1468 lines
53 KiB
C
1468 lines
53 KiB
C
|
/**
|
||
|
* FreeRDP: A Remote Desktop Protocol Implementation
|
||
|
* Optimized YUV/RGB conversion operations
|
||
|
*
|
||
|
* Copyright 2014 Thomas Erbesdobler
|
||
|
* Copyright 2016-2017 Armin Novak <armin.novak@thincast.com>
|
||
|
* Copyright 2016-2017 Norbert Federa <norbert.federa@thincast.com>
|
||
|
* Copyright 2016-2017 Thincast Technologies GmbH
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#include <winpr/sysinfo.h>
|
||
|
#include <winpr/crt.h>
|
||
|
#include <freerdp/types.h>
|
||
|
#include <freerdp/primitives.h>
|
||
|
|
||
|
#include "prim_internal.h"
|
||
|
|
||
|
#include <emmintrin.h>
|
||
|
#include <tmmintrin.h>
|
||
|
|
||
|
#if !defined(WITH_SSE2)
|
||
|
#error "This file needs WITH_SSE2 enabled!"
|
||
|
#endif
|
||
|
|
||
|
static primitives_t* generic = NULL;
|
||
|
|
||
|
/****************************************************************************/
|
||
|
/* SSSE3 YUV420 -> RGB conversion */
|
||
|
/****************************************************************************/
|
||
|
static __m128i* ssse3_YUV444Pixel(__m128i* dst, __m128i Yraw, __m128i Uraw, __m128i Vraw, UINT8 pos)
|
||
|
{
|
||
|
/* Visual Studio 2010 doesn't like _mm_set_epi32 in array initializer list */
|
||
|
/* Note: This also applies to Visual Studio 2013 before Update 4 */
|
||
|
#if !defined(_MSC_VER) || (_MSC_VER > 1600)
|
||
|
const __m128i mapY[] = { _mm_set_epi32(0x80800380, 0x80800280, 0x80800180, 0x80800080),
|
||
|
_mm_set_epi32(0x80800780, 0x80800680, 0x80800580, 0x80800480),
|
||
|
_mm_set_epi32(0x80800B80, 0x80800A80, 0x80800980, 0x80800880),
|
||
|
_mm_set_epi32(0x80800F80, 0x80800E80, 0x80800D80, 0x80800C80) };
|
||
|
const __m128i mapUV[] = { _mm_set_epi32(0x80038002, 0x80018000, 0x80808080, 0x80808080),
|
||
|
_mm_set_epi32(0x80078006, 0x80058004, 0x80808080, 0x80808080),
|
||
|
_mm_set_epi32(0x800B800A, 0x80098008, 0x80808080, 0x80808080),
|
||
|
_mm_set_epi32(0x800F800E, 0x800D800C, 0x80808080, 0x80808080) };
|
||
|
const __m128i mask[] = { _mm_set_epi32(0x80038080, 0x80028080, 0x80018080, 0x80008080),
|
||
|
_mm_set_epi32(0x80800380, 0x80800280, 0x80800180, 0x80800080),
|
||
|
_mm_set_epi32(0x80808003, 0x80808002, 0x80808001, 0x80808000) };
|
||
|
#else
|
||
|
/* Note: must be in little-endian format ! */
|
||
|
const __m128i mapY[] = { { 0x80, 0x00, 0x80, 0x80, 0x80, 0x01, 0x80, 0x80, 0x80, 0x02, 0x80,
|
||
|
0x80, 0x80, 0x03, 0x80, 0x80 },
|
||
|
{ 0x80, 0x04, 0x80, 0x80, 0x80, 0x05, 0x80, 0x80, 0x80, 0x06, 0x80,
|
||
|
0x80, 0x80, 0x07, 0x80, 0x80 },
|
||
|
{ 0x80, 0x08, 0x80, 0x80, 0x80, 0x09, 0x80, 0x80, 0x80, 0x0a, 0x80,
|
||
|
0x80, 0x80, 0x0b, 0x80, 0x80 },
|
||
|
{ 0x80, 0x0c, 0x80, 0x80, 0x80, 0x0d, 0x80, 0x80, 0x80, 0x0e, 0x80,
|
||
|
0x80, 0x80, 0x0f, 0x80, 0x80 }
|
||
|
|
||
|
};
|
||
|
const __m128i mapUV[] = { { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00, 0x80, 0x01,
|
||
|
0x80, 0x02, 0x80, 0x03, 0x80 },
|
||
|
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x04, 0x80, 0x05,
|
||
|
0x80, 0x06, 0x80, 0x07, 0x80 },
|
||
|
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x08, 0x80, 0x09,
|
||
|
0x80, 0x0a, 0x80, 0x0b, 0x80 },
|
||
|
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x0c, 0x80, 0x0d,
|
||
|
0x80, 0x0e, 0x80, 0x0f, 0x80 } };
|
||
|
const __m128i mask[] = { { 0x80, 0x80, 0x00, 0x80, 0x80, 0x80, 0x01, 0x80, 0x80, 0x80, 0x02,
|
||
|
0x80, 0x80, 0x80, 0x03, 0x80 },
|
||
|
{ 0x80, 0x00, 0x80, 0x80, 0x80, 0x01, 0x80, 0x80, 0x80, 0x02, 0x80,
|
||
|
0x80, 0x80, 0x03, 0x80, 0x80 },
|
||
|
{ 0x00, 0x80, 0x80, 0x80, 0x01, 0x80, 0x80, 0x80, 0x02, 0x80, 0x80,
|
||
|
0x80, 0x03, 0x80, 0x80, 0x80 } };
|
||
|
#endif
|
||
|
const __m128i c128 = _mm_set1_epi16(128);
|
||
|
__m128i BGRX = _mm_and_si128(_mm_loadu_si128(dst),
|
||
|
_mm_set_epi32(0xFF000000, 0xFF000000, 0xFF000000, 0xFF000000));
|
||
|
{
|
||
|
__m128i C, D, E;
|
||
|
/* Load Y values and expand to 32 bit */
|
||
|
{
|
||
|
C = _mm_shuffle_epi8(Yraw, mapY[pos]); /* Reorder and multiply by 256 */
|
||
|
}
|
||
|
/* Load U values and expand to 32 bit */
|
||
|
{
|
||
|
const __m128i U = _mm_shuffle_epi8(Uraw, mapUV[pos]); /* Reorder dcba */
|
||
|
D = _mm_sub_epi16(U, c128); /* D = U - 128 */
|
||
|
}
|
||
|
/* Load V values and expand to 32 bit */
|
||
|
{
|
||
|
const __m128i V = _mm_shuffle_epi8(Vraw, mapUV[pos]); /* Reorder dcba */
|
||
|
E = _mm_sub_epi16(V, c128); /* E = V - 128 */
|
||
|
}
|
||
|
/* Get the R value */
|
||
|
{
|
||
|
const __m128i c403 = _mm_set1_epi16(403);
|
||
|
const __m128i e403 =
|
||
|
_mm_unpackhi_epi16(_mm_mullo_epi16(E, c403), _mm_mulhi_epi16(E, c403));
|
||
|
const __m128i Rs = _mm_add_epi32(C, e403);
|
||
|
const __m128i R32 = _mm_srai_epi32(Rs, 8);
|
||
|
const __m128i R16 = _mm_packs_epi32(R32, _mm_setzero_si128());
|
||
|
const __m128i R = _mm_packus_epi16(R16, _mm_setzero_si128());
|
||
|
const __m128i packed = _mm_shuffle_epi8(R, mask[0]);
|
||
|
BGRX = _mm_or_si128(BGRX, packed);
|
||
|
}
|
||
|
/* Get the G value */
|
||
|
{
|
||
|
const __m128i c48 = _mm_set1_epi16(48);
|
||
|
const __m128i d48 =
|
||
|
_mm_unpackhi_epi16(_mm_mullo_epi16(D, c48), _mm_mulhi_epi16(D, c48));
|
||
|
const __m128i c120 = _mm_set1_epi16(120);
|
||
|
const __m128i e120 =
|
||
|
_mm_unpackhi_epi16(_mm_mullo_epi16(E, c120), _mm_mulhi_epi16(E, c120));
|
||
|
const __m128i de = _mm_add_epi32(d48, e120);
|
||
|
const __m128i Gs = _mm_sub_epi32(C, de);
|
||
|
const __m128i G32 = _mm_srai_epi32(Gs, 8);
|
||
|
const __m128i G16 = _mm_packs_epi32(G32, _mm_setzero_si128());
|
||
|
const __m128i G = _mm_packus_epi16(G16, _mm_setzero_si128());
|
||
|
const __m128i packed = _mm_shuffle_epi8(G, mask[1]);
|
||
|
BGRX = _mm_or_si128(BGRX, packed);
|
||
|
}
|
||
|
/* Get the B value */
|
||
|
{
|
||
|
const __m128i c475 = _mm_set1_epi16(475);
|
||
|
const __m128i d475 =
|
||
|
_mm_unpackhi_epi16(_mm_mullo_epi16(D, c475), _mm_mulhi_epi16(D, c475));
|
||
|
const __m128i Bs = _mm_add_epi32(C, d475);
|
||
|
const __m128i B32 = _mm_srai_epi32(Bs, 8);
|
||
|
const __m128i B16 = _mm_packs_epi32(B32, _mm_setzero_si128());
|
||
|
const __m128i B = _mm_packus_epi16(B16, _mm_setzero_si128());
|
||
|
const __m128i packed = _mm_shuffle_epi8(B, mask[2]);
|
||
|
BGRX = _mm_or_si128(BGRX, packed);
|
||
|
}
|
||
|
}
|
||
|
_mm_storeu_si128(dst++, BGRX);
