970 lines
26 KiB
C
970 lines
26 KiB
C
|
/*
|
||
|
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
||
|
*
|
||
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
||
|
* this file except in compliance with the License. You can obtain a copy
|
||
|
* in the file LICENSE in the source distribution or at
|
||
|
* https://www.openssl.org/source/license.html
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <time.h>
|
||
|
#include "internal/cryptlib.h"
|
||
|
#include <openssl/opensslconf.h>
|
||
|
#include "crypto/rand.h"
|
||
|
#include <openssl/engine.h>
|
||
|
#include "internal/thread_once.h"
|
||
|
#include "rand_local.h"
|
||
|
#include "e_os.h"
|
||
|
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
/* non-NULL if default_RAND_meth is ENGINE-provided */
|
||
|
static ENGINE *funct_ref;
|
||
|
static CRYPTO_RWLOCK *rand_engine_lock;
|
||
|
#endif
|
||
|
static CRYPTO_RWLOCK *rand_meth_lock;
|
||
|
static const RAND_METHOD *default_RAND_meth;
|
||
|
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
|
||
|
|
||
|
static CRYPTO_RWLOCK *rand_nonce_lock;
|
||
|
static int rand_nonce_count;
|
||
|
|
||
|
static int rand_inited = 0;
|
||
|
|
||
|
#ifdef OPENSSL_RAND_SEED_RDTSC
|
||
|
/*
|
||
|
* IMPORTANT NOTE: It is not currently possible to use this code
|
||
|
* because we are not sure about the amount of randomness it provides.
|
||
|
* Some SP900 tests have been run, but there is internal skepticism.
|
||
|
* So for now this code is not used.
|
||
|
*/
|
||
|
# error "RDTSC enabled? Should not be possible!"
|
||
|
|
||
|
/*
|
||
|
* Acquire entropy from high-speed clock
|
||
|
*
|
||
|
* Since we get some randomness from the low-order bits of the
|
||
|
* high-speed clock, it can help.
|
||
|
*
|
||
|
* Returns the total entropy count, if it exceeds the requested
|
||
|
* entropy count. Otherwise, returns an entropy count of 0.
|
||
|
*/
|
||
|
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
|
||
|
{
|
||
|
unsigned char c;
|
||
|
int i;
|
||
|
|
||
|
if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
|
||
|
for (i = 0; i < TSC_READ_COUNT; i++) {
|
||
|
c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
|
||
|
rand_pool_add(pool, &c, 1, 4);
|
||
|
}
|
||
|
}
|
||
|
return rand_pool_entropy_available(pool);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef OPENSSL_RAND_SEED_RDCPU
|
||
|
size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
|
||
|
size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
|
||
|
|
||
|
extern unsigned int OPENSSL_ia32cap_P[];
|
||
|
|
||
|
/*
|
||
|
* Acquire entropy using Intel-specific cpu instructions
|
||
|
*
|
||
|
* Uses the RDSEED instruction if available, otherwise uses
|
||
|
* RDRAND if available.
|
||
|
*
|
||
|
* For the differences between RDSEED and RDRAND, and why RDSEED
|
||
|
* is the preferred choice, see https://goo.gl/oK3KcN
|
||
|
*
|
||
|
* Returns the total entropy count, if it exceeds the requested
|
||
|
* entropy count. Otherwise, returns an entropy count of 0.
|
||
|
*/
|
||
|
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
|
||
|
{
|
||
|
size_t bytes_needed;
|
||
|
unsigned char *buffer;
|
||
|
|
||
|
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
||
|
if (bytes_needed > 0) {
|
||
|
buffer = rand_pool_add_begin(pool, bytes_needed);
|
||
|
|
||
|
if (buffer != NULL) {
|
||
|
/* Whichever comes first, use RDSEED, RDRAND or nothing */
|
||
|
if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
|
||
|
if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
|
||
|
== bytes_needed) {
|
||
|
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
|
||
|
}
|
||
|
} else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
|
||
|
if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
|
||
|
== bytes_needed) {
|
||
|
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
|
||
|
}
|
||
|
} else {
|
||
|
rand_pool_add_end(pool, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return rand_pool_entropy_available(pool);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
|
||
|
*
|
||
|
* If the DRBG has a parent, then the required amount of entropy input
|
||
|
* is fetched using the parent's RAND_DRBG_generate().
