->cert);
|
||
|
X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
ctx->num_untrusted = 1;
|
||
|
|
||
|
/* If the peer's public key is too weak, we can stop early. */
|
||
|
if (!check_key_level(ctx, ctx->cert) &&
|
||
|
!verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL))
|
||
|
return 0;
|
||
|
|
||
|
if (DANETLS_ENABLED(dane))
|
||
|
ret = dane_verify(ctx);
|
||
|
else
|
||
|
ret = verify_chain(ctx);
|
||
|
|
||
|
/*
|
||
|
* Safety-net. If we are returning an error, we must also set ctx->error,
|
||
|
* so that the chain is not considered verified should the error be ignored
|
||
|
* (e.g. TLS with SSL_VERIFY_NONE).
|
||
|
*/
|
||
|
if (ret <= 0 && ctx->error == X509_V_OK)
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sk_X509_contains(STACK_OF(X509) *sk, X509 *cert)
|
||
|
{
|
||
|
int i, n = sk_X509_num(sk);
|
||
|
|
||
|
for (i = 0; i < n; i++)
|
||
|
if (X509_cmp(sk_X509_value(sk, i), cert) == 0)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find in given STACK_OF(X509) sk an issuer cert of given cert x.
|
||
|
* The issuer must not yet be in ctx->chain, where the exceptional case
|
||
|
* that x is self-issued and ctx->chain has just one element is allowed.
|
||
|
* Prefer the first one that is not expired, else take the last expired one.
|
||
|
*/
|
||
|
static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x)
|
||
|
{
|
||
|
int i;
|
||
|
X509 *issuer, *rv = NULL;
|
||
|
|
||
|
for (i = 0; i < sk_X509_num(sk); i++) {
|
||
|
issuer = sk_X509_value(sk, i);
|
||
|
if (ctx->check_issued(ctx, x, issuer)
|
||
|
&& (((x->ex_flags & EXFLAG_SI) != 0 && sk_X509_num(ctx->chain) == 1)
|
||
|
|| !sk_X509_contains(ctx->chain, issuer))) {
|
||
|
rv = issuer;
|
||
|
if (x509_check_cert_time(ctx, rv, -1))
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
/* Check that the given certificate 'x' is issued by the certificate 'issuer' */
|
||
|
static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer)
|
||
|
{
|
||
|
return x509_likely_issued(issuer, x) == X509_V_OK;
|
||
|
}
|
||
|
|
||
|
/* Alternative lookup method: look from a STACK stored in other_ctx */
|
||
|
static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x)
|
||
|
{
|
||
|
*issuer = find_issuer(ctx, ctx->other_ctx, x);
|
||
|
|
||
|
if (*issuer == NULL || !X509_up_ref(*issuer))
|
||
|
goto err;
|
||
|
|
||
|
return 1;
|
||
|
|
||
|
err:
|
||
|
*issuer = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx, X509_NAME *nm)
|
||
|
{
|
||
|
STACK_OF(X509) *sk = NULL;
|
||
|
X509 *x;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) {
|
||
|
x = sk_X509_value(ctx->other_ctx, i);
|
||
|
if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) {
|
||
|
if (!X509_up_ref(x)) {
|
||
|
sk_X509_pop_free(sk, X509_free);
|
||
|
X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_INTERNAL_ERROR);
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
return NULL;
|
||
|
}
|
||
|
if (sk == NULL)
|
||
|
sk = sk_X509_new_null();
|
||
|
if (sk == NULL || !sk_X509_push(sk, x)) {
|
||
|
X509_free(x);
|
||
|
sk_X509_pop_free(sk, X509_free);
|
||
|
X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return sk;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check EE or CA certificate purpose. For trusted certificates explicit local
|
||
|
* auxiliary trust can be used to override EKU-restrictions.
|
||
|
*/
|
||
|
static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth,
|
||
|
int must_be_ca)
|
||
|
{
|
||
|
int tr_ok = X509_TRUST_UNTRUSTED;
|
||
|
|
||
|
/*
|
||
|
* For trusted certificates we want to see whether any auxiliary trust
|
||
|
* settings trump the purpose constraints.
|
||
|
*
|
||
|
* This is complicated by the fact that the trust ordinals in
|
||
|
* ctx->param->trust are entirely independent of the purpose ordinals in
|
||
|
* ctx->param->purpose!
|
||
|
*
|
||
|
* What connects them is their mutual initialization via calls from
|
||
|
* X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets
|
||
|
* related values of both param->trust and param->purpose. It is however
|
||
|
* typically possible to infer associated trust values from a purpose value
|
||
|
* via the X509_PURPOSE API.
|
||
|
*
|
||
|
* Therefore, we can only check for trust overrides when the purpose we're
|
||
|
* checking is the same as ctx->param->purpose and ctx->param->trust is
|
||
|
* also set.
|
||
|
*/
|
||
|
if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose)
|
||
|
tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT);
|
||
|
|
||
|
switch (tr_ok) {
|
||
|
case X509_TRUST_TRUSTED:
|
||
|
return 1;
|
||
|
case X509_TRUST_REJECTED:
|
||
|
break;
|
||
|
default:
|
||
|
switch (X509_check_purpose(x, purpose, must_be_ca > 0)) {
|
||
|
case 1:
|
||
|
return 1;
|
||
|
case 0:
|
||
|
break;
|
||
|
default:
|
||
|
if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0)
|
||
|
return 1;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check a certificate chains extensions for consistency with the supplied
|
||
|
* purpose
|
||
|
*/
|
||
|
|
||
|
static int check_chain_extensions(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int i, must_be_ca, plen = 0;
|
||
|
X509 *x;
|
||
|
int proxy_path_length = 0;
|
||
|
int purpose;
|
||
|
int allow_proxy_certs;
|
||
|
int num = sk_X509_num(ctx->chain);
|
||
|
|
||
|
/*-
|
||
|
* must_be_ca can have 1 of 3 values:
|
||
|
* -1: we accept both CA and non-CA certificates, to allow direct
|
||
|
* use of self-signed certificates (which are marked as CA).
|
||
|
* 0: we only accept non-CA certificates. This is currently not
|
||
|
* used, but the possibility is present for future extensions.
|
||
|
* 1: we only accept CA certificates. This is currently used for
|
||
|
* all certificates in the chain except the leaf certificate.
|
||
|
*/
|
||
|
must_be_ca = -1;
|
||
|
|
||
|
/* CRL path validation */
|
||
|
if (ctx->parent) {
|
||
|
allow_proxy_certs = 0;
|
||
|
purpose = X509_PURPOSE_CRL_SIGN;
|
||
|
} else {
|
||
|
allow_proxy_certs =
|
||
|
! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS);
|
||
|
purpose = ctx->param->purpose;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < num; i++) {
|
||
|
int ret;
|
||
|
x = sk_X509_value(ctx->chain, i);
|
||
|
if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
|
||
|
&& (x->ex_flags & EXFLAG_CRITICAL)) {
|
||
|
if (!verify_cb_cert(ctx, x, i,
|
||
|
X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION))
|
||
|
return 0;
|
||
|
}
|
||
|
if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) {
|
||
|
if (!verify_cb_cert(ctx, x, i,
|
||
|
X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED))
|
||
|
return 0;
|
||
|
}
|
||
|
ret = X509_check_ca(x);
|
||
|
switch (must_be_ca) {
|
||
|
case -1:
|
||
|
if ((ctx->param->flags & X509_V_FLAG_X509_STRICT)
|
||
|
&& (ret != 1) && (ret != 0)) {
|
||
|
ret = 0;
|
||
|
ctx->error = X509_V_ERR_INVALID_CA;
|
||
|
} else
|
||
|
ret = 1;
|
||
|
break;
|
||
|
case 0:
|
||
|
if (ret != 0) {
|
||
|
ret = 0;
|
||
|
ctx->error = X509_V_ERR_INVALID_NON_CA;
|
||
|
} else
|
||
|
ret = 1;
|
||
|
break;
|
||
|
default:
|
||
|
/* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */
|
||
|
if ((ret == 0)
|
||
|
|| ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT)
|
||
|
&& (ret != 1))) {
|
||
|
ret = 0;
|
||
|
ctx->error = X509_V_ERR_INVALID_CA;
|
||
|
} else
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
if (ret > 0
|
||
|
&& (ctx->param->flags & X509_V_FLAG_X509_STRICT) && num > 1) {
|
||
|
/* Check for presence of explicit elliptic curve parameters */
|
||
|
ret = check_curve(x);
|
||
|
if (ret < 0) {
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
ret = 0;
|
||
|
} else if (ret == 0) {
|
||
|
ctx->error = X509_V_ERR_EC_KEY_EXPLICIT_PARAMS;
|
||
|
}
|
||
|
}
|
||
|
if (ret > 0
|
||
|
&& (x->ex_flags & EXFLAG_CA) == 0
|
||
|
&& x->ex_pathlen != -1
|
||
|
&& (ctx->param->flags & X509_V_FLAG_X509_STRICT)) {
|
||
|
ctx->error = X509_V_ERR_INVALID_EXTENSION;
|
||
|
ret = 0;
|
||
|
}
|
||
|
if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK))
|
||
|
return 0;
|
||
|
/* check_purpose() makes the callback as needed */
|
||
|
if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca))
|
||
|
return 0;
|
||
|
/* Check pathlen */
|
||
|
if ((i > 1) && (x->ex_pathlen != -1)
|
||
|
&& (plen > (x->ex_pathlen + proxy_path_length))) {
|
||
|
if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED))
|
||
|
return 0;
|
||
|
}
|
||
|
/* Increment path length if not a self issued intermediate CA */
|
||
|
if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0)
|
||
|
plen++;
|
||
|
/*
|
||
|
* If this certificate is a proxy certificate, the next certificate
|
||
|
* must be another proxy certificate or a EE certificate. If not,
|
||
|
* the next certificate must be a CA certificate.
|
||
|
*/
|
||
|
if (x->ex_flags & EXFLAG_PROXY) {
|
||
|
/*
|
||
|
* RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint
|
||
|
* is less than max_path_length, the former should be copied to
|
||
|
* the latter, and 4.1.4 (a) stipulates that max_path_length
|
||
|
* should be verified to be larger than zero and decrement it.
|
||
|
*
|
||
|
* Because we're checking the certs in the reverse order, we start
|
||
|
* with verifying that proxy_path_length isn't larger than pcPLC,
|
||
|
* and copy the latter to the former if it is, and finally,
|
||
|
* increment proxy_path_length.
|
||
|
*/
|
||
|
if (x->ex_pcpathlen != -1) {
|
||
|
if (proxy_path_length > x->ex_pcpathlen) {
|
||
|
if (!verify_cb_cert(ctx, x, i,
|
||
|
X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED))
|
||
|
return 0;
|
||
|
}
|
||
|
proxy_path_length = x->ex_pcpathlen;
|
||
|
}
|
||
|
proxy_path_length++;
|
||
|
must_be_ca = 0;
|
||
|
} else
|
||
|
must_be_ca = 1;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int has_san_id(X509 *x, int gtype)
|
||
|
{
|
||
|
int i;
|
||
|
int ret = 0;
|
||
|
GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
|
||
|
|
||
|
if (gs == NULL)
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) {
|
||
|
GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i);
|
||
|
|
||
|
if (g->type == gtype) {
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
GENERAL_NAMES_free(gs);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int check_name_constraints(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/* Check name constraints for all certificates */
|
||
|
for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) {
|
||
|
X509 *x = sk_X509_value(ctx->chain, i);
|
||
|
int j;
|
||
|
|
||
|
/* Ignore self issued certs unless last in chain */
|
||
|
if (i && (x->ex_flags & EXFLAG_SI))
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* Proxy certificates policy has an extra constraint, where the
|
||
|
* certificate subject MUST be the issuer with a single CN entry
|
||
|
* added.
|
||
|
* (RFC 3820: 3.4, 4.1.3 (a)(4))
|
||
|
*/
|
||
|
if (x->ex_flags & EXFLAG_PROXY) {
|
||
|
X509_NAME *tmpsubject = X509_get_subject_name(x);
|
||
|
X509_NAME *tmpissuer = X509_get_issuer_name(x);
|
||
|
X509_NAME_ENTRY *tmpentry = NULL;
|
||
|
int last_object_nid = 0;
|
||
|
int err = X509_V_OK;
|
||
|
int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1;
|
||
|
|
||
|
/* Check that there are at least two RDNs */
|
||
|
if (last_object_loc < 1) {
|
||
|
err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
|
||
|
goto proxy_name_done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check that there is exactly one more RDN in subject as
|
||
|
* there is in issuer.