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_YUV420ToRGB_BGRX(const BYTE* const* pSrc, const UINT32* srcStep, BYTE* pDst,
|
||
|
UINT32 dstStep, const prim_size_t* roi)
|
||
|
{
|
||
|
const UINT32 nWidth = roi->width;
|
||
|
const UINT32 nHeight = roi->height;
|
||
|
const UINT32 pad = roi->width % 16;
|
||
|
const __m128i duplicate = _mm_set_epi8(7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0);
|
||
|
UINT32 y;
|
||
|
|
||
|
for (y = 0; y < nHeight; y++)
|
||
|
{
|
||
|
UINT32 x;
|
||
|
__m128i* dst = (__m128i*)(pDst + dstStep * y);
|
||
|
const BYTE* YData = pSrc[0] + y * srcStep[0];
|
||
|
const BYTE* UData = pSrc[1] + (y / 2) * srcStep[1];
|
||
|
const BYTE* VData = pSrc[2] + (y / 2) * srcStep[2];
|
||
|
|
||
|
for (x = 0; x < nWidth - pad; x += 16)
|
||
|
{
|
||
|
const __m128i Y = _mm_loadu_si128((__m128i*)YData);
|
||
|
const __m128i uRaw = _mm_loadu_si128((__m128i*)UData);
|
||
|
const __m128i vRaw = _mm_loadu_si128((__m128i*)VData);
|
||
|
const __m128i U = _mm_shuffle_epi8(uRaw, duplicate);
|
||
|
const __m128i V = _mm_shuffle_epi8(vRaw, duplicate);
|
||
|
YData += 16;
|
||
|
UData += 8;
|
||
|
VData += 8;
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 0);
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 1);
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 2);
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 3);
|
||
|
}
|
||
|
|
||
|
for (x = 0; x < pad; x++)
|
||
|
{
|
||
|
const BYTE Y = *YData++;
|
||
|
const BYTE U = *UData;
|
||
|
const BYTE V = *VData;
|
||
|
const BYTE r = YUV2R(Y, U, V);
|
||
|
const BYTE g = YUV2G(Y, U, V);
|
||
|
const BYTE b = YUV2B(Y, U, V);
|
||
|
dst = (__m128i*)writePixelBGRX((BYTE*)dst, 4, PIXEL_FORMAT_BGRX32, r, g, b, 0);
|
||
|
|
||
|
if (x % 2)
|
||
|
{
|
||
|
UData++;
|
||
|
VData++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_YUV420ToRGB(const BYTE* const* pSrc, const UINT32* srcStep, BYTE* pDst,
|
||
|
UINT32 dstStep, UINT32 DstFormat, const prim_size_t* roi)
|
||
|
{
|
||
|
switch (DstFormat)
|
||
|
{
|
||
|
case PIXEL_FORMAT_BGRX32:
|
||
|
case PIXEL_FORMAT_BGRA32:
|
||
|
return ssse3_YUV420ToRGB_BGRX(pSrc, srcStep, pDst, dstStep, roi);
|
||
|
|
||
|
default:
|
||
|
return generic->YUV420ToRGB_8u_P3AC4R(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_YUV444ToRGB_8u_P3AC4R_BGRX(const BYTE* const* pSrc, const UINT32* srcStep,
|
||
|
BYTE* pDst, UINT32 dstStep,
|
||
|
const prim_size_t* roi)
|
||
|
{
|
||
|
const UINT32 nWidth = roi->width;
|
||
|
const UINT32 nHeight = roi->height;
|
||
|
const UINT32 pad = roi->width % 16;
|
||
|
UINT32 y;
|
||
|
|
||
|
for (y = 0; y < nHeight; y++)
|
||
|
{
|
||
|
UINT32 x;
|
||
|
__m128i* dst = (__m128i*)(pDst + dstStep * y);
|
||
|
const BYTE* YData = pSrc[0] + y * srcStep[0];
|
||
|
const BYTE* UData = pSrc[1] + y * srcStep[1];
|
||
|
const BYTE* VData = pSrc[2] + y * srcStep[2];
|
||
|
|
||
|
for (x = 0; x < nWidth - pad; x += 16)
|
||
|
{
|
||
|
__m128i Y = _mm_load_si128((__m128i*)YData);
|
||
|
__m128i U = _mm_load_si128((__m128i*)UData);
|
||
|
__m128i V = _mm_load_si128((__m128i*)VData);
|
||
|
YData += 16;
|
||
|
UData += 16;
|
||
|
VData += 16;
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 0);
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 1);
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 2);
|
||
|
dst = ssse3_YUV444Pixel(dst, Y, U, V, 3);
|
||
|
}
|
||
|
|
||
|
for (x = 0; x < pad; x++)
|
||
|
{
|
||
|
const BYTE Y = *YData++;
|
||
|
const BYTE U = *UData++;
|
||
|
const BYTE V = *VData++;
|
||
|
const BYTE r = YUV2R(Y, U, V);
|
||
|
const BYTE g = YUV2G(Y, U, V);
|
||
|
const BYTE b = YUV2B(Y, U, V);
|
||
|
dst = (__m128i*)writePixelBGRX((BYTE*)dst, 4, PIXEL_FORMAT_BGRX32, r, g, b, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_YUV444ToRGB_8u_P3AC4R(const BYTE* const* pSrc, const UINT32* srcStep,
|
||
|
BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
|
||
|
const prim_size_t* roi)
|
||
|
{
|
||
|
if ((unsigned long)pSrc[0] % 16 || (unsigned long)pSrc[1] % 16 || (unsigned long)pSrc[2] % 16 ||
|
||
|
srcStep[0] % 16 || srcStep[1] % 16 || srcStep[2] % 16)
|
||
|
return generic->YUV444ToRGB_8u_P3AC4R(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
|
||
|
|
||
|
switch (DstFormat)
|
||
|
{
|
||
|
case PIXEL_FORMAT_BGRX32:
|
||
|
case PIXEL_FORMAT_BGRA32:
|
||
|
return ssse3_YUV444ToRGB_8u_P3AC4R_BGRX(pSrc, srcStep, pDst, dstStep, roi);
|
||
|
|
||
|
default:
|
||
|
return generic->YUV444ToRGB_8u_P3AC4R(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/****************************************************************************/
|
||
|
/* SSSE3 RGB -> YUV420 conversion **/
|
||
|
/****************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* Note (nfedera):
|
||
|
* The used forward transformation factors from RGB to YUV are based on the
|
||
|
* values specified in [Rec. ITU-R BT.709-6] Section 3:
|
||
|
* http://www.itu.int/rec/R-REC-BT.709-6-201506-I/en
|
||
|
*
|
||
|
* Y = 0.21260 * R + 0.71520 * G + 0.07220 * B + 0;
|
||
|
* U = -0.11457 * R - 0.38543 * G + 0.50000 * B + 128;
|
||
|
* V = 0.50000 * R - 0.45415 * G - 0.04585 * B + 128;
|
||
|
*
|
||
|
* The most accurate integer arithmetic approximation when using 8-bit signed
|
||
|
* integer factors with 16-bit signed integer intermediate results is:
|
||
|
*
|
||
|
* Y = ( ( 27 * R + 92 * G + 9 * B) >> 7 );
|
||
|
* U = ( (-29 * R - 99 * G + 128 * B) >> 8 ) + 128;
|
||
|
* V = ( ( 128 * R - 116 * G - 12 * B) >> 8 ) + 128;
|
||
|
*
|
||
|
* Due to signed 8bit range being [-128,127] the U and V constants of 128 are
|
||
|
* rounded to 127
|
||
|
*/
|
||
|
|
||
|
#define BGRX_Y_FACTORS _mm_set_epi8(0, 27, 92, 9, 0, 27, 92, 9, 0, 27, 92, 9, 0, 27, 92, 9)
|
||
|
#define BGRX_U_FACTORS \
|
||
|
_mm_set_epi8(0, -29, -99, 127, 0, -29, -99, 127, 0, -29, -99, 127, 0, -29, -99, 127)
|
||
|
#define BGRX_V_FACTORS \
|
||
|
_mm_set_epi8(0, 127, -116, -12, 0, 127, -116, -12, 0, 127, -116, -12, 0, 127, -116, -12)
|
||
|
#define CONST128_FACTORS _mm_set1_epi8(-128)
|
||
|
|
||
|
#define Y_SHIFT 7
|
||
|
#define U_SHIFT 8
|
||
|
#define V_SHIFT 8
|
||
|
|
||
|
/*
|
||
|
TODO:
|
||
|
RGB[AX] can simply be supported using the following factors. And instead of loading the
|
||
|
globals directly the functions below could be passed pointers to the correct vectors
|
||
|
depending on the source picture format.