|
||
|
*
|
||
|
* Otherwise, the entropy is polled from the system entropy sources
|
||
|
* using rand_pool_acquire_entropy().
|
||
|
*
|
||
|
* If a random pool has been added to the DRBG using RAND_add(), then
|
||
|
* its entropy will be used up first.
|
||
|
*/
|
||
|
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
|
||
|
unsigned char **pout,
|
||
|
int entropy, size_t min_len, size_t max_len,
|
||
|
int prediction_resistance)
|
||
|
{
|
||
|
size_t ret = 0;
|
||
|
size_t entropy_available = 0;
|
||
|
RAND_POOL *pool;
|
||
|
|
||
|
if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) {
|
||
|
/*
|
||
|
* We currently don't support the algorithm from NIST SP 800-90C
|
||
|
* 10.1.2 to use a weaker DRBG as source
|
||
|
*/
|
||
|
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (drbg->seed_pool != NULL) {
|
||
|
pool = drbg->seed_pool;
|
||
|
pool->entropy_requested = entropy;
|
||
|
} else {
|
||
|
pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
|
||
|
if (pool == NULL)
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (drbg->parent != NULL) {
|
||
|
size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
||
|
unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
|
||
|
|
||
|
if (buffer != NULL) {
|
||
|
size_t bytes = 0;
|
||
|
|
||
|
/*
|
||
|
* Get random data from parent. Include our address as additional input,
|
||
|
* in order to provide some additional distinction between different
|
||
|
* DRBG child instances.
|
||
|
* Our lock is already held, but we need to lock our parent before
|
||
|
* generating bits from it. (Note: taking the lock will be a no-op
|
||
|
* if locking if drbg->parent->lock == NULL.)
|
||
|
*/
|
||
|
rand_drbg_lock(drbg->parent);
|
||
|
if (RAND_DRBG_generate(drbg->parent,
|
||
|
buffer, bytes_needed,
|
||
|
prediction_resistance,
|
||
|
(unsigned char *)&drbg, sizeof(drbg)) != 0) {
|
||
|
bytes = bytes_needed;
|
||
|
if (drbg->enable_reseed_propagation)
|
||
|
tsan_store(&drbg->reseed_counter,
|
||
|
tsan_load(&drbg->parent->reseed_counter));
|
||
|
}
|
||
|
rand_drbg_unlock(drbg->parent);
|
||
|
|
||
|
rand_pool_add_end(pool, bytes, 8 * bytes);
|
||
|
entropy_available = rand_pool_entropy_available(pool);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
if (prediction_resistance) {
|
||
|
/*
|
||
|
* We don't have any entropy sources that comply with the NIST
|
||
|
* standard to provide prediction resistance (see NIST SP 800-90C,
|
||
|
* Section 5.4).