|
||
|
*/
|
||
|
if (X509_NAME_entry_count(tmpsubject)
|
||
|
!= X509_NAME_entry_count(tmpissuer) + 1) {
|
||
|
err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
|
||
|
goto proxy_name_done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check that the last subject component isn't part of a
|
||
|
* multivalued RDN
|
||
|
*/
|
||
|
if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
|
||
|
last_object_loc))
|
||
|
== X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
|
||
|
last_object_loc - 1))) {
|
||
|
err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
|
||
|
goto proxy_name_done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check that the last subject RDN is a commonName, and that
|
||
|
* all the previous RDNs match the issuer exactly
|
||
|
*/
|
||
|
tmpsubject = X509_NAME_dup(tmpsubject);
|
||
|
if (tmpsubject == NULL) {
|
||
|
X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
tmpentry =
|
||
|
X509_NAME_delete_entry(tmpsubject, last_object_loc);
|
||
|
last_object_nid =
|
||
|
OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry));
|
||
|
|
||
|
if (last_object_nid != NID_commonName
|
||
|
|| X509_NAME_cmp(tmpsubject, tmpissuer) != 0) {
|
||
|
err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
|
||
|
}
|
||
|
|
||
|
X509_NAME_ENTRY_free(tmpentry);
|
||
|
X509_NAME_free(tmpsubject);
|
||
|
|
||
|
proxy_name_done:
|
||
|
if (err != X509_V_OK
|
||
|
&& !verify_cb_cert(ctx, x, i, err))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check against constraints for all certificates higher in chain
|
||
|
* including trust anchor. Trust anchor not strictly speaking needed
|
||
|
* but if it includes constraints it is to be assumed it expects them
|
||
|
* to be obeyed.
|
||
|
*/
|
||
|
for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) {
|
||
|
NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc;
|
||
|
|
||
|
if (nc) {
|
||
|
int rv = NAME_CONSTRAINTS_check(x, nc);
|
||
|
|
||
|
/* If EE certificate check commonName too */
|
||
|
if (rv == X509_V_OK && i == 0
|
||
|
&& (ctx->param->hostflags
|
||
|
& X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0
|
||
|
&& ((ctx->param->hostflags
|
||
|
& X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0
|
||
|
|| !has_san_id(x, GEN_DNS)))
|
||
|
rv = NAME_CONSTRAINTS_check_CN(x, nc);
|
||
|
|
||
|
switch (rv) {
|
||
|
case X509_V_OK:
|
||
|
break;
|
||
|
case X509_V_ERR_OUT_OF_MEM:
|
||
|
return 0;
|
||
|
default:
|
||
|
if (!verify_cb_cert(ctx, x, i, rv))
|
||
|
return 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int check_id_error(X509_STORE_CTX *ctx, int errcode)
|
||
|
{
|
||
|
return verify_cb_cert(ctx, ctx->cert, 0, errcode);
|
||
|
}
|
||
|
|
||
|
static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm)
|
||
|
{
|
||
|
int i;
|
||
|
int n = sk_OPENSSL_STRING_num(vpm->hosts);
|
||
|
char *name;
|
||
|
|
||
|
if (vpm->peername != NULL) {
|
||
|
OPENSSL_free(vpm->peername);
|
||
|
vpm->peername = NULL;
|
||
|
}
|
||
|
for (i = 0; i < n; ++i) {
|
||
|
name = sk_OPENSSL_STRING_value(vpm->hosts, i);
|
||
|
if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0)
|
||
|
return 1;
|
||
|
}
|
||
|
return n == 0;
|
||
|
}
|
||
|
|
||
|
static int check_id(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
X509_VERIFY_PARAM *vpm = ctx->param;
|
||
|
X509 *x = ctx->cert;
|
||
|
if (vpm->hosts && check_hosts(x, vpm) <= 0) {
|
||
|
if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH))
|
||
|
return 0;
|
||
|
}
|
||
|
if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) {
|
||
|
if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH))
|
||
|
return 0;
|
||
|
}
|
||
|
if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) {
|
||
|
if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH))
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int check_trust(X509_STORE_CTX *ctx, int num_untrusted)
|
||
|
{
|
||
|
int i;
|
||
|
X509 *x = NULL;
|
||
|
X509 *mx;
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
int num = sk_X509_num(ctx->chain);
|
||
|
int trust;
|
||
|
|
||
|
/*
|
||
|
* Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2)
|
||
|
* match, we're done, otherwise we'll merely record the match depth.
|
||
|
*/
|
||
|
if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) {
|
||
|
switch (trust = check_dane_issuer(ctx, num_untrusted)) {
|
||
|
case X509_TRUST_TRUSTED:
|
||
|
case X509_TRUST_REJECTED:
|
||
|
return trust;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check trusted certificates in chain at depth num_untrusted and up.
|
||
|
* Note, that depths 0..num_untrusted-1 may also contain trusted
|
||
|
* certificates, but the caller is expected to have already checked those,
|
||
|
* and wants to incrementally check just any added since.
|
||
|
*/
|
||
|
for (i = num_untrusted; i < num; i++) {
|
||
|
x = sk_X509_value(ctx->chain, i);
|
||
|
trust = X509_check_trust(x, ctx->param->trust, 0);
|
||
|
/* If explicitly trusted return trusted */
|
||
|
if (trust == X509_TRUST_TRUSTED)
|
||
|
goto trusted;
|
||
|
if (trust == X509_TRUST_REJECTED)
|
||
|
goto rejected;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we are looking at a trusted certificate, and accept partial chains,
|
||
|
* the chain is PKIX trusted.
|
||
|
*/
|
||
|
if (num_untrusted < num) {
|
||
|
if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN)
|
||
|
goto trusted;
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
}
|
||
|
|
||
|
if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
|
||
|
/*
|
||
|
* Last-resort call with no new trusted certificates, check the leaf
|
||
|
* for a direct trust store match.
|
||
|
*/
|
||
|
i = 0;
|
||
|
x = sk_X509_value(ctx->chain, i);
|
||
|
mx = lookup_cert_match(ctx, x);
|
||
|
if (!mx)
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
|
||
|
/*
|
||
|
* Check explicit auxiliary trust/reject settings. If none are set,
|
||
|
* we'll accept X509_TRUST_UNTRUSTED when not self-signed.
|
||
|
*/
|
||
|
trust = X509_check_trust(mx, ctx->param->trust, 0);
|
||
|
if (trust == X509_TRUST_REJECTED) {
|
||
|
X509_free(mx);
|
||
|
goto rejected;
|
||
|
}
|
||
|
|
||
|
/* Replace leaf with trusted match */
|
||
|
(void) sk_X509_set(ctx->chain, 0, mx);
|
||
|
X509_free(x);
|
||
|
ctx->num_untrusted = 0;
|
||
|
goto trusted;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If no trusted certs in chain at all return untrusted and allow
|
||
|
* standard (no issuer cert) etc errors to be indicated.
|
||
|
*/
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
|
||
|
rejected:
|
||
|
if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED))
|
||
|
return X509_TRUST_REJECTED;
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
|
||
|
trusted:
|
||
|
if (!DANETLS_ENABLED(dane))
|
||
|
return X509_TRUST_TRUSTED;
|
||
|
if (dane->pdpth < 0)
|
||
|
dane->pdpth = num_untrusted;
|
||
|
/* With DANE, PKIX alone is not trusted until we have both */
|
||
|
if (dane->mdpth >= 0)
|
||
|
return X509_TRUST_TRUSTED;
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
}
|
||
|
|
||
|
static int check_revocation(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int i = 0, last = 0, ok = 0;
|
||
|
if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK))
|
||
|
return 1;
|
||
|
if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL)
|
||
|
last = sk_X509_num(ctx->chain) - 1;
|
||
|
else {
|
||
|
/* If checking CRL paths this isn't the EE certificate */
|
||
|
if (ctx->parent)
|
||
|
return 1;
|
||
|
last = 0;
|
||
|
}
|
||
|
for (i = 0; i <= last; i++) {
|
||
|
ctx->error_depth = i;
|
||
|
ok = check_cert(ctx);
|
||
|
if (!ok)
|
||
|
return ok;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int check_cert(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
X509_CRL *crl = NULL, *dcrl = NULL;
|
||
|
int ok = 0;
|
||
|
int cnum = ctx->error_depth;
|
||
|
X509 *x = sk_X509_value(ctx->chain, cnum);
|
||
|
|
||
|
ctx->current_cert = x;
|
||
|
ctx->current_issuer = NULL;
|
||
|
ctx->current_crl_score = 0;
|
||
|
ctx->current_reasons = 0;
|
||
|
|
||
|
if (x->ex_flags & EXFLAG_PROXY)
|
||
|
return 1;
|
||
|
|
||
|
while (ctx->current_reasons != CRLDP_ALL_REASONS) {
|
||
|
unsigned int last_reasons = ctx->current_reasons;
|
||
|
|
||
|
/* Try to retrieve relevant CRL */
|
||
|
if (ctx->get_crl)
|
||
|
ok = ctx->get_crl(ctx, &crl, x);
|
||
|
else
|
||
|
ok = get_crl_delta(ctx, &crl, &dcrl, x);
|
||
|
/*
|
||
|
* If error looking up CRL, nothing we can do except notify callback
|
||
|
*/
|
||
|
if (!ok) {
|
||
|
ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
|
||
|
goto done;
|
||
|
}
|
||
|
ctx->current_crl = crl;
|
||
|
ok = ctx->check_crl(ctx, crl);
|
||
|
if (!ok)
|
||
|
goto done;
|
||
|
|
||
|
if (dcrl) {
|
||
|
ok = ctx->check_crl(ctx, dcrl);
|
||
|
if (!ok)
|
||
|
goto done;
|
||
|
ok = ctx->cert_crl(ctx, dcrl, x);
|
||
|
if (!ok)
|
||
|
goto done;
|
||
|
} else
|
||
|
ok = 1;
|
||
|
|
||
|
/* Don't look in full CRL if delta reason is removefromCRL */
|
||
|
if (ok != 2) {
|
||
|
ok = ctx->cert_crl(ctx, crl, x);
|
||
|
if (!ok)
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
X509_CRL_free(crl);
|
||
|
X509_CRL_free(dcrl);
|
||
|
crl = NULL;
|
||
|
dcrl = NULL;
|
||
|
/*
|
||
|
* If reasons not updated we won't get anywhere by another iteration,
|
||
|
* so exit loop.
|
||
|
*/
|
||
|
if (last_reasons == ctx->current_reasons) {
|
||
|
ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
done:
|
||
|
X509_CRL_free(crl);
|
||
|
X509_CRL_free(dcrl);
|
||
|
|
||
|
ctx->current_crl = NULL;
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
/* Check CRL times against values in X509_STORE_CTX */
|
||
|
|
||
|
static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify)
|
||
|
{
|
||
|
time_t *ptime;
|
||
|
int i;
|
||
|
|
||
|
if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
|
||
|
ptime = &ctx->param->check_time;
|
||
|
else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME)
|
||
|
return 1;
|
||
|
else
|
||
|
ptime = NULL;
|
||
|
if (notify)
|
||
|
ctx->current_crl = crl;
|
||
|
|
||
|
i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime);
|
||
|
if (i == 0) {
|
||
|
if (!notify)
|
||
|
return 0;
|
||
|
if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (i > 0) {
|
||
|
if (!notify)
|
||
|
return 0;
|
||
|
if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (X509_CRL_get0_nextUpdate(crl)) {
|
||
|
i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime);
|
||
|
|
||
|
if (i == 0) {
|
||
|
if (!notify)
|
||
|
return 0;
|
||
|
if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD))
|
||
|
return 0;
|
||
|
}
|
||
|
/* Ignore expiry of base CRL is delta is valid */
|
||
|
if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) {
|
||
|
if (!notify)
|
||
|
return 0;
|
||
|
if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED))
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (notify)
|
||
|
ctx->current_crl = NULL;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl,
|
||
|
X509 **pissuer, int *pscore, unsigned int *preasons,
|
||
|
STACK_OF(X509_CRL) *crls)
|
||
|
{
|
||
|
int i, crl_score, best_score = *pscore;
|
||
|
unsigned int reasons, best_reasons = 0;
|
||
|
X509 *x = ctx->current_cert;
|
||
|
X509_CRL *crl, *best_crl = NULL;
|
||
|
X509 *crl_issuer = NULL, *best_crl_issuer = NULL;
|
||
|
|
||
|
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
|
||
|
crl = sk_X509_CRL_value(crls, i);
|
||
|
reasons = *preasons;
|
||
|
crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x);
|
||
|
if (crl_score < best_score || crl_score == 0)
|
||
|
continue;
|
||
|
/* If current CRL is equivalent use it if it is newer */
|
||
|
if (crl_score == best_score && best_crl != NULL) {
|
||
|
int day, sec;
|
||
|
if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl),
|
||
|
X509_CRL_get0_lastUpdate(crl)) == 0)
|
||
|
continue;
|
||
|
/*
|
||
|
* ASN1_TIME_diff never returns inconsistent signs for |day|
|
||
|
* and |sec|.
|
||
|
*/
|
||
|
if (day <= 0 && sec <= 0)
|
||
|
continue;
|
||
|
}
|
||
|
best_crl = crl;
|
||
|
best_crl_issuer = crl_issuer;
|
||
|
best_score = crl_score;
|
||
|
best_reasons = reasons;
|
||
|
}
|
||
|
|
||
|
if (best_crl) {
|
||
|
X509_CRL_free(*pcrl);
|
||
|
*pcrl = best_crl;
|
||
|
*pissuer = best_crl_issuer;
|
||
|
*pscore = best_score;
|
||
|
*preasons = best_reasons;
|
||
|
X509_CRL_up_ref(best_crl);
|
||
|
X509_CRL_free(*pdcrl);
|
||
|
*pdcrl = NULL;
|
||
|
get_delta_sk(ctx, pdcrl, pscore, best_crl, crls);
|
||
|
}
|
||
|
|
||
|
if (best_score >= CRL_SCORE_VALID)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compare two CRL extensions for delta checking purposes. They should be
|
||
|
* both present or both absent. If both present all fields must be identical.