|
||
|
|
||
|
PRIM_ALIGN_128 static const BYTE rgbx_y_factors[] = {
|
||
|
27, 92, 9, 0, 27, 92, 9, 0, 27, 92, 9, 0, 27, 92, 9, 0
|
||
|
};
|
||
|
PRIM_ALIGN_128 static const BYTE rgbx_u_factors[] = {
|
||
|
-15, -49, 64, 0, -15, -49, 64, 0, -15, -49, 64, 0, -15, -49, 64, 0
|
||
|
};
|
||
|
PRIM_ALIGN_128 static const BYTE rgbx_v_factors[] = {
|
||
|
64, -58, -6, 0, 64, -58, -6, 0, 64, -58, -6, 0, 64, -58, -6, 0
|
||
|
};
|
||
|
*/
|
||
|
|
||
|
/* compute the luma (Y) component from a single rgb source line */
|
||
|
|
||
|
static INLINE void ssse3_RGBToYUV420_BGRX_Y(const BYTE* src, BYTE* dst, UINT32 width)
|
||
|
{
|
||
|
UINT32 x;
|
||
|
__m128i x0, x1, x2, x3;
|
||
|
const __m128i y_factors = BGRX_Y_FACTORS;
|
||
|
const __m128i* argb = (const __m128i*)src;
|
||
|
__m128i* ydst = (__m128i*)dst;
|
||
|
|
||
|
for (x = 0; x < width; x += 16)
|
||
|
{
|
||
|
/* store 16 rgba pixels in 4 128 bit registers */
|
||
|
x0 = _mm_load_si128(argb++); // 1st 4 pixels
|
||
|
x1 = _mm_load_si128(argb++); // 2nd 4 pixels
|
||
|
x2 = _mm_load_si128(argb++); // 3rd 4 pixels
|
||
|
x3 = _mm_load_si128(argb++); // 4th 4 pixels
|
||
|
/* multiplications and subtotals */
|
||
|
x0 = _mm_maddubs_epi16(x0, y_factors);
|
||
|
x1 = _mm_maddubs_epi16(x1, y_factors);
|
||
|
x2 = _mm_maddubs_epi16(x2, y_factors);
|
||
|
x3 = _mm_maddubs_epi16(x3, y_factors);
|
||
|
/* the total sums */
|
||
|
x0 = _mm_hadd_epi16(x0, x1);
|
||
|
x2 = _mm_hadd_epi16(x2, x3);
|
||
|
/* shift the results */
|
||
|
x0 = _mm_srli_epi16(x0, Y_SHIFT);
|
||
|
x2 = _mm_srli_epi16(x2, Y_SHIFT);
|
||
|
/* pack the 16 words into bytes */
|
||
|
x0 = _mm_packus_epi16(x0, x2);
|
||
|
/* save to y plane */
|
||
|
_mm_storeu_si128(ydst++, x0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* compute the chrominance (UV) components from two rgb source lines */
|
||
|
|
||
|
static INLINE void ssse3_RGBToYUV420_BGRX_UV(const BYTE* src1, const BYTE* src2, BYTE* dst1,
|
||
|
BYTE* dst2, UINT32 width)
|
||
|
{
|
||
|
UINT32 x;
|
||
|
const __m128i u_factors = BGRX_U_FACTORS;
|
||
|
const __m128i v_factors = BGRX_V_FACTORS;
|
||
|
const __m128i vector128 = CONST128_FACTORS;
|
||
|
__m128i x0, x1, x2, x3, x4, x5;
|
||
|
const __m128i* rgb1 = (const __m128i*)src1;
|
||
|
const __m128i* rgb2 = (const __m128i*)src2;
|
||
|
__m64* udst = (__m64*)dst1;
|
||
|
__m64* vdst = (__m64*)dst2;
|
||
|
|
||
|
for (x = 0; x < width; x += 16)
|
||
|
{
|
||
|
/* subsample 16x2 pixels into 16x1 pixels */
|
||
|
x0 = _mm_load_si128(rgb1++);
|
||
|
x4 = _mm_load_si128(rgb2++);
|
||
|
x0 = _mm_avg_epu8(x0, x4);
|
||
|
x1 = _mm_load_si128(rgb1++);
|
||
|
x4 = _mm_load_si128(rgb2++);
|
||
|
x1 = _mm_avg_epu8(x1, x4);
|
||
|
x2 = _mm_load_si128(rgb1++);
|
||
|
x4 = _mm_load_si128(rgb2++);
|
||
|
x2 = _mm_avg_epu8(x2, x4);
|
||
|
x3 = _mm_load_si128(rgb1++);
|
||
|
x4 = _mm_load_si128(rgb2++);
|
||
|
x3 = _mm_avg_epu8(x3, x4);
|
||
|
/* subsample these 16x1 pixels into 8x1 pixels */
|
||
|
/**
|
||
|
* shuffle controls
|
||
|
* c = a[0],a[2],b[0],b[2] == 10 00 10 00 = 0x88
|
||
|
* c = a[1],a[3],b[1],b[3] == 11 01 11 01 = 0xdd
|
||
|
*/
|
||
|
x4 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(x0), _mm_castsi128_ps(x1), 0x88));
|
||
|
x0 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(x0), _mm_castsi128_ps(x1), 0xdd));
|
||
|
x0 = _mm_avg_epu8(x0, x4);
|
||
|
x4 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(x2), _mm_castsi128_ps(x3), 0x88));
|
||
|
x1 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(x2), _mm_castsi128_ps(x3), 0xdd));
|
||
|
x1 = _mm_avg_epu8(x1, x4);
|
||
|
/* multiplications and subtotals */
|
||
|
x2 = _mm_maddubs_epi16(x0, u_factors);
|
||
|
x3 = _mm_maddubs_epi16(x1, u_factors);
|
||
|
x4 = _mm_maddubs_epi16(x0, v_factors);
|
||
|
x5 = _mm_maddubs_epi16(x1, v_factors);
|
||
|
/* the total sums */
|
||
|
x0 = _mm_hadd_epi16(x2, x3);
|
||
|
x1 = _mm_hadd_epi16(x4, x5);
|
||
|
/* shift the results */
|
||
|
x0 = _mm_srai_epi16(x0, U_SHIFT);
|
||
|
x1 = _mm_srai_epi16(x1, V_SHIFT);
|
||
|
/* pack the 16 words into bytes */
|
||
|
x0 = _mm_packs_epi16(x0, x1);
|
||
|
/* add 128 */
|
||
|
x0 = _mm_sub_epi8(x0, vector128);
|
||
|
/* the lower 8 bytes go to the u plane */
|
||
|
_mm_storel_pi(udst++, _mm_castsi128_ps(x0));
|
||
|
/* the upper 8 bytes go to the v plane */
|
||
|
_mm_storeh_pi(vdst++, _mm_castsi128_ps(x0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_RGBToYUV420_BGRX(const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
|
||
|
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
|
||
|
{
|
||
|
UINT32 y;
|
||
|
const BYTE* argb = pSrc;
|
||
|
BYTE* ydst = pDst[0];
|
||
|
BYTE* udst = pDst[1];
|
||
|
BYTE* vdst = pDst[2];
|
||
|
|
||
|
if (roi->height < 1 || roi->width < 1)
|
||
|
{
|
||
|
return !PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
if (roi->width % 16 || (unsigned long)pSrc % 16 || srcStep % 16)
|
||
|
{
|
||
|
return generic->RGBToYUV420_8u_P3AC4R(pSrc, srcFormat, srcStep, pDst, dstStep, roi);
|
||
|
}
|
||
|
|
||
|
for (y = 0; y < roi->height - 1; y += 2)
|
||
|
{
|
||
|
const BYTE* line1 = argb;
|
||
|
const BYTE* line2 = argb + srcStep;
|
||
|
ssse3_RGBToYUV420_BGRX_UV(line1, line2, udst, vdst, roi->width);
|
||
|
ssse3_RGBToYUV420_BGRX_Y(line1, ydst, roi->width);
|
||
|
ssse3_RGBToYUV420_BGRX_Y(line2, ydst + dstStep[0], roi->width);
|
||
|
argb += 2 * srcStep;
|
||
|
ydst += 2 * dstStep[0];
|
||
|
udst += 1 * dstStep[1];
|
||
|
vdst += 1 * dstStep[2];
|
||
|
}
|
||
|
|
||
|
if (roi->height & 1)
|
||
|
{
|
||
|
/* pass the same last line of an odd height twice for UV */
|
||
|
ssse3_RGBToYUV420_BGRX_UV(argb, argb, udst, vdst, roi->width);
|
||
|
ssse3_RGBToYUV420_BGRX_Y(argb, ydst, roi->width);
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_RGBToYUV420(const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
|
||
|
BYTE* pDst[3], UINT32 dstStep[3], const prim_size_t* roi)
|
||
|
{
|
||
|
switch (srcFormat)
|
||
|
{
|
||
|
case PIXEL_FORMAT_BGRX32:
|
||
|
case PIXEL_FORMAT_BGRA32:
|
||
|
return ssse3_RGBToYUV420_BGRX(pSrc, srcFormat, srcStep, pDst, dstStep, roi);
|
||
|
|
||
|
default:
|
||
|