|
||
|
*/
|
||
|
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
|
||
|
RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* Get entropy by polling system entropy sources. */
|
||
|
entropy_available = rand_pool_acquire_entropy(pool);
|
||
|
}
|
||
|
|
||
|
if (entropy_available > 0) {
|
||
|
ret = rand_pool_length(pool);
|
||
|
*pout = rand_pool_detach(pool);
|
||
|
}
|
||
|
|
||
|
err:
|
||
|
if (drbg->seed_pool == NULL)
|
||
|
rand_pool_free(pool);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
|
||
|
*
|
||
|
*/
|
||
|
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
|
||
|
unsigned char *out, size_t outlen)
|
||
|
{
|
||
|
if (drbg->seed_pool == NULL) {
|
||
|
if (drbg->secure)
|
||
|
OPENSSL_secure_clear_free(out, outlen);
|
||
|
else
|
||
|
OPENSSL_clear_free(out, outlen);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
|
||
|
*
|
||
|
*/
|
||
|
size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
|
||
|
unsigned char **pout,
|
||
|
int entropy, size_t min_len, size_t max_len)
|
||
|
{
|
||
|
size_t ret = 0;
|
||
|
RAND_POOL *pool;
|
||
|
|
||
|
struct {
|
||
|
void * instance;
|
||
|
int count;
|
||
|
} data;
|
||
|
|
||
|
memset(&data, 0, sizeof(data));
|
||
|
pool = rand_pool_new(0, 0, min_len, max_len);
|
||
|
if (pool == NULL)
|
||
|
return 0;
|
||
|
|
||
|
if (rand_pool_add_nonce_data(pool) == 0)
|
||
|
goto err;
|
||
|
|
||
|
data.instance = drbg;
|
||
|
CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
|
||
|
|
||
|
if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
|
||
|
goto err;
|
||
|
|
||
|
ret = rand_pool_length(pool);
|
||
|
*pout = rand_pool_detach(pool);
|
||
|
|
||
|
err:
|
||
|
rand_pool_free(pool);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
|
||
|
*
|
||
|
*/
|
||
|
void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
|
||
|
unsigned char *out, size_t outlen)
|
||
|
{
|
||
|
OPENSSL_clear_free(out, outlen);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate additional data that can be used for the drbg. The data does
|
||
|
* not need to contain entropy, but it's useful if it contains at least
|
||
|
* some bits that are unpredictable.
|
||
|
*
|
||
|
* Returns 0 on failure.
|
||
|
*
|
||
|
* On success it allocates a buffer at |*pout| and returns the length of
|
||
|
* the data. The buffer should get freed using OPENSSL_secure_clear_free().
|
||
|
*/
|
||
|
size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
|
||
|
{
|
||
|
size_t ret = 0;
|
||
|
|
||
|
if (rand_pool_add_additional_data(pool) == 0)
|
||
|
goto err;
|
||
|
|
||
|
ret = rand_pool_length(pool);
|
||
|
*pout = rand_pool_detach(pool);
|
||
|
|
||
|
err:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
|
||
|
{
|
||
|
rand_pool_reattach(pool, out);
|
||
|
}
|
||
|
|
||
|
DEFINE_RUN_ONCE_STATIC(do_rand_init)
|
||
|
{
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
rand_engine_lock = CRYPTO_THREAD_lock_new();
|
||
|
if (rand_engine_lock == NULL)
|
||
|
return 0;
|
||
|
#endif
|
||
|
|
||
|
rand_meth_lock = CRYPTO_THREAD_lock_new();
|
||
|
if (rand_meth_lock == NULL)
|
||
|
goto err1;
|
||
|
|
||
|
rand_nonce_lock = CRYPTO_THREAD_lock_new();
|
||
|
if (rand_nonce_lock == NULL)
|
||
|
goto err2;
|
||
|
|
||
|
if (!rand_pool_init())
|
||
|
goto err3;
|
||
|
|
||
|
rand_inited = 1;
|
||
|
return 1;
|
||
|
|
||
|
err3:
|
||
|
CRYPTO_THREAD_lock_free(rand_nonce_lock);
|
||
|
rand_nonce_lock = NULL;
|
||
|
err2:
|
||
|
CRYPTO_THREAD_lock_free(rand_meth_lock);
|
||
|
rand_meth_lock = NULL;
|
||
|
err1:
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
CRYPTO_THREAD_lock_free(rand_engine_lock);
|
||
|
rand_engine_lock = NULL;
|
||
|
#endif
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void rand_cleanup_int(void)
|
||
|
{
|
||
|
const RAND_METHOD *meth = default_RAND_meth;
|
||
|
|
||
|
if (!rand_inited)
|
||
|
return;
|
||
|
|
||
|
if (meth != NULL && meth->cleanup != NULL)
|
||
|
meth->cleanup();
|
||
|
RAND_set_rand_method(NULL);
|
||
|
rand_pool_cleanup();
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
CRYPTO_THREAD_lock_free(rand_engine_lock);
|
||
|
rand_engine_lock = NULL;
|
||
|
#endif
|
||
|
CRYPTO_THREAD_lock_free(rand_meth_lock);
|
||
|
rand_meth_lock = NULL;
|
||
|
CRYPTO_THREAD_lock_free(rand_nonce_lock);
|
||
|
rand_nonce_lock = NULL;
|
||
|
rand_inited = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* RAND_close_seed_files() ensures that any seed file descriptors are
|
||
|
* closed after use.