|
||
|
*/
|
||
|
|
||
|
static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid)
|
||
|
{
|
||
|
ASN1_OCTET_STRING *exta, *extb;
|
||
|
int i;
|
||
|
i = X509_CRL_get_ext_by_NID(a, nid, -1);
|
||
|
if (i >= 0) {
|
||
|
/* Can't have multiple occurrences */
|
||
|
if (X509_CRL_get_ext_by_NID(a, nid, i) != -1)
|
||
|
return 0;
|
||
|
exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i));
|
||
|
} else
|
||
|
exta = NULL;
|
||
|
|
||
|
i = X509_CRL_get_ext_by_NID(b, nid, -1);
|
||
|
|
||
|
if (i >= 0) {
|
||
|
|
||
|
if (X509_CRL_get_ext_by_NID(b, nid, i) != -1)
|
||
|
return 0;
|
||
|
extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i));
|
||
|
} else
|
||
|
extb = NULL;
|
||
|
|
||
|
if (!exta && !extb)
|
||
|
return 1;
|
||
|
|
||
|
if (!exta || !extb)
|
||
|
return 0;
|
||
|
|
||
|
if (ASN1_OCTET_STRING_cmp(exta, extb))
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* See if a base and delta are compatible */
|
||
|
|
||
|
static int check_delta_base(X509_CRL *delta, X509_CRL *base)
|
||
|
{
|
||
|
/* Delta CRL must be a delta */
|
||
|
if (!delta->base_crl_number)
|
||
|
return 0;
|
||
|
/* Base must have a CRL number */
|
||
|
if (!base->crl_number)
|
||
|
return 0;
|
||
|
/* Issuer names must match */
|
||
|
if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta)))
|
||
|
return 0;
|
||
|
/* AKID and IDP must match */
|
||
|
if (!crl_extension_match(delta, base, NID_authority_key_identifier))
|
||
|
return 0;
|
||
|
if (!crl_extension_match(delta, base, NID_issuing_distribution_point))
|
||
|
return 0;
|
||
|
/* Delta CRL base number must not exceed Full CRL number. */
|
||
|
if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0)
|
||
|
return 0;
|
||
|
/* Delta CRL number must exceed full CRL number */
|
||
|
if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For a given base CRL find a delta... maybe extend to delta scoring or
|
||
|
* retrieve a chain of deltas...
|
||
|
*/
|
||
|
|
||
|
static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore,
|
||
|
X509_CRL *base, STACK_OF(X509_CRL) *crls)
|
||
|
{
|
||
|
X509_CRL *delta;
|
||
|
int i;
|
||
|
if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS))
|
||
|
return;
|
||
|
if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST))
|
||
|
return;
|
||
|
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
|
||
|
delta = sk_X509_CRL_value(crls, i);
|
||
|
if (check_delta_base(delta, base)) {
|
||
|
if (check_crl_time(ctx, delta, 0))
|
||
|
*pscore |= CRL_SCORE_TIME_DELTA;
|
||
|
X509_CRL_up_ref(delta);
|
||
|
*dcrl = delta;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
*dcrl = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For a given CRL return how suitable it is for the supplied certificate
|
||
|
* 'x'. The return value is a mask of several criteria. If the issuer is not
|
||
|
* the certificate issuer this is returned in *pissuer. The reasons mask is
|
||
|
* also used to determine if the CRL is suitable: if no new reasons the CRL
|
||
|
* is rejected, otherwise reasons is updated.
|
||
|
*/
|
||
|
|
||
|
static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
|
||
|
unsigned int *preasons, X509_CRL *crl, X509 *x)
|
||
|
{
|
||
|
|
||
|
int crl_score = 0;
|
||
|
unsigned int tmp_reasons = *preasons, crl_reasons;
|
||
|
|
||
|
/* First see if we can reject CRL straight away */
|
||
|
|
||
|
/* Invalid IDP cannot be processed */
|
||
|
if (crl->idp_flags & IDP_INVALID)
|
||
|
return 0;
|
||
|
/* Reason codes or indirect CRLs need extended CRL support */
|
||
|
if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) {
|
||
|
if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS))
|
||
|
return 0;
|
||
|
} else if (crl->idp_flags & IDP_REASONS) {
|
||
|
/* If no new reasons reject */
|
||
|
if (!(crl->idp_reasons & ~tmp_reasons))
|
||
|
return 0;
|
||
|
}
|
||
|
/* Don't process deltas at this stage */
|
||
|
else if (crl->base_crl_number)
|
||
|
return 0;
|
||
|
/* If issuer name doesn't match certificate need indirect CRL */
|
||
|
if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) {
|
||
|
if (!(crl->idp_flags & IDP_INDIRECT))
|
||
|
return 0;
|
||
|
} else
|
||
|
crl_score |= CRL_SCORE_ISSUER_NAME;
|
||
|
|
||
|
if (!(crl->flags & EXFLAG_CRITICAL))
|
||
|
crl_score |= CRL_SCORE_NOCRITICAL;
|
||
|
|
||
|
/* Check expiry */
|
||
|
if (check_crl_time(ctx, crl, 0))
|
||
|
crl_score |= CRL_SCORE_TIME;
|
||
|
|
||
|
/* Check authority key ID and locate certificate issuer */
|
||
|
crl_akid_check(ctx, crl, pissuer, &crl_score);
|
||
|
|
||
|
/* If we can't locate certificate issuer at this point forget it */
|
||
|
|
||
|
if (!(crl_score & CRL_SCORE_AKID))
|
||
|
return 0;
|
||
|
|
||
|
/* Check cert for matching CRL distribution points */
|
||
|
|
||
|
if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) {
|
||
|
/* If no new reasons reject */
|
||
|
if (!(crl_reasons & ~tmp_reasons))
|
||
|
return 0;
|
||
|
tmp_reasons |= crl_reasons;
|
||
|
crl_score |= CRL_SCORE_SCOPE;
|
||
|
}
|
||
|
|
||
|
*preasons = tmp_reasons;
|
||
|
|
||
|
return crl_score;
|
||
|
|
||
|
}
|
||
|
|
||
|
static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl,
|
||
|
X509 **pissuer, int *pcrl_score)
|
||
|
{
|
||
|
X509 *crl_issuer = NULL;
|
||
|
X509_NAME *cnm = X509_CRL_get_issuer(crl);
|
||
|
int cidx = ctx->error_depth;
|
||
|
int i;
|
||
|
|
||
|
if (cidx != sk_X509_num(ctx->chain) - 1)
|
||
|
cidx++;
|
||
|
|
||
|
crl_issuer = sk_X509_value(ctx->chain, cidx);
|
||
|
|
||
|
if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
|
||
|
if (*pcrl_score & CRL_SCORE_ISSUER_NAME) {
|
||
|
*pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT;
|
||
|
*pissuer = crl_issuer;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) {
|
||
|
crl_issuer = sk_X509_value(ctx->chain, cidx);
|
||
|
if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
|
||
|
continue;
|
||
|
if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
|
||
|
*pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH;
|
||
|
*pissuer = crl_issuer;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Anything else needs extended CRL support */
|
||
|
|
||
|
if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Otherwise the CRL issuer is not on the path. Look for it in the set of
|
||
|
* untrusted certificates.
|
||
|
*/
|
||
|
for (i = 0; i < sk_X509_num(ctx->untrusted); i++) {
|
||
|
crl_issuer = sk_X509_value(ctx->untrusted, i);
|
||
|
if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
|
||
|
continue;
|
||
|
if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
|
||
|
*pissuer = crl_issuer;
|
||
|
*pcrl_score |= CRL_SCORE_AKID;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check the path of a CRL issuer certificate. This creates a new
|
||
|
* X509_STORE_CTX and populates it with most of the parameters from the
|
||
|
* parent. This could be optimised somewhat since a lot of path checking will
|
||
|
* be duplicated by the parent, but this will rarely be used in practice.
|
||
|
*/
|
||
|
|
||
|
static int check_crl_path(X509_STORE_CTX *ctx, X509 *x)
|
||
|
{
|
||
|
X509_STORE_CTX crl_ctx;
|
||
|
int ret;
|
||
|
|
||
|
/* Don't allow recursive CRL path validation */
|
||
|
if (ctx->parent)
|
||
|
return 0;
|
||
|
if (!X509_STORE_CTX_init(&crl_ctx, ctx->ctx, x, ctx->untrusted))
|
||
|
return -1;
|
||
|
|
||
|
crl_ctx.crls = ctx->crls;
|
||
|
/* Copy verify params across */
|
||
|
X509_STORE_CTX_set0_param(&crl_ctx, ctx->param);
|
||
|
|
||
|
crl_ctx.parent = ctx;
|
||
|
crl_ctx.verify_cb = ctx->verify_cb;
|
||
|
|
||
|
/* Verify CRL issuer */
|
||
|
ret = X509_verify_cert(&crl_ctx);
|
||
|
if (ret <= 0)
|
||
|
goto err;
|
||
|
|
||
|
/* Check chain is acceptable */
|
||
|
ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain);
|
||
|
err:
|
||
|
X509_STORE_CTX_cleanup(&crl_ctx);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* RFC3280 says nothing about the relationship between CRL path and
|
||
|
* certificate path, which could lead to situations where a certificate could
|
||
|
* be revoked or validated by a CA not authorised to do so. RFC5280 is more
|
||
|
* strict and states that the two paths must end in the same trust anchor,
|
||
|
* though some discussions remain... until this is resolved we use the
|
||
|
* RFC5280 version
|
||
|
*/
|
||
|
|
||
|
static int check_crl_chain(X509_STORE_CTX *ctx,
|
||
|
STACK_OF(X509) *cert_path,
|
||
|
STACK_OF(X509) *crl_path)
|
||
|
{
|
||
|
X509 *cert_ta, *crl_ta;
|
||
|
cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1);
|
||
|
crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1);
|
||
|
if (!X509_cmp(cert_ta, crl_ta))
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*-
|
||
|
* Check for match between two dist point names: three separate cases.
|
||
|
* 1. Both are relative names and compare X509_NAME types.
|
||
|
* 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES.
|
||
|
* 3. Both are full names and compare two GENERAL_NAMES.
|
||
|
* 4. One is NULL: automatic match.
|
||
|
*/
|
||
|
|
||
|
static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b)
|
||
|
{
|
||
|
X509_NAME *nm = NULL;
|
||
|
GENERAL_NAMES *gens = NULL;
|
||
|
GENERAL_NAME *gena, *genb;
|
||
|
int i, j;
|
||
|
if (!a || !b)
|
||
|
return 1;
|
||
|
if (a->type == 1) {
|
||
|
if (!a->dpname)
|
||
|
return 0;
|
||
|
/* Case 1: two X509_NAME */
|
||
|
if (b->type == 1) {
|
||
|
if (!b->dpname)
|
||
|
return 0;
|
||
|
if (!X509_NAME_cmp(a->dpname, b->dpname))
|
||
|
return 1;
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
/* Case 2: set name and GENERAL_NAMES appropriately */
|
||
|
nm = a->dpname;
|
||
|
gens = b->name.fullname;
|
||
|
} else if (b->type == 1) {
|
||
|
if (!b->dpname)
|
||
|
return 0;
|
||
|
/* Case 2: set name and GENERAL_NAMES appropriately */
|
||
|
gens = a->name.fullname;
|
||
|
nm = b->dpname;
|
||
|
}
|
||
|
|
||
|
/* Handle case 2 with one GENERAL_NAMES and one X509_NAME */
|
||
|
if (nm) {
|
||
|
for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) {
|
||
|
gena = sk_GENERAL_NAME_value(gens, i);
|
||
|
if (gena->type != GEN_DIRNAME)
|
||
|
continue;
|
||
|
if (!X509_NAME_cmp(nm, gena->d.directoryName))
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Else case 3: two GENERAL_NAMES */
|
||
|
|
||
|
for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) {
|
||
|
gena = sk_GENERAL_NAME_value(a->name.fullname, i);
|
||
|
for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) {
|
||
|
genb = sk_GENERAL_NAME_value(b->name.fullname, j);
|
||
|
if (!GENERAL_NAME_cmp(gena, genb))
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score)
|
||
|
{
|
||
|
int i;
|
||
|
X509_NAME *nm = X509_CRL_get_issuer(crl);
|
||
|
/* If no CRLissuer return is successful iff don't need a match */
|
||
|
if (!dp->CRLissuer)
|
||
|
return ! !(crl_score & CRL_SCORE_ISSUER_NAME);
|
||
|
for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) {
|
||
|
GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i);
|
||
|
if (gen->type != GEN_DIRNAME)
|
||
|
continue;
|
||
|
if (!X509_NAME_cmp(gen->d.directoryName, nm))
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Check CRLDP and IDP */
|
||
|
|
||
|
static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
|
||
|
unsigned int *preasons)
|
||
|
{
|
||
|
int i;
|
||
|
if (crl->idp_flags & IDP_ONLYATTR)
|
||
|
return 0;
|
||
|
if (x->ex_flags & EXFLAG_CA) {
|
||
|
if (crl->idp_flags & IDP_ONLYUSER)
|
||
|
return 0;
|
||
|
} else {
|
||
|
if (crl->idp_flags & IDP_ONLYCA)
|
||
|
return 0;
|
||
|
}
|
||
|
*preasons = crl->idp_reasons;
|
||
|
for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) {
|
||
|
DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i);
|
||
|
if (crldp_check_crlissuer(dp, crl, crl_score)) {
|
||
|
if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) {
|
||
|
*preasons &= dp->dp_reasons;
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if ((!crl->idp || !crl->idp->distpoint)
|
||
|
&& (crl_score & CRL_SCORE_ISSUER_NAME))
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Retrieve CRL corresponding to current certificate. If deltas enabled try
|
||
|
* to find a delta CRL too
|
||
|
*/
|
||
|
|
||
|
static int get_crl_delta(X509_STORE_CTX *ctx,
|
||
|
X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x)
|
||
|
{
|
||
|
int ok;
|
||
|
X509 *issuer = NULL;
|
||
|
int crl_score = 0;
|
||
|
unsigned int reasons;
|
||
|
X509_CRL *crl = NULL, *dcrl = NULL;
|
||
|
STACK_OF(X509_CRL) *skcrl;
|
||
|
X509_NAME *nm = X509_get_issuer_name(x);
|
||
|
|
||
|
reasons = ctx->current_reasons;
|
||
|
ok = get_crl_sk(ctx, &crl, &dcrl,
|
||
|
&issuer, &crl_score, &reasons, ctx->crls);
|
||
|
if (ok)
|
||
|
goto done;
|
||
|
|
||
|
/* Lookup CRLs from store */
|
||
|
|
||
|
skcrl = ctx->lookup_crls(ctx, nm);
|
||
|
|
||
|
/* If no CRLs found and a near match from get_crl_sk use that */
|
||
|
if (!skcrl && crl)
|
||
|
goto done;
|
||
|
|
||
|
get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl);
|
||
|
|
||
|
sk_X509_CRL_pop_free(skcrl, X509_CRL_free);
|
||
|
|
||
|
done:
|
||
|
/* If we got any kind of CRL use it and return success */
|
||
|
if (crl) {
|
||
|
ctx->current_issuer = issuer;
|
||
|
ctx->current_crl_score = crl_score;
|
||
|
ctx->current_reasons = reasons;
|
||
|
*pcrl = crl;
|
||
|
*pdcrl = dcrl;
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Check CRL validity */
|
||
|
static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl)
|
||
|
{
|
||
|
X509 *issuer = NULL;
|
||
|
EVP_PKEY *ikey = NULL;
|
||
|
int cnum = ctx->error_depth;
|
||
|
int chnum = sk_X509_num(ctx->chain) - 1;
|
||
|
|
||
|
/* if we have an alternative CRL issuer cert use that */
|
||
|
if (ctx->current_issuer)
|
||
|
issuer = ctx->current_issuer;
|
||
|
/*
|
||
|
* Else find CRL issuer: if not last certificate then issuer is next
|
||
|
* certificate in chain.