return generic->RGBToYUV420_8u_P3AC4R(pSrc, srcFormat, srcStep, pDst, dstStep, roi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/****************************************************************************/
|
||
|
/* SSSE3 RGB -> AVC444-YUV conversion **/
|
||
|
/****************************************************************************/
|
||
|
|
||
|
static INLINE void ssse3_RGBToAVC444YUV_BGRX_DOUBLE_ROW(const BYTE* srcEven, const BYTE* srcOdd,
|
||
|
BYTE* b1Even, BYTE* b1Odd, BYTE* b2,
|
||
|
BYTE* b3, BYTE* b4, BYTE* b5, BYTE* b6,
|
||
|
BYTE* b7, UINT32 width)
|
||
|
{
|
||
|
UINT32 x;
|
||
|
const __m128i* argbEven = (const __m128i*)srcEven;
|
||
|
const __m128i* argbOdd = (const __m128i*)srcOdd;
|
||
|
const __m128i y_factors = BGRX_Y_FACTORS;
|
||
|
const __m128i u_factors = BGRX_U_FACTORS;
|
||
|
const __m128i v_factors = BGRX_V_FACTORS;
|
||
|
const __m128i vector128 = CONST128_FACTORS;
|
||
|
|
||
|
for (x = 0; x < width; x += 16)
|
||
|
{
|
||
|
/* store 16 rgba pixels in 4 128 bit registers */
|
||
|
const __m128i xe1 = _mm_load_si128(argbEven++); // 1st 4 pixels
|
||
|
const __m128i xe2 = _mm_load_si128(argbEven++); // 2nd 4 pixels
|
||
|
const __m128i xe3 = _mm_load_si128(argbEven++); // 3rd 4 pixels
|
||
|
const __m128i xe4 = _mm_load_si128(argbEven++); // 4th 4 pixels
|
||
|
const __m128i xo1 = _mm_load_si128(argbOdd++); // 1st 4 pixels
|
||
|
const __m128i xo2 = _mm_load_si128(argbOdd++); // 2nd 4 pixels
|
||
|
const __m128i xo3 = _mm_load_si128(argbOdd++); // 3rd 4 pixels
|
||
|
const __m128i xo4 = _mm_load_si128(argbOdd++); // 4th 4 pixels
|
||
|
{
|
||
|
/* Y: multiplications with subtotals and horizontal sums */
|
||
|
const __m128i ye1 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe1, y_factors),
|
||
|
_mm_maddubs_epi16(xe2, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i ye2 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe3, y_factors),
|
||
|
_mm_maddubs_epi16(xe4, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i ye = _mm_packus_epi16(ye1, ye2);
|
||
|
const __m128i yo1 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo1, y_factors),
|
||
|
_mm_maddubs_epi16(xo2, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i yo2 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo3, y_factors),
|
||
|
_mm_maddubs_epi16(xo4, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i yo = _mm_packus_epi16(yo1, yo2);
|
||
|
/* store y [b1] */
|
||
|
_mm_storeu_si128((__m128i*)b1Even, ye);
|
||
|
b1Even += 16;
|
||
|
|
||
|
if (b1Odd)
|
||
|
{
|
||
|
_mm_storeu_si128((__m128i*)b1Odd, yo);
|
||
|
b1Odd += 16;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
/* We have now
|
||
|
* 16 even U values in ue
|
||
|
* 16 odd U values in uo
|
||
|
*
|
||
|
* We need to split these according to
|
||
|
* 3.3.8.3.2 YUV420p Stream Combination for YUV444 mode */
|
||
|
__m128i ue, uo;
|
||
|
{
|
||
|
const __m128i ue1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe1, u_factors),
|
||
|
_mm_maddubs_epi16(xe2, u_factors)),
|
||
|
U_SHIFT);
|
||
|
const __m128i ue2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe3, u_factors),
|
||
|
_mm_maddubs_epi16(xe4, u_factors)),
|
||
|
U_SHIFT);
|
||
|
ue = _mm_sub_epi8(_mm_packs_epi16(ue1, ue2), vector128);
|
||
|
}
|
||
|
|
||
|
if (b1Odd)
|
||
|
{
|
||
|
const __m128i uo1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo1, u_factors),
|
||
|
_mm_maddubs_epi16(xo2, u_factors)),
|
||
|
U_SHIFT);
|
||
|
const __m128i uo2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo3, u_factors),
|
||
|
_mm_maddubs_epi16(xo4, u_factors)),
|
||
|
U_SHIFT);
|
||
|
uo = _mm_sub_epi8(_mm_packs_epi16(uo1, uo2), vector128);
|
||
|
}
|
||
|
|
||
|
/* Now we need the following storage distribution:
|
||
|
* 2x 2y -> b2
|
||
|
* x 2y+1 -> b4
|
||
|
* 2x+1 2y -> b6 */
|
||
|
if (b1Odd) /* b2 */
|
||
|
{
|
||
|
const __m128i ueh = _mm_unpackhi_epi8(ue, _mm_setzero_si128());
|
||
|
const __m128i uoh = _mm_unpackhi_epi8(uo, _mm_setzero_si128());
|
||
|
const __m128i hi = _mm_add_epi16(ueh, uoh);
|
||
|
const __m128i uel = _mm_unpacklo_epi8(ue, _mm_setzero_si128());
|
||
|
const __m128i uol = _mm_unpacklo_epi8(uo, _mm_setzero_si128());
|
||
|
const __m128i lo = _mm_add_epi16(uel, uol);
|
||
|
const __m128i added = _mm_hadd_epi16(lo, hi);
|
||
|
const __m128i avg16 = _mm_srai_epi16(added, 2);
|
||
|
const __m128i avg = _mm_packus_epi16(avg16, avg16);
|
||
|
_mm_storel_epi64((__m128i*)b2, avg);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
14, 12, 10, 8, 6, 4, 2, 0);
|
||
|
const __m128i ud = _mm_shuffle_epi8(ue, mask);
|
||
|
_mm_storel_epi64((__m128i*)b2, ud);
|
||
|
}
|
||
|
|
||
|
b2 += 8;
|
||
|
|
||
|
if (b1Odd) /* b4 */
|
||
|
{
|
||
|
_mm_store_si128((__m128i*)b4, uo);
|
||
|
b4 += 16;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
/* b6 */
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
15, 13, 11, 9, 7, 5, 3, 1);
|
||
|
const __m128i ude = _mm_shuffle_epi8(ue, mask);
|
||
|
_mm_storel_epi64((__m128i*)b6, ude);
|
||
|
b6 += 8;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
/* We have now
|
||
|
* 16 even V values in ue
|
||
|
* 16 odd V values in uo
|
||
|
*
|
||
|
* We need to split these according to
|
||
|
* 3.3.8.3.2 YUV420p Stream Combination for YUV444 mode */
|
||
|
__m128i ve, vo;
|
||
|
{
|
||
|
const __m128i ve1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe1, v_factors),
|
||
|
_mm_maddubs_epi16(xe2, v_factors)),
|
||
|
V_SHIFT);
|
||
|
const __m128i ve2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe3, v_factors),
|
||
|
_mm_maddubs_epi16(xe4, v_factors)),
|
||
|
V_SHIFT);
|
||
|
ve = _mm_sub_epi8(_mm_packs_epi16(ve1, ve2), vector128);
|
||
|
}
|
||
|
|
||
|
if (b1Odd)
|
||
|
{
|
||
|
const __m128i vo1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo1, v_factors),
|
||
|
_mm_maddubs_epi16(xo2, v_factors)),
|
||
|
V_SHIFT);
|
||
|
const __m128i vo2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo3, v_factors),
|
||
|
_mm_maddubs_epi16(xo4, v_factors)),
|
||
|
V_SHIFT);
|
||
|
vo = _mm_sub_epi8(_mm_packs_epi16(vo1, vo2), vector128);
|
||
|
}
|
||
|
|
||
|
/* Now we need the following storage distribution:
|
||
|
* 2x 2y -> b3
|
||
|
* x 2y+1 -> b5
|
||
|
* 2x+1 2y -> b7 */
|
||
|
if (b1Odd) /* b3 */
|
||
|
{
|
||
|
const __m128i veh = _mm_unpackhi_epi8(ve, _mm_setzero_si128());