|
||
|
*/
|
||
|
void RAND_keep_random_devices_open(int keep)
|
||
|
{
|
||
|
if (RUN_ONCE(&rand_init, do_rand_init))
|
||
|
rand_pool_keep_random_devices_open(keep);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* RAND_poll() reseeds the default RNG using random input
|
||
|
*
|
||
|
* The random input is obtained from polling various entropy
|
||
|
* sources which depend on the operating system and are
|
||
|
* configurable via the --with-rand-seed configure option.
|
||
|
*/
|
||
|
int RAND_poll(void)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
RAND_POOL *pool = NULL;
|
||
|
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
|
||
|
if (meth == NULL)
|
||
|
return 0;
|
||
|
|
||
|
if (meth == RAND_OpenSSL()) {
|
||
|
/* fill random pool and seed the master DRBG */
|
||
|
RAND_DRBG *drbg = RAND_DRBG_get0_master();
|
||
|
|
||
|
if (drbg == NULL)
|
||
|
return 0;
|
||
|
|
||
|
rand_drbg_lock(drbg);
|
||
|
ret = rand_drbg_restart(drbg, NULL, 0, 0);
|
||
|
rand_drbg_unlock(drbg);
|
||
|
|
||
|
return ret;
|
||
|
|
||
|
} else {
|
||
|
/* fill random pool and seed the current legacy RNG */
|
||
|
pool = rand_pool_new(RAND_DRBG_STRENGTH, 1,
|
||
|
(RAND_DRBG_STRENGTH + 7) / 8,
|
||
|
RAND_POOL_MAX_LENGTH);
|
||
|
if (pool == NULL)
|
||
|
return 0;
|
||
|
|
||
|
if (rand_pool_acquire_entropy(pool) == 0)
|
||
|
goto err;
|
||
|
|
||
|
if (meth->add == NULL
|
||
|
|| meth->add(rand_pool_buffer(pool),
|
||
|
rand_pool_length(pool),
|
||
|
(rand_pool_entropy(pool) / 8.0)) == 0)
|
||
|
goto err;
|
||
|
|
||
|
ret = 1;
|
||
|
}
|
||
|
|
||
|
err:
|
||
|
rand_pool_free(pool);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate memory and initialize a new random pool
|
||
|
*/
|
||
|
|
||
|
RAND_POOL *rand_pool_new(int entropy_requested, int secure,
|
||
|
size_t min_len, size_t max_len)
|
||
|
{
|
||
|
RAND_POOL *pool;
|
||
|
size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure);
|
||
|
|
||
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
||
|
return NULL;
|
||
|
|
||
|
pool = OPENSSL_zalloc(sizeof(*pool));
|
||
|
if (pool == NULL) {
|
||
|
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
pool->min_len = min_len;
|
||
|
pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
|
||
|
RAND_POOL_MAX_LENGTH : max_len;
|
||
|
pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len;
|
||
|
if (pool->alloc_len > pool->max_len)
|
||
|
pool->alloc_len = pool->max_len;
|
||
|
|
||
|
if (secure)
|
||
|
pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len);
|
||
|
else
|
||
|
pool->buffer = OPENSSL_zalloc(pool->alloc_len);
|
||
|
|
||
|
if (pool->buffer == NULL) {
|
||
|
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
pool->entropy_requested = entropy_requested;
|
||
|
pool->secure = secure;
|
||
|
|
||
|
return pool;
|
||
|
|
||
|
err:
|
||
|
OPENSSL_free(pool);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Attach new random pool to the given buffer
|
||
|
*
|
||
|
* This function is intended to be used only for feeding random data
|
||
|
* provided by RAND_add() and RAND_seed() into the <master> DRBG.