|
||
|
*/
|
||
|
else if (cnum < chnum)
|
||
|
issuer = sk_X509_value(ctx->chain, cnum + 1);
|
||
|
else {
|
||
|
issuer = sk_X509_value(ctx->chain, chnum);
|
||
|
/* If not self signed, can't check signature */
|
||
|
if (!ctx->check_issued(ctx, issuer, issuer) &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (issuer == NULL)
|
||
|
return 1;
|
||
|
|
||
|
/*
|
||
|
* Skip most tests for deltas because they have already been done
|
||
|
*/
|
||
|
if (!crl->base_crl_number) {
|
||
|
/* Check for cRLSign bit if keyUsage present */
|
||
|
if ((issuer->ex_flags & EXFLAG_KUSAGE) &&
|
||
|
!(issuer->ex_kusage & KU_CRL_SIGN) &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN))
|
||
|
return 0;
|
||
|
|
||
|
if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE))
|
||
|
return 0;
|
||
|
|
||
|
if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) &&
|
||
|
check_crl_path(ctx, ctx->current_issuer) <= 0 &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR))
|
||
|
return 0;
|
||
|
|
||
|
if ((crl->idp_flags & IDP_INVALID) &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (!(ctx->current_crl_score & CRL_SCORE_TIME) &&
|
||
|
!check_crl_time(ctx, crl, 1))
|
||
|
return 0;
|
||
|
|
||
|
/* Attempt to get issuer certificate public key */
|
||
|
ikey = X509_get0_pubkey(issuer);
|
||
|
|
||
|
if (!ikey &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY))
|
||
|
return 0;
|
||
|
|
||
|
if (ikey) {
|
||
|
int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags);
|
||
|
|
||
|
if (rv != X509_V_OK && !verify_cb_crl(ctx, rv))
|
||
|
return 0;
|
||
|
/* Verify CRL signature */
|
||
|
if (X509_CRL_verify(crl, ikey) <= 0 &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE))
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Check certificate against CRL */
|
||
|
static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x)
|
||
|
{
|
||
|
X509_REVOKED *rev;
|
||
|
|
||
|
/*
|
||
|
* The rules changed for this... previously if a CRL contained unhandled
|
||
|
* critical extensions it could still be used to indicate a certificate
|
||
|
* was revoked. This has since been changed since critical extensions can
|
||
|
* change the meaning of CRL entries.
|
||
|
*/
|
||
|
if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
|
||
|
&& (crl->flags & EXFLAG_CRITICAL) &&
|
||
|
!verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION))
|
||
|
return 0;
|
||
|
/*
|
||
|
* Look for serial number of certificate in CRL. If found, make sure
|
||
|
* reason is not removeFromCRL.
|
||
|
*/
|
||
|
if (X509_CRL_get0_by_cert(crl, &rev, x)) {
|
||
|
if (rev->reason == CRL_REASON_REMOVE_FROM_CRL)
|
||
|
return 2;
|
||
|
if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int check_policy(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (ctx->parent)
|
||
|
return 1;
|
||
|
/*
|
||
|
* With DANE, the trust anchor might be a bare public key, not a
|
||
|
* certificate! In that case our chain does not have the trust anchor
|
||
|
* certificate as a top-most element. This comports well with RFC5280
|
||
|
* chain verification, since there too, the trust anchor is not part of the
|
||
|
* chain to be verified. In particular, X509_policy_check() does not look
|
||
|
* at the TA cert, but assumes that it is present as the top-most chain
|
||
|
* element. We therefore temporarily push a NULL cert onto the chain if it
|
||
|
* was verified via a bare public key, and pop it off right after the
|
||
|
* X509_policy_check() call.
|
||
|
*/
|
||
|
if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) {
|
||
|
X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return 0;
|
||
|
}
|
||
|
ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain,
|
||
|
ctx->param->policies, ctx->param->flags);
|
||
|
if (ctx->bare_ta_signed)
|
||
|
sk_X509_pop(ctx->chain);
|
||
|
|
||
|
if (ret == X509_PCY_TREE_INTERNAL) {
|
||
|
X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return 0;
|
||
|
}
|
||
|
/* Invalid or inconsistent extensions */
|
||
|
if (ret == X509_PCY_TREE_INVALID) {
|
||
|
int i;
|
||
|
|
||
|
/* Locate certificates with bad extensions and notify callback. */
|
||
|
for (i = 1; i < sk_X509_num(ctx->chain); i++) {
|
||
|
X509 *x = sk_X509_value(ctx->chain, i);
|
||
|
|
||
|
if (!(x->ex_flags & EXFLAG_INVALID_POLICY))
|
||
|
continue;
|
||
|
if (!verify_cb_cert(ctx, x, i,
|
||
|
X509_V_ERR_INVALID_POLICY_EXTENSION))
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
if (ret == X509_PCY_TREE_FAILURE) {
|
||
|
ctx->current_cert = NULL;
|
||
|
ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY;
|
||
|
return ctx->verify_cb(0, ctx);
|
||
|
}
|
||
|
if (ret != X509_PCY_TREE_VALID) {
|
||
|
X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) {
|
||
|
ctx->current_cert = NULL;
|
||
|
/*
|
||
|
* Verification errors need to be "sticky", a callback may have allowed
|
||
|
* an SSL handshake to continue despite an error, and we must then
|
||
|
* remain in an error state. Therefore, we MUST NOT clear earlier
|
||
|
* verification errors by setting the error to X509_V_OK.
|
||
|
*/
|
||
|
if (!ctx->verify_cb(2, ctx))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*-
|
||
|
* Check certificate validity times.
|
||
|
* If depth >= 0, invoke verification callbacks on error, otherwise just return
|
||
|
* the validation status.
|
||
|
*
|
||
|
* Return 1 on success, 0 otherwise.
|
||
|
*/
|
||
|
int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth)
|
||
|
{
|
||
|
time_t *ptime;
|
||
|
int i;
|
||
|
|
||
|
if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
|
||
|
ptime = &ctx->param->check_time;
|
||
|
else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME)
|
||
|
return 1;
|
||
|
else
|
||
|
ptime = NULL;
|
||
|
|
||
|
i = X509_cmp_time(X509_get0_notBefore(x), ptime);
|
||
|
if (i >= 0 && depth < 0)
|
||
|
return 0;
|
||
|
if (i == 0 && !verify_cb_cert(ctx, x, depth,
|
||
|
X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD))
|
||
|
return 0;
|
||
|
if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID))
|
||
|
return 0;
|
||
|
|
||
|
i = X509_cmp_time(X509_get0_notAfter(x), ptime);
|
||
|
if (i <= 0 && depth < 0)
|
||
|
return 0;
|
||
|
if (i == 0 && !verify_cb_cert(ctx, x, depth,
|
||
|
X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD))
|
||
|
return 0;
|
||
|
if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED))
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* verify the issuer signatures and cert times of ctx->chain */
|
||
|
static int internal_verify(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
int n = sk_X509_num(ctx->chain) - 1;
|
||
|
X509 *xi = sk_X509_value(ctx->chain, n);
|
||
|
X509 *xs;
|
||
|
|
||
|
/*
|
||
|
* With DANE-verified bare public key TA signatures, it remains only to
|
||
|
* check the timestamps of the top certificate. We report the issuer as
|
||
|
* NULL, since all we have is a bare key.
|
||
|
*/
|
||
|
if (ctx->bare_ta_signed) {
|
||
|
xs = xi;
|
||
|
xi = NULL;
|
||
|
goto check_cert_time;
|
||
|
}
|
||
|
|
||
|
if (ctx->check_issued(ctx, xi, xi))
|
||
|
xs = xi; /* the typical case: last cert in the chain is self-issued */
|
||
|
else {
|
||
|
if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
|
||
|
xs = xi;
|
||
|
goto check_cert_time;
|
||
|
}
|
||
|
if (n <= 0) {
|
||
|
if (!verify_cb_cert(ctx, xi, 0,
|
||
|
X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE))
|
||
|
return 0;
|
||
|
|
||
|
xs = xi;
|
||
|
goto check_cert_time;
|
||
|
}
|
||
|
|
||
|
n--;
|
||
|
ctx->error_depth = n;
|
||
|
xs = sk_X509_value(ctx->chain, n);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do not clear ctx->error=0, it must be "sticky", only the user's callback
|
||
|
* is allowed to reset errors (at its own peril).
|
||
|
*/
|
||
|
while (n >= 0) {
|
||
|
/*
|
||
|
* For each iteration of this loop:
|
||
|
* n is the subject depth
|
||
|
* xs is the subject cert, for which the signature is to be checked
|
||
|
* xi is the supposed issuer cert containing the public key to use
|
||
|
* Initially xs == xi if the last cert in the chain is self-issued.
|
||
|
*
|
||
|
* Skip signature check for self-signed certificates unless explicitly
|
||
|
* asked for because it does not add any security and just wastes time.
|
||
|
*/
|
||
|
if (xs != xi || ((ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)
|
||
|
&& (xi->ex_flags & EXFLAG_SS) != 0)) {
|
||
|
EVP_PKEY *pkey;
|
||
|
/*
|
||
|
* If the issuer's public key is not available or its key usage
|
||
|
* does not support issuing the subject cert, report the issuer
|
||
|
* cert and its depth (rather than n, the depth of the subject).
|
||
|
*/
|
||
|
int issuer_depth = n + (xs == xi ? 0 : 1);
|
||
|
/*
|
||
|
* According to https://tools.ietf.org/html/rfc5280#section-6.1.4
|
||
|
* step (n) we must check any given key usage extension in a CA cert
|
||
|
* when preparing the verification of a certificate issued by it.
|
||
|
* According to https://tools.ietf.org/html/rfc5280#section-4.2.1.3
|
||
|
* we must not verify a certifiate signature if the key usage of the
|
||
|
* CA certificate that issued the certificate prohibits signing.
|
||
|
* In case the 'issuing' certificate is the last in the chain and is
|
||
|
* not a CA certificate but a 'self-issued' end-entity cert (i.e.,
|
||
|
* xs == xi && !(xi->ex_flags & EXFLAG_CA)) RFC 5280 does not apply
|
||
|
* (see https://tools.ietf.org/html/rfc6818#section-2) and thus
|
||
|
* we are free to ignore any key usage restrictions on such certs.