|
||
|
const __m128i voh = _mm_unpackhi_epi8(vo, _mm_setzero_si128());
|
||
|
const __m128i hi = _mm_add_epi16(veh, voh);
|
||
|
const __m128i vel = _mm_unpacklo_epi8(ve, _mm_setzero_si128());
|
||
|
const __m128i vol = _mm_unpacklo_epi8(vo, _mm_setzero_si128());
|
||
|
const __m128i lo = _mm_add_epi16(vel, vol);
|
||
|
const __m128i added = _mm_hadd_epi16(lo, hi);
|
||
|
const __m128i avg16 = _mm_srai_epi16(added, 2);
|
||
|
const __m128i avg = _mm_packus_epi16(avg16, avg16);
|
||
|
_mm_storel_epi64((__m128i*)b3, avg);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
14, 12, 10, 8, 6, 4, 2, 0);
|
||
|
const __m128i vd = _mm_shuffle_epi8(ve, mask);
|
||
|
_mm_storel_epi64((__m128i*)b3, vd);
|
||
|
}
|
||
|
|
||
|
b3 += 8;
|
||
|
|
||
|
if (b1Odd) /* b5 */
|
||
|
{
|
||
|
_mm_store_si128((__m128i*)b5, vo);
|
||
|
b5 += 16;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
/* b7 */
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
15, 13, 11, 9, 7, 5, 3, 1);
|
||
|
const __m128i vde = _mm_shuffle_epi8(ve, mask);
|
||
|
_mm_storel_epi64((__m128i*)b7, vde);
|
||
|
b7 += 8;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_RGBToAVC444YUV_BGRX(const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
|
||
|
BYTE* pDst1[3], const UINT32 dst1Step[3], BYTE* pDst2[3],
|
||
|
const UINT32 dst2Step[3], const prim_size_t* roi)
|
||
|
{
|
||
|
UINT32 y;
|
||
|
const BYTE* pMaxSrc = pSrc + (roi->height - 1) * srcStep;
|
||
|
|
||
|
if (roi->height < 1 || roi->width < 1)
|
||
|
return !PRIMITIVES_SUCCESS;
|
||
|
|
||
|
if (roi->width % 16 || (unsigned long)pSrc % 16 || srcStep % 16)
|
||
|
return generic->RGBToAVC444YUV(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2, dst2Step,
|
||
|
roi);
|
||
|
|
||
|
for (y = 0; y < roi->height; y += 2)
|
||
|
{
|
||
|
const BOOL last = (y >= (roi->height - 1));
|
||
|
const BYTE* srcEven = y < roi->height ? pSrc + y * srcStep : pMaxSrc;
|
||
|
const BYTE* srcOdd = !last ? pSrc + (y + 1) * srcStep : pMaxSrc;
|
||
|
const UINT32 i = y >> 1;
|
||
|
const UINT32 n = (i & ~7) + i;
|
||
|
BYTE* b1Even = pDst1[0] + y * dst1Step[0];
|
||
|
BYTE* b1Odd = !last ? (b1Even + dst1Step[0]) : NULL;
|
||
|
BYTE* b2 = pDst1[1] + (y / 2) * dst1Step[1];
|
||
|
BYTE* b3 = pDst1[2] + (y / 2) * dst1Step[2];
|
||
|
BYTE* b4 = pDst2[0] + dst2Step[0] * n;
|
||
|
BYTE* b5 = b4 + 8 * dst2Step[0];
|
||
|
BYTE* b6 = pDst2[1] + (y / 2) * dst2Step[1];
|
||
|
BYTE* b7 = pDst2[2] + (y / 2) * dst2Step[2];
|
||
|
ssse3_RGBToAVC444YUV_BGRX_DOUBLE_ROW(srcEven, srcOdd, b1Even, b1Odd, b2, b3, b4, b5, b6, b7,
|
||
|
roi->width);
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_RGBToAVC444YUV(const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
|
||
|
BYTE* pDst1[3], const UINT32 dst1Step[3], BYTE* pDst2[3],
|
||
|
const UINT32 dst2Step[3], const prim_size_t* roi)
|
||
|
{
|
||
|
switch (srcFormat)
|
||
|
{
|
||
|
case PIXEL_FORMAT_BGRX32:
|
||
|
case PIXEL_FORMAT_BGRA32:
|
||
|
return ssse3_RGBToAVC444YUV_BGRX(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2,
|
||
|
dst2Step, roi);
|
||
|
|
||
|
default:
|
||
|
return generic->RGBToAVC444YUV(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2,
|
||
|
dst2Step, roi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Mapping of arguments:
|
||
|
*
|
||
|
* b1 [even lines] -> yLumaDstEven
|
||
|
* b1 [odd lines] -> yLumaDstOdd
|
||
|
* b2 -> uLumaDst
|
||
|
* b3 -> vLumaDst
|
||
|
* b4 -> yChromaDst1
|
||
|
* b5 -> yChromaDst2
|
||
|
* b6 -> uChromaDst1
|
||
|
* b7 -> uChromaDst2
|
||
|
* b8 -> vChromaDst1
|
||
|
* b9 -> vChromaDst2
|
||
|
*/
|
||
|
static INLINE void ssse3_RGBToAVC444YUVv2_BGRX_DOUBLE_ROW(
|
||
|
const BYTE* srcEven, const BYTE* srcOdd, BYTE* yLumaDstEven, BYTE* yLumaDstOdd, BYTE* uLumaDst,
|
||
|
BYTE* vLumaDst, BYTE* yEvenChromaDst1, BYTE* yEvenChromaDst2, BYTE* yOddChromaDst1,
|
||
|
BYTE* yOddChromaDst2, BYTE* uChromaDst1, BYTE* uChromaDst2, BYTE* vChromaDst1,
|
||
|
BYTE* vChromaDst2, UINT32 width)
|
||
|
{
|
||
|
UINT32 x;
|
||
|
const __m128i vector128 = CONST128_FACTORS;
|
||
|
const __m128i* argbEven = (const __m128i*)srcEven;
|
||
|
const __m128i* argbOdd = (const __m128i*)srcOdd;
|
||
|
|
||
|
for (x = 0; x < width; x += 16)
|
||
|
{
|
||
|
/* store 16 rgba pixels in 4 128 bit registers
|
||
|
* for even and odd rows.
|
||
|
*/
|
||
|
const __m128i xe1 = _mm_load_si128(argbEven++); /* 1st 4 pixels */
|
||
|
const __m128i xe2 = _mm_load_si128(argbEven++); /* 2nd 4 pixels */
|
||
|
const __m128i xe3 = _mm_load_si128(argbEven++); /* 3rd 4 pixels */
|
||
|
const __m128i xe4 = _mm_load_si128(argbEven++); /* 4th 4 pixels */
|
||
|
const __m128i xo1 = _mm_load_si128(argbOdd++); /* 1st 4 pixels */
|
||
|
const __m128i xo2 = _mm_load_si128(argbOdd++); /* 2nd 4 pixels */
|
||
|
const __m128i xo3 = _mm_load_si128(argbOdd++); /* 3rd 4 pixels */
|
||
|
const __m128i xo4 = _mm_load_si128(argbOdd++); /* 4th 4 pixels */
|
||
|
{
|
||
|
/* Y: multiplications with subtotals and horizontal sums */
|
||
|
const __m128i y_factors = BGRX_Y_FACTORS;
|
||
|
const __m128i ye1 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe1, y_factors),
|
||
|
_mm_maddubs_epi16(xe2, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i ye2 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe3, y_factors),
|
||
|
_mm_maddubs_epi16(xe4, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i ye = _mm_packus_epi16(ye1, ye2);
|
||
|
/* store y [b1] */
|
||
|
_mm_storeu_si128((__m128i*)yLumaDstEven, ye);
|
||
|
yLumaDstEven += 16;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
const __m128i y_factors = BGRX_Y_FACTORS;
|
||
|
const __m128i yo1 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo1, y_factors),
|
||
|
_mm_maddubs_epi16(xo2, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i yo2 = _mm_srli_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo3, y_factors),
|
||
|
_mm_maddubs_epi16(xo4, y_factors)),
|
||
|
Y_SHIFT);
|
||
|
const __m128i yo = _mm_packus_epi16(yo1, yo2);
|
||
|
_mm_storeu_si128((__m128i*)yLumaDstOdd, yo);
|
||
|
yLumaDstOdd += 16;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
/* We have now
|
||
|
* 16 even U values in ue
|
||
|
* 16 odd U values in uo
|
||
|
*
|
||
|
* We need to split these according to