|
||
|
*/
|
||
|
RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
|
||
|
size_t entropy)
|
||
|
{
|
||
|
RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
|
||
|
|
||
|
if (pool == NULL) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The const needs to be cast away, but attached buffers will not be
|
||
|
* modified (in contrary to allocated buffers which are zeroed and
|
||
|
* freed in the end).
|
||
|
*/
|
||
|
pool->buffer = (unsigned char *) buffer;
|
||
|
pool->len = len;
|
||
|
|
||
|
pool->attached = 1;
|
||
|
|
||
|
pool->min_len = pool->max_len = pool->alloc_len = pool->len;
|
||
|
pool->entropy = entropy;
|
||
|
|
||
|
return pool;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free |pool|, securely erasing its buffer.
|
||
|
*/
|
||
|
void rand_pool_free(RAND_POOL *pool)
|
||
|
{
|
||
|
if (pool == NULL)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Although it would be advisable from a cryptographical viewpoint,
|
||
|
* we are not allowed to clear attached buffers, since they are passed
|
||
|
* to rand_pool_attach() as `const unsigned char*`.
|
||
|
* (see corresponding comment in rand_pool_attach()).
|
||
|
*/
|
||
|
if (!pool->attached) {
|
||
|
if (pool->secure)
|
||
|
OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
|
||
|
else
|
||
|
OPENSSL_clear_free(pool->buffer, pool->alloc_len);
|
||
|
}
|
||
|
|
||
|
OPENSSL_free(pool);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the |pool|'s buffer to the caller (readonly).
|
||
|
*/
|
||
|
const unsigned char *rand_pool_buffer(RAND_POOL *pool)
|
||
|
{
|
||
|
return pool->buffer;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the |pool|'s entropy to the caller.
|
||
|
*/
|
||
|
size_t rand_pool_entropy(RAND_POOL *pool)
|
||
|
{
|
||
|
return pool->entropy;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the |pool|'s buffer length to the caller.
|
||
|
*/
|
||
|
size_t rand_pool_length(RAND_POOL *pool)
|
||
|
{
|
||
|
return pool->len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Detach the |pool| buffer and return it to the caller.
|
||
|
* It's the responsibility of the caller to free the buffer
|
||
|
* using OPENSSL_secure_clear_free() or to re-attach it
|
||
|
* again to the pool using rand_pool_reattach().
|
||
|
*/
|
||
|
unsigned char *rand_pool_detach(RAND_POOL *pool)
|
||
|
{
|
||
|
unsigned char *ret = pool->buffer;
|
||
|
pool->buffer = NULL;
|
||
|
pool->entropy = 0;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Re-attach the |pool| buffer. It is only allowed to pass
|
||
|
* the |buffer| which was previously detached from the same pool.
|
||
|
*/
|
||
|
void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
|
||
|
{
|
||
|
pool->buffer = buffer;
|
||
|
OPENSSL_cleanse(pool->buffer, pool->len);
|
||
|
pool->len = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
|
||
|
* need to obtain at least |bits| bits of entropy?
|
||
|
*/
|
||
|
#define ENTROPY_TO_BYTES(bits, entropy_factor) \
|
||
|
(((bits) * (entropy_factor) + 7) / 8)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Checks whether the |pool|'s entropy is available to the caller.
|
||
|
* This is the case when entropy count and buffer length are high enough.