|
||
|
*/
|
||
|
int ret = xs == xi && (xi->ex_flags & EXFLAG_CA) == 0
|
||
|
? X509_V_OK : x509_signing_allowed(xi, xs);
|
||
|
|
||
|
if (ret != X509_V_OK && !verify_cb_cert(ctx, xi, issuer_depth, ret))
|
||
|
return 0;
|
||
|
if ((pkey = X509_get0_pubkey(xi)) == NULL) {
|
||
|
ret = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY;
|
||
|
if (!verify_cb_cert(ctx, xi, issuer_depth, ret))
|
||
|
return 0;
|
||
|
} else if (X509_verify(xs, pkey) <= 0) {
|
||
|
ret = X509_V_ERR_CERT_SIGNATURE_FAILURE;
|
||
|
if (!verify_cb_cert(ctx, xs, n, ret))
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
check_cert_time: /* in addition to RFC 5280, do also for trusted (root) cert */
|
||
|
/* Calls verify callback as needed */
|
||
|
if (!x509_check_cert_time(ctx, xs, n))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Signal success at this depth. However, the previous error (if any)
|
||
|
* is retained.
|
||
|
*/
|
||
|
ctx->current_issuer = xi;
|
||
|
ctx->current_cert = xs;
|
||
|
ctx->error_depth = n;
|
||
|
if (!ctx->verify_cb(1, ctx))
|
||
|
return 0;
|
||
|
|
||
|
if (--n >= 0) {
|
||
|
xi = xs;
|
||
|
xs = sk_X509_value(ctx->chain, n);
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int X509_cmp_current_time(const ASN1_TIME *ctm)
|
||
|
{
|
||
|
return X509_cmp_time(ctm, NULL);
|
||
|
}
|
||
|
|
||
|
int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time)
|
||
|
{
|
||
|
static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1;
|
||
|
static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1;
|
||
|
ASN1_TIME *asn1_cmp_time = NULL;
|
||
|
int i, day, sec, ret = 0;
|
||
|
#ifdef CHARSET_EBCDIC
|
||
|
const char upper_z = 0x5A;
|
||
|
#else
|
||
|
const char upper_z = 'Z';
|
||
|
#endif
|
||
|
/*
|
||
|
* Note that ASN.1 allows much more slack in the time format than RFC5280.
|
||
|
* In RFC5280, the representation is fixed:
|
||
|
* UTCTime: YYMMDDHHMMSSZ
|
||
|
* GeneralizedTime: YYYYMMDDHHMMSSZ
|
||
|
*
|
||
|
* We do NOT currently enforce the following RFC 5280 requirement:
|
||
|
* "CAs conforming to this profile MUST always encode certificate
|
||
|
* validity dates through the year 2049 as UTCTime; certificate validity
|
||
|
* dates in 2050 or later MUST be encoded as GeneralizedTime."
|
||
|
*/
|
||
|
switch (ctm->type) {
|
||
|
case V_ASN1_UTCTIME:
|
||
|
if (ctm->length != (int)(utctime_length))
|
||
|
return 0;
|
||
|
break;
|
||
|
case V_ASN1_GENERALIZEDTIME:
|
||
|
if (ctm->length != (int)(generalizedtime_length))
|
||
|
return 0;
|
||
|
break;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Verify the format: the ASN.1 functions we use below allow a more
|
||
|
* flexible format than what's mandated by RFC 5280.
|
||
|
* Digit and date ranges will be verified in the conversion methods.
|
||
|
*/
|
||
|
for (i = 0; i < ctm->length - 1; i++) {
|
||
|
if (!ascii_isdigit(ctm->data[i]))
|
||
|
return 0;
|
||
|
}
|
||
|
if (ctm->data[ctm->length - 1] != upper_z)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* There is ASN1_UTCTIME_cmp_time_t but no
|
||
|
* ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t,
|
||
|
* so we go through ASN.1
|
||
|
*/
|
||
|
asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time);
|
||
|
if (asn1_cmp_time == NULL)
|
||
|
goto err;
|
||
|
if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time))
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* X509_cmp_time comparison is <=.
|
||
|
* The return value 0 is reserved for errors.
|
||
|
*/
|
||
|
ret = (day >= 0 && sec >= 0) ? -1 : 1;
|
||
|
|
||
|
err:
|
||
|
ASN1_TIME_free(asn1_cmp_time);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj)
|
||
|
{
|
||
|
return X509_time_adj(s, adj, NULL);
|
||
|
}
|
||
|
|
||
|
ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm)
|
||
|
{
|
||
|
return X509_time_adj_ex(s, 0, offset_sec, in_tm);
|
||
|
}
|
||
|
|
||
|
ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s,
|
||
|
int offset_day, long offset_sec, time_t *in_tm)
|
||
|
{
|
||
|
time_t t;
|
||
|
|
||
|
if (in_tm)
|
||
|
t = *in_tm;
|
||
|
else
|
||
|
time(&t);
|
||
|
|
||
|
if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) {
|
||
|
if (s->type == V_ASN1_UTCTIME)
|
||
|
return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec);
|
||
|
if (s->type == V_ASN1_GENERALIZEDTIME)
|
||
|
return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec);
|
||
|
}
|
||
|
return ASN1_TIME_adj(s, t, offset_day, offset_sec);
|
||
|
}
|
||
|
|
||
|
int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain)
|
||
|
{
|
||
|
EVP_PKEY *ktmp = NULL, *ktmp2;
|
||
|
int i, j;
|
||
|
|
||
|
if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey))
|
||
|
return 1;
|
||
|
|
||
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
||
|
ktmp = X509_get0_pubkey(sk_X509_value(chain, i));
|
||
|
if (ktmp == NULL) {
|
||
|
X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,
|
||
|
X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY);
|
||
|
return 0;
|
||
|
}
|
||
|
if (!EVP_PKEY_missing_parameters(ktmp))
|
||
|
break;
|
||
|
}
|
||
|
if (ktmp == NULL) {
|
||
|
X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,
|
||
|
X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* first, populate the other certs */
|
||
|
for (j = i - 1; j >= 0; j--) {
|
||
|
ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j));
|
||
|
EVP_PKEY_copy_parameters(ktmp2, ktmp);
|
||
|
}
|
||
|
|
||
|
if (pkey != NULL)
|
||
|
EVP_PKEY_copy_parameters(pkey, ktmp);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Make a delta CRL as the diff between two full CRLs */
|
||
|
|
||
|
X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer,
|
||
|
EVP_PKEY *skey, const EVP_MD *md, unsigned int flags)
|
||
|
{
|
||
|
X509_CRL *crl = NULL;
|
||
|
int i;
|
||
|
STACK_OF(X509_REVOKED) *revs = NULL;
|
||
|
/* CRLs can't be delta already */
|
||
|
if (base->base_crl_number || newer->base_crl_number) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* Base and new CRL must have a CRL number */
|
||
|
if (!base->crl_number || !newer->crl_number) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* Issuer names must match */
|
||
|
if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* AKID and IDP must match */
|
||
|
if (!crl_extension_match(base, newer, NID_authority_key_identifier)) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH);
|
||
|
return NULL;
|
||
|
}
|
||
|
if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* Newer CRL number must exceed full CRL number */
|
||
|
if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* CRLs must verify */
|
||
|
if (skey && (X509_CRL_verify(base, skey) <= 0 ||
|
||
|
X509_CRL_verify(newer, skey) <= 0)) {
|
||
|
X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* Create new CRL */
|
||
|
crl = X509_CRL_new();
|
||
|
if (crl == NULL || !X509_CRL_set_version(crl, 1))
|
||
|
goto memerr;
|
||
|
/* Set issuer name */
|
||
|
if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer)))
|
||
|
goto memerr;
|
||
|
|
||
|
if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer)))
|
||
|
goto memerr;
|
||
|
if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer)))
|
||
|
goto memerr;
|
||
|
|
||
|
/* Set base CRL number: must be critical */
|
||
|
|
||
|
if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0))
|
||
|
goto memerr;
|
||
|
|
||
|
/*
|
||
|
* Copy extensions across from newest CRL to delta: this will set CRL
|
||
|
* number to correct value too.
|
||
|
*/
|
||
|
|
||
|
for (i = 0; i < X509_CRL_get_ext_count(newer); i++) {
|
||
|
X509_EXTENSION *ext;
|
||
|
ext = X509_CRL_get_ext(newer, i);
|
||
|
if (!X509_CRL_add_ext(crl, ext, -1))
|
||
|
goto memerr;
|
||
|
}
|
||
|
|
||
|
/* Go through revoked entries, copying as needed */
|
||
|
|
||
|
revs = X509_CRL_get_REVOKED(newer);
|
||
|
|
||
|
for (i = 0; i < sk_X509_REVOKED_num(revs); i++) {
|
||
|
X509_REVOKED *rvn, *rvtmp;
|
||
|
rvn = sk_X509_REVOKED_value(revs, i);
|
||
|
/*
|
||
|
* Add only if not also in base. TODO: need something cleverer here
|
||
|
* for some more complex CRLs covering multiple CAs.
|
||
|
*/
|
||
|
if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) {
|
||
|
rvtmp = X509_REVOKED_dup(rvn);
|
||
|
if (!rvtmp)
|
||
|
goto memerr;
|
||
|
if (!X509_CRL_add0_revoked(crl, rvtmp)) {
|
||
|
X509_REVOKED_free(rvtmp);
|
||
|
goto memerr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* TODO: optionally prune deleted entries */
|
||
|
|
||
|
if (skey && md && !X509_CRL_sign(crl, skey, md))
|
||
|
goto memerr;
|
||
|
|
||
|
return crl;
|
||
|
|
||
|
memerr:
|
||
|
X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE);
|
||
|
X509_CRL_free(crl);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data)
|
||
|
{
|
||
|
return CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
|
||
|
}
|
||
|
|
||
|
void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx)
|
||
|
{
|
||
|
return CRYPTO_get_ex_data(&ctx->ex_data, idx);
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->error;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err)
|
||
|
{
|
||
|
ctx->error = err;
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->error_depth;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth)
|
||
|
{
|
||
|
ctx->error_depth = depth;
|
||
|
}
|
||
|
|
||
|
X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->current_cert;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x)
|
||
|
{
|
||
|
ctx->current_cert = x;
|
||
|
}
|
||
|
|
||
|
STACK_OF(X509) *X509_STORE_CTX_get0_chain(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->chain;
|
||
|
}
|
||
|
|
||
|
STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
if (!ctx->chain)
|
||
|
return NULL;
|
||
|
return X509_chain_up_ref(ctx->chain);
|
||
|
}
|
||
|
|
||
|
X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->current_issuer;
|
||
|
}
|
||
|
|
||
|
X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->current_crl;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->parent;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x)
|
||
|
{
|
||
|
ctx->cert = x;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk)
|
||
|
{
|
||
|
ctx->crls = sk;
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose)
|
||
|
{
|
||
|
/*
|
||
|
* XXX: Why isn't this function always used to set the associated trust?
|
||
|
* Should there even be a VPM->trust field at all? Or should the trust
|
||
|
* always be inferred from the purpose by X509_STORE_CTX_init().
|
||
|
*/
|
||
|
return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0);
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust)
|
||
|
{
|
||
|
/*
|
||
|
* XXX: See above, this function would only be needed when the default
|
||
|
* trust for the purpose needs an override in a corner case.
|
||
|
*/
|
||
|
return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function is used to set the X509_STORE_CTX purpose and trust values.
|
||
|
* This is intended to be used when another structure has its own trust and
|
||
|
* purpose values which (if set) will be inherited by the ctx. If they aren't
|
||
|
* set then we will usually have a default purpose in mind which should then
|
||
|
* be used to set the trust value. An example of this is SSL use: an SSL
|
||
|
* structure will have its own purpose and trust settings which the
|
||
|
* application can set: if they aren't set then we use the default of SSL
|
||
|
* client/server.