|
||
|
* 3.3.8.3.3 YUV420p Stream Combination for YUV444v2 mode */
|
||
|
/* U: multiplications with subtotals and horizontal sums */
|
||
|
__m128i ue, uo, uavg;
|
||
|
{
|
||
|
const __m128i u_factors = BGRX_U_FACTORS;
|
||
|
const __m128i ue1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe1, u_factors),
|
||
|
_mm_maddubs_epi16(xe2, u_factors)),
|
||
|
U_SHIFT);
|
||
|
const __m128i ue2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe3, u_factors),
|
||
|
_mm_maddubs_epi16(xe4, u_factors)),
|
||
|
U_SHIFT);
|
||
|
const __m128i ueavg = _mm_hadd_epi16(ue1, ue2);
|
||
|
ue = _mm_sub_epi8(_mm_packs_epi16(ue1, ue2), vector128);
|
||
|
uavg = ueavg;
|
||
|
}
|
||
|
{
|
||
|
const __m128i u_factors = BGRX_U_FACTORS;
|
||
|
const __m128i uo1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo1, u_factors),
|
||
|
_mm_maddubs_epi16(xo2, u_factors)),
|
||
|
U_SHIFT);
|
||
|
const __m128i uo2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo3, u_factors),
|
||
|
_mm_maddubs_epi16(xo4, u_factors)),
|
||
|
U_SHIFT);
|
||
|
const __m128i uoavg = _mm_hadd_epi16(uo1, uo2);
|
||
|
uo = _mm_sub_epi8(_mm_packs_epi16(uo1, uo2), vector128);
|
||
|
uavg = _mm_add_epi16(uavg, uoavg);
|
||
|
uavg = _mm_srai_epi16(uavg, 2);
|
||
|
uavg = _mm_packs_epi16(uavg, uoavg);
|
||
|
uavg = _mm_sub_epi8(uavg, vector128);
|
||
|
}
|
||
|
/* Now we need the following storage distribution:
|
||
|
* 2x 2y -> uLumaDst
|
||
|
* 2x+1 y -> yChromaDst1
|
||
|
* 4x 2y+1 -> uChromaDst1
|
||
|
* 4x+2 2y+1 -> vChromaDst1 */
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
15, 13, 11, 9, 7, 5, 3, 1);
|
||
|
const __m128i ude = _mm_shuffle_epi8(ue, mask);
|
||
|
_mm_storel_epi64((__m128i*)yEvenChromaDst1, ude);
|
||
|
yEvenChromaDst1 += 8;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
15, 13, 11, 9, 7, 5, 3, 1);
|
||
|
const __m128i udo = _mm_shuffle_epi8(uo, mask);
|
||
|
_mm_storel_epi64((__m128i*)yOddChromaDst1, udo);
|
||
|
yOddChromaDst1 += 8;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
14, 10, 6, 2, 12, 8, 4, 0);
|
||
|
const __m128i ud = _mm_shuffle_epi8(uo, mask);
|
||
|
int* uDst1 = (int*)uChromaDst1;
|
||
|
int* vDst1 = (int*)vChromaDst1;
|
||
|
const int* src = (const int*)&ud;
|
||
|
_mm_stream_si32(uDst1, src[0]);
|
||
|
_mm_stream_si32(vDst1, src[1]);
|
||
|
uChromaDst1 += 4;
|
||
|
vChromaDst1 += 4;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
_mm_storel_epi64((__m128i*)uLumaDst, uavg);
|
||
|
uLumaDst += 8;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
14, 12, 10, 8, 6, 4, 2, 0);
|
||
|
const __m128i ud = _mm_shuffle_epi8(ue, mask);
|
||
|
_mm_storel_epi64((__m128i*)uLumaDst, ud);
|
||
|
uLumaDst += 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
/* V: multiplications with subtotals and horizontal sums */
|
||
|
__m128i ve, vo, vavg;
|
||
|
{
|
||
|
const __m128i v_factors = BGRX_V_FACTORS;
|
||
|
const __m128i ve1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe1, v_factors),
|
||
|
_mm_maddubs_epi16(xe2, v_factors)),
|
||
|
V_SHIFT);
|
||
|
const __m128i ve2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xe3, v_factors),
|
||
|
_mm_maddubs_epi16(xe4, v_factors)),
|
||
|
V_SHIFT);
|
||
|
const __m128i veavg = _mm_hadd_epi16(ve1, ve2);
|
||
|
ve = _mm_sub_epi8(_mm_packs_epi16(ve1, ve2), vector128);
|
||
|
vavg = veavg;
|
||
|
}
|
||
|
{
|
||
|
const __m128i v_factors = BGRX_V_FACTORS;
|
||
|
const __m128i vo1 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo1, v_factors),
|
||
|
_mm_maddubs_epi16(xo2, v_factors)),
|
||
|
V_SHIFT);
|
||
|
const __m128i vo2 =
|
||
|
_mm_srai_epi16(_mm_hadd_epi16(_mm_maddubs_epi16(xo3, v_factors),
|
||
|
_mm_maddubs_epi16(xo4, v_factors)),
|
||
|
V_SHIFT);
|
||
|
const __m128i voavg = _mm_hadd_epi16(vo1, vo2);
|
||
|
vo = _mm_sub_epi8(_mm_packs_epi16(vo1, vo2), vector128);
|
||
|
vavg = _mm_add_epi16(vavg, voavg);
|
||
|
vavg = _mm_srai_epi16(vavg, 2);
|
||
|
vavg = _mm_packs_epi16(vavg, voavg);
|
||
|
vavg = _mm_sub_epi8(vavg, vector128);
|
||
|
}
|
||
|
/* Now we need the following storage distribution:
|
||
|
* 2x 2y -> vLumaDst
|
||
|
* 2x+1 y -> yChromaDst2
|
||
|
* 4x 2y+1 -> uChromaDst2
|
||
|
* 4x+2 2y+1 -> vChromaDst2 */
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
15, 13, 11, 9, 7, 5, 3, 1);
|
||
|
__m128i vde = _mm_shuffle_epi8(ve, mask);
|
||
|
_mm_storel_epi64((__m128i*)yEvenChromaDst2, vde);
|
||
|
yEvenChromaDst2 += 8;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
15, 13, 11, 9, 7, 5, 3, 1);
|
||
|
__m128i vdo = _mm_shuffle_epi8(vo, mask);
|
||
|
_mm_storel_epi64((__m128i*)yOddChromaDst2, vdo);
|
||
|
yOddChromaDst2 += 8;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
14, 10, 6, 2, 12, 8, 4, 0);
|
||
|
const __m128i vd = _mm_shuffle_epi8(vo, mask);
|
||
|
int* uDst2 = (int*)uChromaDst2;
|
||
|
int* vDst2 = (int*)vChromaDst2;
|
||
|
const int* src = (const int*)&vd;
|
||
|
_mm_stream_si32(uDst2, src[0]);
|
||
|
_mm_stream_si32(vDst2, src[1]);
|
||
|
uChromaDst2 += 4;
|
||
|
vChromaDst2 += 4;
|
||
|
}
|
||
|
|
||
|
if (yLumaDstOdd)
|
||
|
{
|
||
|
_mm_storel_epi64((__m128i*)vLumaDst, vavg);
|
||
|
vLumaDst += 8;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const __m128i mask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||
|
14, 12, 10, 8, 6, 4, 2, 0);
|
||
|
__m128i vd = _mm_shuffle_epi8(ve, mask);
|
||
|
_mm_storel_epi64((__m128i*)vLumaDst, vd);
|
||
|
vLumaDst += 8;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_RGBToAVC444YUVv2_BGRX(const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
|
||
|
BYTE* pDst1[3], const UINT32 dst1Step[3],
|
||
|
BYTE* pDst2[3], const UINT32 dst2Step[3],
|
||
|
const prim_size_t* roi)
|
||
|
{
|
||
|
UINT32 y;
|
||
|
|
||
|
if (roi->height < 1 || roi->width < 1)
|
||
|
return !PRIMITIVES_SUCCESS;
|
||
|
|
||
|
if (roi->width % 16 || (unsigned long)pSrc % 16 || srcStep % 16)
|
||
|
return generic->RGBToAVC444YUVv2(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2, dst2Step,
|
||
|
roi);
|
||
|
|
||
|
for (y = 0; y < roi->height; y += 2)
|
||
|
{
|
||
|
const BYTE* srcEven = (pSrc + y * srcStep);
|
||
|
const BYTE* srcOdd = (srcEven + srcStep);
|
||
|
BYTE* dstLumaYEven = (pDst1[0] + y * dst1Step[0]);
|
||
|