|
||
|
* Returns
|
||
|
*
|
||
|
* |entropy| if the entropy count and buffer size is large enough
|
||
|
* 0 otherwise
|
||
|
*/
|
||
|
size_t rand_pool_entropy_available(RAND_POOL *pool)
|
||
|
{
|
||
|
if (pool->entropy < pool->entropy_requested)
|
||
|
return 0;
|
||
|
|
||
|
if (pool->len < pool->min_len)
|
||
|
return 0;
|
||
|
|
||
|
return pool->entropy;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns the (remaining) amount of entropy needed to fill
|
||
|
* the random pool.
|
||
|
*/
|
||
|
|
||
|
size_t rand_pool_entropy_needed(RAND_POOL *pool)
|
||
|
{
|
||
|
if (pool->entropy < pool->entropy_requested)
|
||
|
return pool->entropy_requested - pool->entropy;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Increase the allocation size -- not usable for an attached pool */
|
||
|
static int rand_pool_grow(RAND_POOL *pool, size_t len)
|
||
|
{
|
||
|
if (len > pool->alloc_len - pool->len) {
|
||
|
unsigned char *p;
|
||
|
const size_t limit = pool->max_len / 2;
|
||
|
size_t newlen = pool->alloc_len;
|
||
|
|
||
|
if (pool->attached || len > pool->max_len - pool->len) {
|
||
|
RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
do
|
||
|
newlen = newlen < limit ? newlen * 2 : pool->max_len;
|
||
|
while (len > newlen - pool->len);
|
||
|
|
||
|
if (pool->secure)
|
||
|
p = OPENSSL_secure_zalloc(newlen);
|
||
|
else
|
||
|
p = OPENSSL_zalloc(newlen);
|
||
|
if (p == NULL) {
|
||
|
RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(p, pool->buffer, pool->len);
|
||
|
if (pool->secure)
|
||
|
OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
|
||
|
else
|
||
|
OPENSSL_clear_free(pool->buffer, pool->alloc_len);
|
||
|
pool->buffer = p;
|
||
|
pool->alloc_len = newlen;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns the number of bytes needed to fill the pool, assuming
|
||
|
* the input has 1 / |entropy_factor| entropy bits per data bit.
|
||
|
* In case of an error, 0 is returned.
|
||
|
*/
|
||
|
|
||
|
size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
|
||
|
{
|
||
|
size_t bytes_needed;
|
||
|
size_t entropy_needed = rand_pool_entropy_needed(pool);
|
||
|
|
||
|
if (entropy_factor < 1) {
|
||
|
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);
|
||
|
|
||
|
if (bytes_needed > pool->max_len - pool->len) {
|
||
|
/* not enough space left */
|
||
|
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (pool->len < pool->min_len &&
|
||
|
bytes_needed < pool->min_len - pool->len)
|
||
|
/* to meet the min_len requirement */
|
||
|
bytes_needed = pool->min_len - pool->len;
|
||
|
|
||
|
/*
|
||
|
* Make sure the buffer is large enough for the requested amount
|
||
|
* of data. This guarantees that existing code patterns where
|
||
|
* rand_pool_add_begin, rand_pool_add_end or rand_pool_add
|
||
|
* are used to collect entropy data without any error handling
|
||
|
* whatsoever, continue to be valid.
|
||
|
* Furthermore if the allocation here fails once, make sure that
|
||
|
* we don't fall back to a less secure or even blocking random source,
|
||
|
* as that could happen by the existing code patterns.
|
||
|
* This is not a concern for additional data, therefore that
|
||
|
* is not needed if rand_pool_grow fails in other places.
|
||
|
*/
|
||
|
if (!rand_pool_grow(pool, bytes_needed)) {
|
||
|
/* persistent error for this pool */
|
||
|
pool->max_len = pool->len = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return bytes_needed;
|
||
|
}
|
||
|
|
||
|
/* Returns the remaining number of bytes available */
|
||
|
size_t rand_pool_bytes_remaining(RAND_POOL *pool)
|
||
|
{
|
||
|
return pool->max_len - pool->len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add random bytes to the random pool.
|
||
|
*
|
||
|
* It is expected that the |buffer| contains |len| bytes of
|
||
|
* random input which contains at least |entropy| bits of
|
||
|
* randomness.