|
||
|
*/
|
||
|
|
||
|
int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose,
|
||
|
int purpose, int trust)
|
||
|
{
|
||
|
int idx;
|
||
|
/* If purpose not set use default */
|
||
|
if (!purpose)
|
||
|
purpose = def_purpose;
|
||
|
/*
|
||
|
* If purpose is set but we don't have a default then set the default to
|
||
|
* the current purpose
|
||
|
*/
|
||
|
else if (def_purpose == 0)
|
||
|
def_purpose = purpose;
|
||
|
/* If we have a purpose then check it is valid */
|
||
|
if (purpose) {
|
||
|
X509_PURPOSE *ptmp;
|
||
|
idx = X509_PURPOSE_get_by_id(purpose);
|
||
|
if (idx == -1) {
|
||
|
X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
|
||
|
X509_R_UNKNOWN_PURPOSE_ID);
|
||
|
return 0;
|
||
|
}
|
||
|
ptmp = X509_PURPOSE_get0(idx);
|
||
|
if (ptmp->trust == X509_TRUST_DEFAULT) {
|
||
|
idx = X509_PURPOSE_get_by_id(def_purpose);
|
||
|
if (idx == -1) {
|
||
|
X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
|
||
|
X509_R_UNKNOWN_PURPOSE_ID);
|
||
|
return 0;
|
||
|
}
|
||
|
ptmp = X509_PURPOSE_get0(idx);
|
||
|
}
|
||
|
/* If trust not set then get from purpose default */
|
||
|
if (!trust)
|
||
|
trust = ptmp->trust;
|
||
|
}
|
||
|
if (trust) {
|
||
|
idx = X509_TRUST_get_by_id(trust);
|
||
|
if (idx == -1) {
|
||
|
X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
|
||
|
X509_R_UNKNOWN_TRUST_ID);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (purpose && !ctx->param->purpose)
|
||
|
ctx->param->purpose = purpose;
|
||
|
if (trust && !ctx->param->trust)
|
||
|
ctx->param->trust = trust;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX *X509_STORE_CTX_new(void)
|
||
|
{
|
||
|
X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
|
||
|
|
||
|
if (ctx == NULL) {
|
||
|
X509err(X509_F_X509_STORE_CTX_NEW, ERR_R_MALLOC_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_free(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
if (ctx == NULL)
|
||
|
return;
|
||
|
|
||
|
X509_STORE_CTX_cleanup(ctx);
|
||
|
OPENSSL_free(ctx);
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
|
||
|
STACK_OF(X509) *chain)
|
||
|
{
|
||
|
int ret = 1;
|
||
|
|
||
|
ctx->ctx = store;
|
||
|
ctx->cert = x509;
|
||
|
ctx->untrusted = chain;
|
||
|
ctx->crls = NULL;
|
||
|
ctx->num_untrusted = 0;
|
||
|
ctx->other_ctx = NULL;
|
||
|
ctx->valid = 0;
|
||
|
ctx->chain = NULL;
|
||
|
ctx->error = 0;
|
||
|
ctx->explicit_policy = 0;
|
||
|
ctx->error_depth = 0;
|
||
|
ctx->current_cert = NULL;
|
||
|
ctx->current_issuer = NULL;
|
||
|
ctx->current_crl = NULL;
|
||
|
ctx->current_crl_score = 0;
|
||
|
ctx->current_reasons = 0;
|
||
|
ctx->tree = NULL;
|
||
|
ctx->parent = NULL;
|
||
|
ctx->dane = NULL;
|
||
|
ctx->bare_ta_signed = 0;
|
||
|
/* Zero ex_data to make sure we're cleanup-safe */
|
||
|
memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
|
||
|
|
||
|
/* store->cleanup is always 0 in OpenSSL, if set must be idempotent */
|
||
|
if (store)
|
||
|
ctx->cleanup = store->cleanup;
|
||
|
else
|
||
|
ctx->cleanup = 0;
|
||
|
|
||
|
if (store && store->check_issued)
|
||
|
ctx->check_issued = store->check_issued;
|
||
|
else
|
||
|
ctx->check_issued = check_issued;
|
||
|
|
||
|
if (store && store->get_issuer)
|
||
|
ctx->get_issuer = store->get_issuer;
|
||
|
else
|
||
|
ctx->get_issuer = X509_STORE_CTX_get1_issuer;
|
||
|
|
||
|
if (store && store->verify_cb)
|
||
|
ctx->verify_cb = store->verify_cb;
|
||
|
else
|
||
|
ctx->verify_cb = null_callback;
|
||
|
|
||
|
if (store && store->verify)
|
||
|
ctx->verify = store->verify;
|
||
|
else
|
||
|
ctx->verify = internal_verify;
|
||
|
|
||
|
if (store && store->check_revocation)
|
||
|
ctx->check_revocation = store->check_revocation;
|
||
|
else
|
||
|
ctx->check_revocation = check_revocation;
|
||
|
|
||
|
if (store && store->get_crl)
|
||
|
ctx->get_crl = store->get_crl;
|
||
|
else
|
||
|
ctx->get_crl = NULL;
|
||
|
|
||
|
if (store && store->check_crl)
|
||
|
ctx->check_crl = store->check_crl;
|
||
|
else
|
||
|
ctx->check_crl = check_crl;
|
||
|
|
||
|
if (store && store->cert_crl)
|
||
|
ctx->cert_crl = store->cert_crl;
|
||
|
else
|
||
|
ctx->cert_crl = cert_crl;
|
||
|
|
||
|
if (store && store->check_policy)
|
||
|
ctx->check_policy = store->check_policy;
|
||
|
else
|
||
|
ctx->check_policy = check_policy;
|
||
|
|
||
|
if (store && store->lookup_certs)
|
||
|
ctx->lookup_certs = store->lookup_certs;
|
||
|
else
|
||
|
ctx->lookup_certs = X509_STORE_CTX_get1_certs;
|
||
|
|
||
|
if (store && store->lookup_crls)
|
||
|
ctx->lookup_crls = store->lookup_crls;
|
||
|
else
|
||
|
ctx->lookup_crls = X509_STORE_CTX_get1_crls;
|
||
|
|
||
|
ctx->param = X509_VERIFY_PARAM_new();
|
||
|
if (ctx->param == NULL) {
|
||
|
X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Inherit callbacks and flags from X509_STORE if not set use defaults.
|
||
|
*/
|
||
|
if (store)
|
||
|
ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param);
|
||
|
else
|
||
|
ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE;
|
||
|
|
||
|
if (ret)
|
||
|
ret = X509_VERIFY_PARAM_inherit(ctx->param,
|
||
|
X509_VERIFY_PARAM_lookup("default"));
|
||
|
|
||
|
if (ret == 0) {
|
||
|
X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XXX: For now, continue to inherit trust from VPM, but infer from the
|
||
|
* purpose if this still yields the default value.
|
||
|
*/
|
||
|
if (ctx->param->trust == X509_TRUST_DEFAULT) {
|
||
|
int idx = X509_PURPOSE_get_by_id(ctx->param->purpose);
|
||
|
X509_PURPOSE *xp = X509_PURPOSE_get0(idx);
|
||
|
|
||
|
if (xp != NULL)
|
||
|
ctx->param->trust = X509_PURPOSE_get_trust(xp);
|
||
|
}
|
||
|
|
||
|
if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx,
|
||
|
&ctx->ex_data))
|
||
|
return 1;
|
||
|
X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
|
||
|
|
||
|
err:
|
||
|
/*
|
||
|
* On error clean up allocated storage, if the store context was not
|
||
|
* allocated with X509_STORE_CTX_new() this is our last chance to do so.
|
||
|
*/
|
||
|
X509_STORE_CTX_cleanup(ctx);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set alternative lookup method: just a STACK of trusted certificates. This
|
||
|
* avoids X509_STORE nastiness where it isn't needed.
|
||
|
*/
|
||
|
void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
|
||
|
{
|
||
|
ctx->other_ctx = sk;
|
||
|
ctx->get_issuer = get_issuer_sk;
|
||
|
ctx->lookup_certs = lookup_certs_sk;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
/*
|
||
|
* We need to be idempotent because, unfortunately, free() also calls
|
||
|
* cleanup(), so the natural call sequence new(), init(), cleanup(), free()
|
||
|
* calls cleanup() for the same object twice! Thus we must zero the
|
||
|
* pointers below after they're freed!
|
||
|
*/
|
||
|
/* Seems to always be 0 in OpenSSL, do this at most once. */
|
||
|
if (ctx->cleanup != NULL) {
|
||
|
ctx->cleanup(ctx);
|
||
|
ctx->cleanup = NULL;
|
||
|
}
|
||
|
if (ctx->param != NULL) {
|
||
|
if (ctx->parent == NULL)
|
||
|
X509_VERIFY_PARAM_free(ctx->param);
|
||
|
ctx->param = NULL;
|
||
|
}
|
||
|
X509_policy_tree_free(ctx->tree);
|
||
|
ctx->tree = NULL;
|
||
|
sk_X509_pop_free(ctx->chain, X509_free);
|
||
|
ctx->chain = NULL;
|
||
|
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data));
|
||
|
memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth)
|
||
|
{
|
||
|
X509_VERIFY_PARAM_set_depth(ctx->param, depth);
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags)
|
||
|
{
|
||
|
X509_VERIFY_PARAM_set_flags(ctx->param, flags);
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags,
|
||
|
time_t t)
|
||
|
{
|
||
|
X509_VERIFY_PARAM_set_time(ctx->param, t);
|
||
|
}
|
||
|
|
||
|
X509 *X509_STORE_CTX_get0_cert(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->cert;
|
||
|
}
|
||
|
|
||
|
STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->untrusted;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
|
||
|
{
|
||
|
ctx->untrusted = sk;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
|
||
|
{
|
||
|
sk_X509_pop_free(ctx->chain, X509_free);
|
||
|
ctx->chain = sk;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
|
||
|
X509_STORE_CTX_verify_cb verify_cb)
|
||
|
{
|
||
|
ctx->verify_cb = verify_cb;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->verify_cb;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx,
|
||
|
X509_STORE_CTX_verify_fn verify)
|
||
|
{
|
||
|
ctx->verify = verify;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->verify;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->get_issuer;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_check_issued_fn X509_STORE_CTX_get_check_issued(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->check_issued;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_check_revocation_fn X509_STORE_CTX_get_check_revocation(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->check_revocation;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->get_crl;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->check_crl;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->cert_crl;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_check_policy_fn X509_STORE_CTX_get_check_policy(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->check_policy;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_lookup_certs_fn X509_STORE_CTX_get_lookup_certs(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->lookup_certs;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_lookup_crls_fn X509_STORE_CTX_get_lookup_crls(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->lookup_crls;
|
||
|
}
|
||
|
|
||
|
X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->cleanup;
|
||
|
}
|
||
|
|
||
|
X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->tree;
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->explicit_policy;
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->num_untrusted;
|
||
|
}
|
||
|
|
||
|
int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name)
|
||
|
{
|
||
|
const X509_VERIFY_PARAM *param;
|
||
|
param = X509_VERIFY_PARAM_lookup(name);
|
||
|
if (!param)
|
||
|
return 0;
|
||
|
return X509_VERIFY_PARAM_inherit(ctx->param, param);
|
||
|
}
|
||
|
|
||
|
X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
return ctx->param;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param)
|
||
|
{
|
||
|
X509_VERIFY_PARAM_free(ctx->param);
|
||
|
ctx->param = param;
|
||
|
}
|
||
|
|
||
|
void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane)
|
||
|
{
|
||
|
ctx->dane = dane;
|
||
|
}
|
||
|
|
||
|
static unsigned char *dane_i2d(
|
||
|
X509 *cert,
|
||
|
uint8_t selector,
|
||
|
unsigned int *i2dlen)
|
||
|
{
|
||
|
unsigned char *buf = NULL;
|
||
|
int len;
|
||
|
|
||
|
/*
|
||
|
* Extract ASN.1 DER form of certificate or public key.
|
||
|
*/
|
||
|
switch (selector) {
|
||
|
case DANETLS_SELECTOR_CERT:
|
||
|
len = i2d_X509(cert, &buf);
|
||
|
break;
|
||
|
case DANETLS_SELECTOR_SPKI:
|
||
|
len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf);
|
||
|
break;
|
||
|
default:
|
||
|
X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (len < 0 || buf == NULL) {
|
||
|
X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
*i2dlen = (unsigned int)len;
|
||
|
return buf;
|
||
|
}
|
||
|
|
||
|
#define DANETLS_NONE 256 /* impossible uint8_t */
|
||
|
|
||
|
static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth)
|
||
|
{
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
unsigned usage = DANETLS_NONE;
|
||
|
unsigned selector = DANETLS_NONE;
|
||
|
unsigned ordinal = DANETLS_NONE;
|
||
|
unsigned mtype = DANETLS_NONE;
|
||
|
unsigned char *i2dbuf = NULL;
|
||
|
unsigned int i2dlen = 0;
|
||
|
unsigned char mdbuf[EVP_MAX_MD_SIZE];
|
||
|
unsigned char *cmpbuf = NULL;
|
||
|
unsigned int cmplen = 0;
|
||
|
int i;
|
||
|
int recnum;
|
||
|
int matched = 0;
|
||
|
danetls_record *t = NULL;
|
||
|
uint32_t mask;
|
||
|
|
||
|
mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK;
|
||
|
|
||
|
/*
|
||
|
* The trust store is not applicable with DANE-TA(2)
|
||
|
*/
|
||
|
if (depth >= ctx->num_untrusted)
|
||
|
mask &= DANETLS_PKIX_MASK;
|
||
|
|
||
|
/*
|
||
|
* If we've previously matched a PKIX-?? record, no need to test any
|
||
|
* further PKIX-?? records, it remains to just build the PKIX chain.
|
||
|
* Had the match been a DANE-?? record, we'd be done already.
|
||
|
*/
|
||
|
if (dane->mdpth >= 0)
|
||
|
mask &= ~DANETLS_PKIX_MASK;
|
||
|
|
||
|
/*-
|
||
|
* https://tools.ietf.org/html/rfc7671#section-5.1
|
||
|
* https://tools.ietf.org/html/rfc7671#section-5.2
|
||
|
* https://tools.ietf.org/html/rfc7671#section-5.3
|
||
|
* https://tools.ietf.org/html/rfc7671#section-5.4
|
||
|
*
|
||
|
* We handle DANE-EE(3) records first as they require no chain building
|
||
|
* and no expiration or hostname checks. We also process digests with
|
||
|
* higher ordinals first and ignore lower priorities except Full(0) which
|
||
|
* is always processed (last). If none match, we then process PKIX-EE(1).
|
||
|
*
|
||
|
* NOTE: This relies on DANE usages sorting before the corresponding PKIX
|
||
|
* usages in SSL_dane_tlsa_add(), and also on descending sorting of digest
|
||
|
* priorities. See twin comment in ssl/ssl_lib.c.