BYTE* dstLumaYOdd = (y < roi->height - 1) ? (dstLumaYEven + dst1Step[0]) : NULL;
|
||
|
BYTE* dstLumaU = (pDst1[1] + (y / 2) * dst1Step[1]);
|
||
|
BYTE* dstLumaV = (pDst1[2] + (y / 2) * dst1Step[2]);
|
||
|
BYTE* dstEvenChromaY1 = (pDst2[0] + y * dst2Step[0]);
|
||
|
BYTE* dstEvenChromaY2 = dstEvenChromaY1 + roi->width / 2;
|
||
|
BYTE* dstOddChromaY1 = dstEvenChromaY1 + dst2Step[0];
|
||
|
BYTE* dstOddChromaY2 = dstEvenChromaY2 + dst2Step[0];
|
||
|
BYTE* dstChromaU1 = (pDst2[1] + (y / 2) * dst2Step[1]);
|
||
|
BYTE* dstChromaV1 = (pDst2[2] + (y / 2) * dst2Step[2]);
|
||
|
BYTE* dstChromaU2 = dstChromaU1 + roi->width / 4;
|
||
|
BYTE* dstChromaV2 = dstChromaV1 + roi->width / 4;
|
||
|
ssse3_RGBToAVC444YUVv2_BGRX_DOUBLE_ROW(srcEven, srcOdd, dstLumaYEven, dstLumaYOdd, dstLumaU,
|
||
|
dstLumaV, dstEvenChromaY1, dstEvenChromaY2,
|
||
|
dstOddChromaY1, dstOddChromaY2, dstChromaU1,
|
||
|
dstChromaU2, dstChromaV1, dstChromaV2, roi->width);
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_RGBToAVC444YUVv2(const BYTE* pSrc, UINT32 srcFormat, UINT32 srcStep,
|
||
|
BYTE* pDst1[3], const UINT32 dst1Step[3], BYTE* pDst2[3],
|
||
|
const UINT32 dst2Step[3], const prim_size_t* roi)
|
||
|
{
|
||
|
switch (srcFormat)
|
||
|
{
|
||
|
case PIXEL_FORMAT_BGRX32:
|
||
|
case PIXEL_FORMAT_BGRA32:
|
||
|
return ssse3_RGBToAVC444YUVv2_BGRX(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2,
|
||
|
dst2Step, roi);
|
||
|
|
||
|
default:
|
||
|
return generic->RGBToAVC444YUVv2(pSrc, srcFormat, srcStep, pDst1, dst1Step, pDst2,
|
||
|
dst2Step, roi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_LumaToYUV444(const BYTE* const pSrcRaw[3], const UINT32 srcStep[3],
|
||
|
BYTE* pDstRaw[3], const UINT32 dstStep[3],
|
||
|
const RECTANGLE_16* roi)
|
||
|
{
|
||
|
UINT32 x, y;
|
||
|
const UINT32 nWidth = roi->right - roi->left;
|
||
|
const UINT32 nHeight = roi->bottom - roi->top;
|
||
|
const UINT32 halfWidth = (nWidth + 1) / 2;
|
||
|
const UINT32 halfPad = halfWidth % 16;
|
||
|
const UINT32 halfHeight = (nHeight + 1) / 2;
|
||
|
const UINT32 oddY = 1;
|
||
|
const UINT32 evenY = 0;
|
||
|
const UINT32 oddX = 1;
|
||
|
const UINT32 evenX = 0;
|
||
|
const BYTE* pSrc[3] = { pSrcRaw[0] + roi->top * srcStep[0] + roi->left,
|
||
|
pSrcRaw[1] + roi->top / 2 * srcStep[1] + roi->left / 2,
|
||
|
pSrcRaw[2] + roi->top / 2 * srcStep[2] + roi->left / 2 };
|
||
|
BYTE* pDst[3] = { pDstRaw[0] + roi->top * dstStep[0] + roi->left,
|
||
|
pDstRaw[1] + roi->top * dstStep[1] + roi->left,
|
||
|
pDstRaw[2] + roi->top * dstStep[2] + roi->left };
|
||
|
|
||
|
/* Y data is already here... */
|
||
|
/* B1 */
|
||
|
for (y = 0; y < nHeight; y++)
|
||
|
{
|
||
|
const BYTE* Ym = pSrc[0] + srcStep[0] * y;
|
||
|
BYTE* pY = pDst[0] + dstStep[0] * y;
|
||
|
memcpy(pY, Ym, nWidth);
|
||
|
}
|
||
|
|
||
|
/* The first half of U, V are already here part of this frame. */
|
||
|
/* B2 and B3 */
|
||
|
for (y = 0; y < halfHeight; y++)
|
||
|
{
|
||
|
const UINT32 val2y = (2 * y + evenY);
|
||
|
const UINT32 val2y1 = val2y + oddY;
|
||
|
const BYTE* Um = pSrc[1] + srcStep[1] * y;
|
||
|
const BYTE* Vm = pSrc[2] + srcStep[2] * y;
|
||
|
BYTE* pU = pDst[1] + dstStep[1] * val2y;
|
||
|
BYTE* pV = pDst[2] + dstStep[2] * val2y;
|
||
|
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
|
||
|
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
|
||
|
|
||
|
for (x = 0; x < halfWidth - halfPad; x += 16)
|
||
|
{
|
||
|
const __m128i unpackHigh = _mm_set_epi8(7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0);
|
||
|
const __m128i unpackLow =
|
||
|
_mm_set_epi8(15, 15, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8);
|
||
|
{
|
||
|
const __m128i u = _mm_loadu_si128((__m128i*)&Um[x]);
|
||
|
const __m128i uHigh = _mm_shuffle_epi8(u, unpackHigh);
|
||
|
const __m128i uLow = _mm_shuffle_epi8(u, unpackLow);
|
||
|
_mm_storeu_si128((__m128i*)&pU[2 * x], uHigh);
|
||
|
_mm_storeu_si128((__m128i*)&pU[2 * x + 16], uLow);
|
||
|
_mm_storeu_si128((__m128i*)&pU1[2 * x], uHigh);
|
||
|
_mm_storeu_si128((__m128i*)&pU1[2 * x + 16], uLow);
|
||
|
}
|
||
|
{
|
||
|
const __m128i u = _mm_loadu_si128((__m128i*)&Vm[x]);
|
||
|
const __m128i uHigh = _mm_shuffle_epi8(u, unpackHigh);
|
||
|
const __m128i uLow = _mm_shuffle_epi8(u, unpackLow);
|
||
|
_mm_storeu_si128((__m128i*)&pV[2 * x], uHigh);
|
||
|
_mm_storeu_si128((__m128i*)&pV[2 * x + 16], uLow);
|
||
|
_mm_storeu_si128((__m128i*)&pV1[2 * x], uHigh);
|
||
|
_mm_storeu_si128((__m128i*)&pV1[2 * x + 16], uLow);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (; x < halfWidth; x++)
|
||
|
{
|
||
|
const UINT32 val2x = 2 * x + evenX;
|
||
|
const UINT32 val2x1 = val2x + oddX;
|
||
|
pU[val2x] = Um[x];
|
||
|
pV[val2x] = Vm[x];
|
||
|
pU[val2x1] = Um[x];
|
||
|
pV[val2x1] = Vm[x];
|
||
|
pU1[val2x] = Um[x];
|
||
|
pV1[val2x] = Vm[x];
|
||
|
pU1[val2x1] = Um[x];
|
||
|
pV1[val2x1] = Vm[x];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static INLINE void ssse3_filter(BYTE* pSrcDst, const BYTE* pSrc2)
|
||
|
{
|
||
|
const __m128i even =
|
||
|
_mm_set_epi8(0x80, 14, 0x80, 12, 0x80, 10, 0x80, 8, 0x80, 6, 0x80, 4, 0x80, 2, 0x80, 0);
|
||
|
const __m128i odd =
|
||
|
_mm_set_epi8(0x80, 15, 0x80, 13, 0x80, 11, 0x80, 9, 0x80, 7, 0x80, 5, 0x80, 3, 0x80, 1);
|
||
|
const __m128i interleave = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
|
||
|
const __m128i u = _mm_loadu_si128((__m128i*)pSrcDst);
|
||
|
const __m128i u1 = _mm_loadu_si128((__m128i*)pSrc2);
|
||
|
const __m128i uEven = _mm_shuffle_epi8(u, even);
|
||
|
const __m128i uEven4 = _mm_slli_epi16(uEven, 2);
|
||
|
const __m128i uOdd = _mm_shuffle_epi8(u, odd);
|
||
|
const __m128i u1Even = _mm_shuffle_epi8(u1, even);
|
||
|
const __m128i u1Odd = _mm_shuffle_epi8(u1, odd);
|
||
|
const __m128i tmp1 = _mm_add_epi16(uOdd, u1Even);
|
||
|
const __m128i tmp2 = _mm_add_epi16(tmp1, u1Odd);
|
||
|
const __m128i result = _mm_sub_epi16(uEven4, tmp2);
|
||
|
const __m128i packed = _mm_packus_epi16(result, uOdd);
|
||
|
const __m128i interleaved = _mm_shuffle_epi8(packed, interleave);
|
||
|
_mm_storeu_si128((__m128i*)pSrcDst, interleaved);
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_ChromaFilter(BYTE* pDst[3], const UINT32 dstStep[3], const RECTANGLE_16* roi)