|
||
|
*
|
||
|
* Returns 1 if the added amount is adequate, otherwise 0
|
||
|
*/
|
||
|
int rand_pool_add(RAND_POOL *pool,
|
||
|
const unsigned char *buffer, size_t len, size_t entropy)
|
||
|
{
|
||
|
if (len > pool->max_len - pool->len) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (pool->buffer == NULL) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (len > 0) {
|
||
|
/*
|
||
|
* This is to protect us from accidentally passing the buffer
|
||
|
* returned from rand_pool_add_begin.
|
||
|
* The check for alloc_len makes sure we do not compare the
|
||
|
* address of the end of the allocated memory to something
|
||
|
* different, since that comparison would have an
|
||
|
* indeterminate result.
|
||
|
*/
|
||
|
if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
/*
|
||
|
* We have that only for cases when a pool is used to collect
|
||
|
* additional data.
|
||
|
* For entropy data, as long as the allocation request stays within
|
||
|
* the limits given by rand_pool_bytes_needed this rand_pool_grow
|
||
|
* below is guaranteed to succeed, thus no allocation happens.
|
||
|
*/
|
||
|
if (!rand_pool_grow(pool, len))
|
||
|
return 0;
|
||
|
memcpy(pool->buffer + pool->len, buffer, len);
|
||
|
pool->len += len;
|
||
|
pool->entropy += entropy;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Start to add random bytes to the random pool in-place.
|
||
|
*
|
||
|
* Reserves the next |len| bytes for adding random bytes in-place
|
||
|
* and returns a pointer to the buffer.
|
||
|
* The caller is allowed to copy up to |len| bytes into the buffer.
|
||
|
* If |len| == 0 this is considered a no-op and a NULL pointer
|
||
|
* is returned without producing an error message.
|
||
|
*
|
||
|
* After updating the buffer, rand_pool_add_end() needs to be called
|
||
|
* to finish the update operation (see next comment).
|
||
|
*/
|
||
|
unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
|
||
|
{
|
||
|
if (len == 0)
|
||
|
return NULL;
|
||
|
|
||
|
if (len > pool->max_len - pool->len) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (pool->buffer == NULL) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* As long as the allocation request stays within the limits given
|
||
|
* by rand_pool_bytes_needed this rand_pool_grow below is guaranteed
|
||
|
* to succeed, thus no allocation happens.
|
||
|
* We have that only for cases when a pool is used to collect
|
||
|
* additional data. Then the buffer might need to grow here,
|
||
|
* and of course the caller is responsible to check the return
|
||
|
* value of this function.
|
||
|
*/
|
||
|
if (!rand_pool_grow(pool, len))
|
||
|
return NULL;
|
||
|
|
||
|
return pool->buffer + pool->len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finish to add random bytes to the random pool in-place.
|
||
|
*
|
||
|
* Finishes an in-place update of the random pool started by
|
||
|
* rand_pool_add_begin() (see previous comment).
|
||
|
* It is expected that |len| bytes of random input have been added
|
||
|
* to the buffer which contain at least |entropy| bits of randomness.
|
||
|
* It is allowed to add less bytes than originally reserved.