|
||
|
*
|
||
|
* We expect that most TLSA RRsets will have just a single usage, so we
|
||
|
* don't go out of our way to cache multiple selector-specific i2d buffers
|
||
|
* across usages, but if the selector happens to remain the same as switch
|
||
|
* usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1",
|
||
|
* records would result in us generating each of the certificate and public
|
||
|
* key DER forms twice, but more typically we'd just see multiple "3 1 1"
|
||
|
* or multiple "3 0 1" records.
|
||
|
*
|
||
|
* As soon as we find a match at any given depth, we stop, because either
|
||
|
* we've matched a DANE-?? record and the peer is authenticated, or, after
|
||
|
* exhausting all DANE-?? records, we've matched a PKIX-?? record, which is
|
||
|
* sufficient for DANE, and what remains to do is ordinary PKIX validation.
|
||
|
*/
|
||
|
recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0;
|
||
|
for (i = 0; matched == 0 && i < recnum; ++i) {
|
||
|
t = sk_danetls_record_value(dane->trecs, i);
|
||
|
if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0)
|
||
|
continue;
|
||
|
if (t->usage != usage) {
|
||
|
usage = t->usage;
|
||
|
|
||
|
/* Reset digest agility for each usage/selector pair */
|
||
|
mtype = DANETLS_NONE;
|
||
|
ordinal = dane->dctx->mdord[t->mtype];
|
||
|
}
|
||
|
if (t->selector != selector) {
|
||
|
selector = t->selector;
|
||
|
|
||
|
/* Update per-selector state */
|
||
|
OPENSSL_free(i2dbuf);
|
||
|
i2dbuf = dane_i2d(cert, selector, &i2dlen);
|
||
|
if (i2dbuf == NULL)
|
||
|
return -1;
|
||
|
|
||
|
/* Reset digest agility for each usage/selector pair */
|
||
|
mtype = DANETLS_NONE;
|
||
|
ordinal = dane->dctx->mdord[t->mtype];
|
||
|
} else if (t->mtype != DANETLS_MATCHING_FULL) {
|
||
|
/*-
|
||
|
* Digest agility:
|
||
|
*
|
||
|
* <https://tools.ietf.org/html/rfc7671#section-9>
|
||
|
*
|
||
|
* For a fixed selector, after processing all records with the
|
||
|
* highest mtype ordinal, ignore all mtypes with lower ordinals
|
||
|
* other than "Full".
|
||
|
*/
|
||
|
if (dane->dctx->mdord[t->mtype] < ordinal)
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Each time we hit a (new selector or) mtype, re-compute the relevant
|
||
|
* digest, more complex caching is not worth the code space.
|
||
|
*/
|
||
|
if (t->mtype != mtype) {
|
||
|
const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype];
|
||
|
cmpbuf = i2dbuf;
|
||
|
cmplen = i2dlen;
|
||
|
|
||
|
if (md != NULL) {
|
||
|
cmpbuf = mdbuf;
|
||
|
if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) {
|
||
|
matched = -1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Squirrel away the certificate and depth if we have a match. Any
|
||
|
* DANE match is dispositive, but with PKIX we still need to build a
|
||
|
* full chain.
|
||
|
*/
|
||
|
if (cmplen == t->dlen &&
|
||
|
memcmp(cmpbuf, t->data, cmplen) == 0) {
|
||
|
if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK)
|
||
|
matched = 1;
|
||
|
if (matched || dane->mdpth < 0) {
|
||
|
dane->mdpth = depth;
|
||
|
dane->mtlsa = t;
|
||
|
OPENSSL_free(dane->mcert);
|
||
|
dane->mcert = cert;
|
||
|
X509_up_ref(cert);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Clear the one-element DER cache */
|
||
|
OPENSSL_free(i2dbuf);
|
||
|
return matched;
|
||
|
}
|
||
|
|
||
|
static int check_dane_issuer(X509_STORE_CTX *ctx, int depth)
|
||
|
{
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
int matched = 0;
|
||
|
X509 *cert;
|
||
|
|
||
|
if (!DANETLS_HAS_TA(dane) || depth == 0)
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
|
||
|
/*
|
||
|
* Record any DANE trust-anchor matches, for the first depth to test, if
|
||
|
* there's one at that depth. (This'll be false for length 1 chains looking
|
||
|
* for an exact match for the leaf certificate).
|
||
|
*/
|
||
|
cert = sk_X509_value(ctx->chain, depth);
|
||
|
if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0)
|
||
|
return X509_TRUST_REJECTED;
|
||
|
if (matched > 0) {
|
||
|
ctx->num_untrusted = depth - 1;
|
||
|
return X509_TRUST_TRUSTED;
|
||
|
}
|
||
|
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
}
|
||
|
|
||
|
static int check_dane_pkeys(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
danetls_record *t;
|
||
|
int num = ctx->num_untrusted;
|
||
|
X509 *cert = sk_X509_value(ctx->chain, num - 1);
|
||
|
int recnum = sk_danetls_record_num(dane->trecs);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < recnum; ++i) {
|
||
|
t = sk_danetls_record_value(dane->trecs, i);
|
||
|
if (t->usage != DANETLS_USAGE_DANE_TA ||
|
||
|
t->selector != DANETLS_SELECTOR_SPKI ||
|
||
|
t->mtype != DANETLS_MATCHING_FULL ||
|
||
|
X509_verify(cert, t->spki) <= 0)
|
||
|
continue;
|
||
|
|
||
|
/* Clear any PKIX-?? matches that failed to extend to a full chain */
|
||
|
X509_free(dane->mcert);
|
||
|
dane->mcert = NULL;
|
||
|
|
||
|
/* Record match via a bare TA public key */
|
||
|
ctx->bare_ta_signed = 1;
|
||
|
dane->mdpth = num - 1;
|
||
|
dane->mtlsa = t;
|
||
|
|
||
|
/* Prune any excess chain certificates */
|
||
|
num = sk_X509_num(ctx->chain);
|
||
|
for (; num > ctx->num_untrusted; --num)
|
||
|
X509_free(sk_X509_pop(ctx->chain));
|
||
|
|
||
|
return X509_TRUST_TRUSTED;
|
||
|
}
|
||
|
|
||
|
return X509_TRUST_UNTRUSTED;
|
||
|
}
|
||
|
|
||
|
static void dane_reset(SSL_DANE *dane)
|
||
|
{
|
||
|
/*
|
||
|
* Reset state to verify another chain, or clear after failure.
|
||
|
*/
|
||
|
X509_free(dane->mcert);
|
||
|
dane->mcert = NULL;
|
||
|
dane->mtlsa = NULL;
|
||
|
dane->mdpth = -1;
|
||
|
dane->pdpth = -1;
|
||
|
}
|
||
|
|
||
|
static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert)
|
||
|
{
|
||
|
int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags);
|
||
|
|
||
|
if (err == X509_V_OK)
|
||
|
return 1;
|
||
|
return verify_cb_cert(ctx, cert, 0, err);
|
||
|
}
|
||
|
|
||
|
static int dane_verify(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
X509 *cert = ctx->cert;
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
int matched;
|
||
|
int done;
|
||
|
|
||
|
dane_reset(dane);
|
||
|
|
||
|
/*-
|
||
|
* When testing the leaf certificate, if we match a DANE-EE(3) record,
|
||
|
* dane_match() returns 1 and we're done. If however we match a PKIX-EE(1)
|
||
|
* record, the match depth and matching TLSA record are recorded, but the
|
||
|
* return value is 0, because we still need to find a PKIX trust-anchor.
|
||
|
* Therefore, when DANE authentication is enabled (required), we're done
|
||
|
* if:
|
||
|
* + matched < 0, internal error.
|
||
|
* + matched == 1, we matched a DANE-EE(3) record
|
||
|
* + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no
|
||
|
* DANE-TA(2) or PKIX-TA(0) to test.
|
||
|
*/
|
||
|
matched = dane_match(ctx, ctx->cert, 0);
|
||
|
done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0);
|
||
|
|
||
|
if (done)
|
||
|
X509_get_pubkey_parameters(NULL, ctx->chain);
|
||
|
|
||
|
if (matched > 0) {
|
||
|
/* Callback invoked as needed */
|
||
|
if (!check_leaf_suiteb(ctx, cert))
|
||
|
return 0;
|
||
|
/* Callback invoked as needed */
|
||
|
if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 &&
|
||
|
!check_id(ctx))
|
||
|
return 0;
|
||
|
/* Bypass internal_verify(), issue depth 0 success callback */
|
||
|
ctx->error_depth = 0;
|
||
|
ctx->current_cert = cert;
|
||
|
return ctx->verify_cb(1, ctx);
|
||
|
}
|
||
|
|
||
|
if (matched < 0) {
|
||
|
ctx->error_depth = 0;
|
||
|
ctx->current_cert = cert;
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (done) {
|
||
|
/* Fail early, TA-based success is not possible */
|
||
|
if (!check_leaf_suiteb(ctx, cert))
|
||
|
return 0;
|
||
|
return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Chain verification for usages 0/1/2. TLSA record matching of depth > 0
|
||
|
* certificates happens in-line with building the rest of the chain.
|
||
|
*/
|
||
|
return verify_chain(ctx);
|
||
|
}
|
||
|
|
||
|
/* Get issuer, without duplicate suppression */
|
||
|
static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert)
|
||
|
{
|
||
|
STACK_OF(X509) *saved_chain = ctx->chain;
|
||
|
int ok;
|
||
|
|
||
|
ctx->chain = NULL;
|
||
|
ok = ctx->get_issuer(issuer, ctx, cert);
|
||
|
ctx->chain = saved_chain;
|
||
|
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
static int augment_stack(STACK_OF(X509) *src, STACK_OF(X509) **dstPtr)
|
||
|
{
|
||
|
if (src) {
|
||
|
STACK_OF(X509) *dst;
|
||
|
int i;
|
||
|
|
||
|
if (*dstPtr == NULL)
|
||
|
return ((*dstPtr = sk_X509_dup(src)) != NULL);
|
||
|
|
||
|
for (dst = *dstPtr, i = 0; i < sk_X509_num(src); ++i) {
|
||
|
if (!sk_X509_push(dst, sk_X509_value(src, i))) {
|
||
|
sk_X509_free(dst);
|
||
|
*dstPtr = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int build_chain(X509_STORE_CTX *ctx)
|
||
|
{
|
||
|
SSL_DANE *dane = ctx->dane;
|
||
|
int num = sk_X509_num(ctx->chain);
|
||
|
X509 *cert = sk_X509_value(ctx->chain, num - 1);
|
||
|
int ss = cert_self_signed(cert);
|
||
|
STACK_OF(X509) *sktmp = NULL;
|
||
|
unsigned int search;
|
||
|
int may_trusted = 0;
|
||
|
int may_alternate = 0;
|
||
|
int trust = X509_TRUST_UNTRUSTED;
|
||
|
int alt_untrusted = 0;
|
||
|
int depth;
|
||
|
int ok = 0;
|
||
|
int i;
|
||
|
|
||
|
/* Our chain starts with a single untrusted element. */
|
||
|
if (!ossl_assert(num == 1 && ctx->num_untrusted == num)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */
|
||
|
#define S_DOTRUSTED (1 << 1) /* Search trusted store */
|
||
|
#define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */
|
||
|
/*
|
||
|
* Set up search policy, untrusted if possible, trusted-first if enabled.
|
||
|
* If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the
|
||
|
* trust_store, otherwise we might look there first. If not trusted-first,
|
||
|
* and alternate chains are not disabled, try building an alternate chain
|
||
|
* if no luck with untrusted first.
|
||
|
*/
|
||
|
search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0;
|
||
|
if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) {
|
||
|
if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST)
|
||
|
search |= S_DOTRUSTED;
|
||
|
else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS))
|
||
|
may_alternate = 1;
|
||
|
may_trusted = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we got any "Cert(0) Full(0)" issuer certificates from DNS, *prepend*
|
||
|
* them to our working copy of the untrusted certificate stack. Since the
|
||
|
* caller of X509_STORE_CTX_init() may have provided only a leaf cert with
|
||
|
* no corresponding stack of untrusted certificates, we may need to create
|
||
|
* an empty stack first. [ At present only the ssl library provides DANE
|
||
|
* support, and ssl_verify_cert_chain() always provides a non-null stack
|
||
|
* containing at least the leaf certificate, but we must be prepared for
|
||
|
* this to change. ]
|
||
|
*/
|
||
|
if (DANETLS_ENABLED(dane) && !augment_stack(dane->certs, &sktmp)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Shallow-copy the stack of untrusted certificates (with TLS, this is
|
||
|
* typically the content of the peer's certificate message) so can make
|
||
|
* multiple passes over it, while free to remove elements as we go.
|
||
|
*/
|
||
|
if (!augment_stack(ctx->untrusted, &sktmp)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Still absurdly large, but arithmetically safe, a lower hard upper bound
|
||
|
* might be reasonable.
|
||
|
*/
|
||
|
if (ctx->param->depth > INT_MAX/2)
|
||
|
ctx->param->depth = INT_MAX/2;
|
||
|
|
||
|
/*
|
||
|
* Try to Extend the chain until we reach an ultimately trusted issuer.
|
||
|
* Build chains up to one longer the limit, later fail if we hit the limit,
|
||
|
* with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code.