|
||
|
*/
|
||
|
int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
|
||
|
{
|
||
|
if (len > pool->alloc_len - pool->len) {
|
||
|
RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (len > 0) {
|
||
|
pool->len += len;
|
||
|
pool->entropy += entropy;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int RAND_set_rand_method(const RAND_METHOD *meth)
|
||
|
{
|
||
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
||
|
return 0;
|
||
|
|
||
|
CRYPTO_THREAD_write_lock(rand_meth_lock);
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
ENGINE_finish(funct_ref);
|
||
|
funct_ref = NULL;
|
||
|
#endif
|
||
|
default_RAND_meth = meth;
|
||
|
CRYPTO_THREAD_unlock(rand_meth_lock);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
const RAND_METHOD *RAND_get_rand_method(void)
|
||
|
{
|
||
|
const RAND_METHOD *tmp_meth = NULL;
|
||
|
|
||
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
||
|
return NULL;
|
||
|
|
||
|
CRYPTO_THREAD_write_lock(rand_meth_lock);
|
||
|
if (default_RAND_meth == NULL) {
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
ENGINE *e;
|
||
|
|
||
|
/* If we have an engine that can do RAND, use it. */
|
||
|
if ((e = ENGINE_get_default_RAND()) != NULL
|
||
|
&& (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
|
||
|
funct_ref = e;
|
||
|
default_RAND_meth = tmp_meth;
|
||
|
} else {
|
||
|
ENGINE_finish(e);
|
||
|
default_RAND_meth = &rand_meth;
|
||
|
}
|
||
|
#else
|
||
|
default_RAND_meth = &rand_meth;
|
||
|
#endif
|
||
|
}
|
||
|
tmp_meth = default_RAND_meth;
|
||
|
CRYPTO_THREAD_unlock(rand_meth_lock);
|
||
|
return tmp_meth;
|
||
|
}
|
||
|
|
||
|
#ifndef OPENSSL_NO_ENGINE
|
||
|
int RAND_set_rand_engine(ENGINE *engine)
|
||
|
{
|
||
|
const RAND_METHOD *tmp_meth = NULL;
|
||
|
|
||
|
if (!RUN_ONCE(&rand_init, do_rand_init))
|
||
|
return 0;
|
||
|
|
||
|
if (engine != NULL) {
|
||
|
if (!ENGINE_init(engine))
|
||
|
return 0;
|
||
|
tmp_meth = ENGINE_get_RAND(engine);
|
||
|
if (tmp_meth == NULL) {
|
||
|
ENGINE_finish(engine);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
CRYPTO_THREAD_write_lock(rand_engine_lock);
|
||
|
/* This function releases any prior ENGINE so call it first */
|
||
|
RAND_set_rand_method(tmp_meth);
|
||
|
funct_ref = engine;
|
||
|
CRYPTO_THREAD_unlock(rand_engine_lock);
|
||
|
return 1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void RAND_seed(const void *buf, int num)
|
||
|
{
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
|
||
|
if (meth != NULL && meth->seed != NULL)
|
||
|
meth->seed(buf, num);
|
||
|
}
|
||
|
|
||
|
void RAND_add(const void *buf, int num, double randomness)
|
||
|
{
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
|
||
|
if (meth != NULL && meth->add != NULL)
|
||
|
meth->add(buf, num, randomness);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function is not part of RAND_METHOD, so if we're not using
|
||
|
* the default method, then just call RAND_bytes(). Otherwise make
|
||
|
* sure we're instantiated and use the private DRBG.
|
||
|
*/
|
||
|
int RAND_priv_bytes(unsigned char *buf, int num)
|
||
|
{
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
RAND_DRBG *drbg;
|
||
|
|
||
|
if (meth != NULL && meth != RAND_OpenSSL())
|
||
|
return RAND_bytes(buf, num);
|
||
|
|
||
|
drbg = RAND_DRBG_get0_private();
|
||
|
if (drbg != NULL)
|
||
|
return RAND_DRBG_bytes(drbg, buf, num);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int RAND_bytes(unsigned char *buf, int num)
|
||
|
{
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
|
||
|
if (meth != NULL && meth->bytes != NULL)
|
||
|
return meth->bytes(buf, num);
|
||
|
RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
#if OPENSSL_API_COMPAT < 0x10100000L
|
||
|
int RAND_pseudo_bytes(unsigned char *buf, int num)
|
||
|
{
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
|
||
|
if (meth != NULL && meth->pseudorand != NULL)
|
||
|
return meth->pseudorand(buf, num);
|
||
|
RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
|
||
|
return -1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
int RAND_status(void)
|
||
|
{
|
||
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
||
|
|
||
|
if (meth != NULL && meth->status != NULL)
|
||
|
return meth->status();
|
||
|
return 0;
|
||
|
}
|