|
||
|
*/
|
||
|
depth = ctx->param->depth + 1;
|
||
|
|
||
|
while (search != 0) {
|
||
|
X509 *x;
|
||
|
X509 *xtmp = NULL;
|
||
|
|
||
|
/*
|
||
|
* Look in the trust store if enabled for first lookup, or we've run
|
||
|
* out of untrusted issuers and search here is not disabled. When we
|
||
|
* reach the depth limit, we stop extending the chain, if by that point
|
||
|
* we've not found a trust-anchor, any trusted chain would be too long.
|
||
|
*
|
||
|
* The error reported to the application verify callback is at the
|
||
|
* maximal valid depth with the current certificate equal to the last
|
||
|
* not ultimately-trusted issuer. For example, with verify_depth = 0,
|
||
|
* the callback will report errors at depth=1 when the immediate issuer
|
||
|
* of the leaf certificate is not a trust anchor. No attempt will be
|
||
|
* made to locate an issuer for that certificate, since such a chain
|
||
|
* would be a-priori too long.
|
||
|
*/
|
||
|
if ((search & S_DOTRUSTED) != 0) {
|
||
|
i = num = sk_X509_num(ctx->chain);
|
||
|
if ((search & S_DOALTERNATE) != 0) {
|
||
|
/*
|
||
|
* As high up the chain as we can, look for an alternative
|
||
|
* trusted issuer of an untrusted certificate that currently
|
||
|
* has an untrusted issuer. We use the alt_untrusted variable
|
||
|
* to track how far up the chain we find the first match. It
|
||
|
* is only if and when we find a match, that we prune the chain
|
||
|
* and reset ctx->num_untrusted to the reduced count of
|
||
|
* untrusted certificates. While we're searching for such a
|
||
|
* match (which may never be found), it is neither safe nor
|
||
|
* wise to preemptively modify either the chain or
|
||
|
* ctx->num_untrusted.
|
||
|
*
|
||
|
* Note, like ctx->num_untrusted, alt_untrusted is a count of
|
||
|
* untrusted certificates, not a "depth".
|
||
|
*/
|
||
|
i = alt_untrusted;
|
||
|
}
|
||
|
x = sk_X509_value(ctx->chain, i-1);
|
||
|
|
||
|
ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x);
|
||
|
|
||
|
if (ok < 0) {
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_STORE_LOOKUP;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (ok > 0) {
|
||
|
/*
|
||
|
* Alternative trusted issuer for a mid-chain untrusted cert?
|
||
|
* Pop the untrusted cert's successors and retry. We might now
|
||
|
* be able to complete a valid chain via the trust store. Note
|
||
|
* that despite the current trust-store match we might still
|
||
|
* fail complete the chain to a suitable trust-anchor, in which
|
||
|
* case we may prune some more untrusted certificates and try
|
||
|
* again. Thus the S_DOALTERNATE bit may yet be turned on
|
||
|
* again with an even shorter untrusted chain!
|
||
|
*
|
||
|
* If in the process we threw away our matching PKIX-TA trust
|
||
|
* anchor, reset DANE trust. We might find a suitable trusted
|
||
|
* certificate among the ones from the trust store.
|
||
|
*/
|
||
|
if ((search & S_DOALTERNATE) != 0) {
|
||
|
if (!ossl_assert(num > i && i > 0 && ss == 0)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
|
||
|
X509_free(xtmp);
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
search &= ~S_DOALTERNATE;
|
||
|
for (; num > i; --num)
|
||
|
X509_free(sk_X509_pop(ctx->chain));
|
||
|
ctx->num_untrusted = num;
|
||
|
|
||
|
if (DANETLS_ENABLED(dane) &&
|
||
|
dane->mdpth >= ctx->num_untrusted) {
|
||
|
dane->mdpth = -1;
|
||
|
X509_free(dane->mcert);
|
||
|
dane->mcert = NULL;
|
||
|
}
|
||
|
if (DANETLS_ENABLED(dane) &&
|
||
|
dane->pdpth >= ctx->num_untrusted)
|
||
|
dane->pdpth = -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Self-signed untrusted certificates get replaced by their
|
||
|
* trusted matching issuer. Otherwise, grow the chain.
|
||
|
*/
|
||
|
if (ss == 0) {
|
||
|
if (!sk_X509_push(ctx->chain, x = xtmp)) {
|
||
|
X509_free(xtmp);
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
ss = cert_self_signed(x);
|
||
|
} else if (num == ctx->num_untrusted) {
|
||
|
/*
|
||
|
* We have a self-signed certificate that has the same
|
||
|
* subject name (and perhaps keyid and/or serial number) as
|
||
|
* a trust-anchor. We must have an exact match to avoid
|
||
|
* possible impersonation via key substitution etc.
|
||
|
*/
|
||
|
if (X509_cmp(x, xtmp) != 0) {
|
||
|
/* Self-signed untrusted mimic. */
|
||
|
X509_free(xtmp);
|
||
|
ok = 0;
|
||
|
} else {
|
||
|
X509_free(x);
|
||
|
ctx->num_untrusted = --num;
|
||
|
(void) sk_X509_set(ctx->chain, num, x = xtmp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We've added a new trusted certificate to the chain, recheck
|
||
|
* trust. If not done, and not self-signed look deeper.
|
||
|
* Whether or not we're doing "trusted first", we no longer
|
||
|
* look for untrusted certificates from the peer's chain.
|
||
|
*
|
||
|
* At this point ctx->num_trusted and num must reflect the
|
||
|
* correct number of untrusted certificates, since the DANE
|
||
|
* logic in check_trust() depends on distinguishing CAs from
|
||
|
* "the wire" from CAs from the trust store. In particular, the
|
||
|
* certificate at depth "num" should be the new trusted
|
||
|
* certificate with ctx->num_untrusted <= num.
|
||
|
*/
|
||
|
if (ok) {
|
||
|
if (!ossl_assert(ctx->num_untrusted <= num)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
search &= ~S_DOUNTRUSTED;
|
||
|
switch (trust = check_trust(ctx, num)) {
|
||
|
case X509_TRUST_TRUSTED:
|
||
|
case X509_TRUST_REJECTED:
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
if (ss == 0)
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No dispositive decision, and either self-signed or no match, if
|
||
|
* we were doing untrusted-first, and alt-chains are not disabled,
|
||
|
* do that, by repeatedly losing one untrusted element at a time,
|
||
|
* and trying to extend the shorted chain.
|
||
|
*/
|
||
|
if ((search & S_DOUNTRUSTED) == 0) {
|
||
|
/* Continue search for a trusted issuer of a shorter chain? */
|
||
|
if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0)
|
||
|
continue;
|
||
|
/* Still no luck and no fallbacks left? */
|
||
|
if (!may_alternate || (search & S_DOALTERNATE) != 0 ||
|
||
|
ctx->num_untrusted < 2)
|
||
|
break;
|
||
|
/* Search for a trusted issuer of a shorter chain */
|
||
|
search |= S_DOALTERNATE;
|
||
|
alt_untrusted = ctx->num_untrusted - 1;
|
||
|
ss = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Extend chain with peer-provided certificates
|
||
|
*/
|
||
|
if ((search & S_DOUNTRUSTED) != 0) {
|
||
|
num = sk_X509_num(ctx->chain);
|
||
|
if (!ossl_assert(num == ctx->num_untrusted)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
x = sk_X509_value(ctx->chain, num-1);
|
||
|
|
||
|
/*
|
||
|
* Once we run out of untrusted issuers, we stop looking for more
|
||
|
* and start looking only in the trust store if enabled.
|
||
|
*/
|
||
|
xtmp = (ss || depth < num) ? NULL : find_issuer(ctx, sktmp, x);
|
||
|
if (xtmp == NULL) {
|
||
|
search &= ~S_DOUNTRUSTED;
|
||
|
if (may_trusted)
|
||
|
search |= S_DOTRUSTED;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Drop this issuer from future consideration */
|
||
|
(void) sk_X509_delete_ptr(sktmp, xtmp);
|
||
|
|
||
|
if (!X509_up_ref(xtmp)) {
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_UNSPECIFIED;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!sk_X509_push(ctx->chain, xtmp)) {
|
||
|
X509_free(xtmp);
|
||
|
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
|
||
|
trust = X509_TRUST_REJECTED;
|
||
|
ctx->error = X509_V_ERR_OUT_OF_MEM;
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
x = xtmp;
|
||
|
++ctx->num_untrusted;
|
||
|
ss = cert_self_signed(xtmp);
|
||
|
|
||
|
/*
|
||
|
* Check for DANE-TA trust of the topmost untrusted certificate.
|
||
|
*/
|
||
|
switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) {
|
||
|
case X509_TRUST_TRUSTED:
|
||
|
case X509_TRUST_REJECTED:
|
||
|
search = 0;
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
sk_X509_free(sktmp);
|
||
|
|
||
|
/*
|
||
|
* Last chance to make a trusted chain, either bare DANE-TA public-key
|
||
|
* signers, or else direct leaf PKIX trust.
|
||
|
*/
|
||
|
num = sk_X509_num(ctx->chain);
|
||
|
if (num <= depth) {
|
||
|
if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane))
|
||
|
trust = check_dane_pkeys(ctx);
|
||
|
if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted)
|
||
|
trust = check_trust(ctx, num);
|
||
|
}
|
||
|
|
||
|
switch (trust) {
|
||
|
case X509_TRUST_TRUSTED:
|
||
|
return 1;
|
||
|
case X509_TRUST_REJECTED:
|
||
|
/* Callback already issued */
|
||
|
return 0;
|
||
|
case X509_TRUST_UNTRUSTED:
|
||
|
default:
|
||
|
num = sk_X509_num(ctx->chain);
|
||
|
if (num > depth)
|
||
|
return verify_cb_cert(ctx, NULL, num-1,
|
||
|
X509_V_ERR_CERT_CHAIN_TOO_LONG);
|
||
|
if (DANETLS_ENABLED(dane) &&
|
||
|
(!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0))
|
||
|
return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH);
|
||
|
if (ss && sk_X509_num(ctx->chain) == 1)
|
||
|
return verify_cb_cert(ctx, NULL, num-1,
|
||
|
X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT);
|
||
|
if (ss)
|
||
|
return verify_cb_cert(ctx, NULL, num-1,
|
||
|
X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN);
|
||
|
if (ctx->num_untrusted < num)
|
||
|
return verify_cb_cert(ctx, NULL, num-1,
|
||
|
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT);
|
||
|
return verify_cb_cert(ctx, NULL, num-1,
|
||
|
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const int minbits_table[] = { 80, 112, 128, 192, 256 };
|
||
|
static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table);
|
||
|
|
||
|
/*
|
||
|
* Check whether the public key of ``cert`` meets the security level of
|
||
|
* ``ctx``.
|
||
|
*
|
||
|
* Returns 1 on success, 0 otherwise.
|
||
|
*/
|
||
|
static int check_key_level(X509_STORE_CTX *ctx, X509 *cert)
|
||
|
{
|
||
|
EVP_PKEY *pkey = X509_get0_pubkey(cert);
|
||
|
int level = ctx->param->auth_level;
|
||
|
|
||
|
/*
|
||
|
* At security level zero, return without checking for a supported public
|
||
|
* key type. Some engines support key types not understood outside the
|
||
|
* engine, and we only need to understand the key when enforcing a security
|
||
|
* floor.
|
||
|
*/
|
||
|
if (level <= 0)
|
||
|
return 1;
|
||
|
|
||
|
/* Unsupported or malformed keys are not secure */
|
||
|
if (pkey == NULL)
|
||
|
return 0;
|
||
|
|
||
|
if (level > NUM_AUTH_LEVELS)
|
||
|
level = NUM_AUTH_LEVELS;
|
||
|
|
||
|
return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether the public key of ``cert`` does not use explicit params
|
||
|
* for an elliptic curve.
|
||
|
*
|
||
|
* Returns 1 on success, 0 if check fails, -1 for other errors.
|
||
|
*/
|
||
|
static int check_curve(X509 *cert)
|
||
|
{
|
||
|
#ifndef OPENSSL_NO_EC
|
||
|
EVP_PKEY *pkey = X509_get0_pubkey(cert);
|
||
|
|
||
|
/* Unsupported or malformed key */
|
||
|
if (pkey == NULL)
|
||
|
return -1;
|
||
|
|
||
|
if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) {
|
||
|
int ret;
|
||
|
|
||
|
ret = EC_KEY_decoded_from_explicit_params(EVP_PKEY_get0_EC_KEY(pkey));
|
||
|
return ret < 0 ? ret : !ret;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether the signature digest algorithm of ``cert`` meets the security
|
||
|
* level of ``ctx``. Should not be checked for trust anchors (whether
|
||
|
* self-signed or otherwise).
|
||
|
*
|
||
|
* Returns 1 on success, 0 otherwise.
|
||
|
*/
|
||
|
static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert)
|
||
|
{
|
||
|
int secbits = -1;
|
||
|
int level = ctx->param->auth_level;
|
||
|
|
||
|
if (level <= 0)
|
||
|
return 1;
|
||
|
if (level > NUM_AUTH_LEVELS)
|
||
|
level = NUM_AUTH_LEVELS;
|
||
|
|
||
|
if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL))
|
||
|
return 0;
|
||
|
|
||
|
return secbits >= minbits_table[level - 1];
|
||
|
}
|