|
||
|
{
|
||
|
const UINT32 oddY = 1;
|
||
|
const UINT32 evenY = 0;
|
||
|
const UINT32 nWidth = roi->right - roi->left;
|
||
|
const UINT32 nHeight = roi->bottom - roi->top;
|
||
|
const UINT32 halfHeight = (nHeight + 1) / 2;
|
||
|
const UINT32 halfWidth = (nWidth + 1) / 2;
|
||
|
const UINT32 halfPad = halfWidth % 16;
|
||
|
UINT32 x, y;
|
||
|
|
||
|
/* Filter */
|
||
|
for (y = roi->top; y < halfHeight + roi->top; y++)
|
||
|
{
|
||
|
const UINT32 val2y = (y * 2 + evenY);
|
||
|
const UINT32 val2y1 = val2y + oddY;
|
||
|
BYTE* pU1 = pDst[1] + dstStep[1] * val2y1;
|
||
|
BYTE* pV1 = pDst[2] + dstStep[2] * val2y1;
|
||
|
BYTE* pU = pDst[1] + dstStep[1] * val2y;
|
||
|
BYTE* pV = pDst[2] + dstStep[2] * val2y;
|
||
|
|
||
|
if (val2y1 > nHeight)
|
||
|
continue;
|
||
|
|
||
|
for (x = roi->left; x < halfWidth + roi->left - halfPad; x += 16)
|
||
|
{
|
||
|
ssse3_filter(&pU[2 * x], &pU1[2 * x]);
|
||
|
ssse3_filter(&pV[2 * x], &pV1[2 * x]);
|
||
|
}
|
||
|
|
||
|
for (; x < halfWidth + roi->left; x++)
|
||
|
{
|
||
|
const UINT32 val2x = (x * 2);
|
||
|
const UINT32 val2x1 = val2x + 1;
|
||
|
const INT32 up = pU[val2x] * 4;
|
||
|
const INT32 vp = pV[val2x] * 4;
|
||
|
INT32 u2020;
|
||
|
INT32 v2020;
|
||
|
|
||
|
if (val2x1 > nWidth)
|
||
|
continue;
|
||
|
|
||
|
u2020 = up - pU[val2x1] - pU1[val2x] - pU1[val2x1];
|
||
|
v2020 = vp - pV[val2x1] - pV1[val2x] - pV1[val2x1];
|
||
|
pU[val2x] = CLIP(u2020);
|
||
|
pV[val2x] = CLIP(v2020);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return PRIMITIVES_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_ChromaV1ToYUV444(const BYTE* const pSrcRaw[3], const UINT32 srcStep[3],
|
||
|
BYTE* pDstRaw[3], const UINT32 dstStep[3],
|
||
|
const RECTANGLE_16* roi)
|
||
|
{
|
||
|
const UINT32 mod = 16;
|
||
|
UINT32 uY = 0;
|
||
|
UINT32 vY = 0;
|
||
|
UINT32 x, y;
|
||
|
const UINT32 nWidth = roi->right - roi->left;
|
||
|
const UINT32 nHeight = roi->bottom - roi->top;
|
||
|
const UINT32 halfWidth = (nWidth + 1) / 2;
|
||
|
const UINT32 halfPad = halfWidth % 16;
|
||
|
const UINT32 halfHeight = (nHeight + 1) / 2;
|
||
|
const UINT32 oddY = 1;
|
||
|
const UINT32 evenY = 0;
|
||
|
const UINT32 oddX = 1;
|
||
|
/* The auxilary frame is aligned to multiples of 16x16.
|
||
|
* We need the padded height for B4 and B5 conversion. */
|
||
|
const UINT32 padHeigth = nHeight + 16 - nHeight % 16;
|
||
|
const BYTE* pSrc[3] = { pSrcRaw[0] + roi->top * srcStep[0] + roi->left,
|
||
|
pSrcRaw[1] + roi->top / 2 * srcStep[1] + roi->left / 2,
|
||
|
pSrcRaw[2] + roi->top / 2 * srcStep[2] + roi->left / 2 };
|
||
|
BYTE* pDst[3] = { pDstRaw[0] + roi->top * dstStep[0] + roi->left,
|
||
|
pDstRaw[1] + roi->top * dstStep[1] + roi->left,
|
||
|
pDstRaw[2] + roi->top * dstStep[2] + roi->left };
|
||
|
const __m128i zero = _mm_setzero_si128();
|
||
|
const __m128i mask =
|
||
|
_mm_set_epi8(0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80);
|
||
|
|
||
|
/* The second half of U and V is a bit more tricky... */
|
||
|
/* B4 and B5 */
|
||
|
for (y = 0; y < padHeigth; y++)
|
||
|
{
|
||
|
const BYTE* Ya = pSrc[0] + srcStep[0] * y;
|
||
|
BYTE* pX;
|
||
|
|
||
|
if ((y) % mod < (mod + 1) / 2)
|
||
|
{
|
||
|
const UINT32 pos = (2 * uY++ + oddY);
|
||
|
|
||
|
if (pos >= nHeight)
|
||
|
continue;
|
||
|
|
||
|
pX = pDst[1] + dstStep[1] * pos;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const UINT32 pos = (2 * vY++ + oddY);
|
||
|
|
||
|
if (pos >= nHeight)
|
||
|
continue;
|
||
|
|
||
|
pX = pDst[2] + dstStep[2] * pos;
|
||
|
}
|
||
|
|
||
|
memcpy(pX, Ya, nWidth);
|
||
|
}
|
||
|
|
||
|
/* B6 and B7 */
|
||
|
for (y = 0; y < halfHeight; y++)
|
||
|
{
|
||
|
const UINT32 val2y = (y * 2 + evenY);
|
||
|
const BYTE* Ua = pSrc[1] + srcStep[1] * y;
|
||
|
const BYTE* Va = pSrc[2] + srcStep[2] * y;
|
||
|
BYTE* pU = pDst[1] + dstStep[1] * val2y;
|
||
|
BYTE* pV = pDst[2] + dstStep[2] * val2y;
|
||
|
|
||
|
for (x = 0; x < halfWidth - halfPad; x += 16)
|
||
|
{
|
||
|
{
|
||
|
const __m128i u = _mm_loadu_si128((__m128i*)&Ua[x]);
|
||
|
const __m128i u2 = _mm_unpackhi_epi8(u, zero);
|
||
|
const __m128i u1 = _mm_unpacklo_epi8(u, zero);
|
||
|
_mm_maskmoveu_si128(u1, mask, (char*)&pU[2 * x]);
|
||
|
_mm_maskmoveu_si128(u2, mask, (char*)&pU[2 * x + 16]);
|
||
|
}
|
||
|
{
|
||
|
const __m128i u = _mm_loadu_si128((__m128i*)&Va[x]);
|
||
|
const __m128i u2 = _mm_unpackhi_epi8(u, zero);
|
||
|
const __m128i u1 = _mm_unpacklo_epi8(u, zero);
|
||
|
_mm_maskmoveu_si128(u1, mask, (char*)&pV[2 * x]);
|
||
|
_mm_maskmoveu_si128(u2, mask, (char*)&pV[2 * x + 16]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (; x < halfWidth; x++)
|
||
|
{
|
||
|
const UINT32 val2x1 = (x * 2 + oddX);
|
||
|
pU[val2x1] = Ua[x];
|
||
|
pV[val2x1] = Va[x];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Filter */
|
||
|
return ssse3_ChromaFilter(pDst, dstStep, roi);
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_ChromaV2ToYUV444(const BYTE* const pSrc[3], const UINT32 srcStep[3],
|
||
|
UINT32 nTotalWidth, UINT32 nTotalHeight, BYTE* pDst[3],
|
||
|
const UINT32 dstStep[3], const RECTANGLE_16* roi)
|
||
|
{
|
||
|
UINT32 x, y;
|
||
|
const UINT32 nWidth = roi->right - roi->left;
|
||
|
const UINT32 nHeight = roi->bottom - roi->top;
|
||
|
const UINT32 halfWidth = (nWidth + 1) / 2;
|
||
|
const UINT32 halfPad = halfWidth % 16;
|
||
|
const UINT32 halfHeight = (nHeight + 1) / 2;
|
||
|
const UINT32 quaterWidth = (nWidth + 3) / 4;
|
||
|
const UINT32 quaterPad = quaterWidth % 16;
|
||
|
const __m128i zero = _mm_setzero_si128();
|
||
|
const __m128i mask =
|
||
|
_mm_set_epi8(0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0);
|
||
|
const __m128i mask2 =
|
||
|
_mm_set_epi8(0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80, 0, 0x80);
|
||
|
const __m128i shuffle1 =
|
||
|
_mm_set_epi8(0x80, 15, 0x80, 14, 0x80, 13, 0x80, 12, 0x80, 11, 0x80, 10, 0x80, 9, 0x80, 8);
|
||
|
const __m128i shuffle2 =
|
||
|
_mm_set_epi8(0x80, 7, 0x80, 6, 0x80, 5, 0x80, 4, 0x80, 3, 0x80, 2, 0x80, 1, 0x80, 0);
|
||
|
|
||
|
/* B4 and B5: odd UV values for width/2, height */
|
||
|
for (y = 0; y < nHeight; y++)
|
||
|
{
|
||
|
const UINT32 yTop = y + roi->top;
|
||
|
const BYTE* pYaU = pSrc[0] + srcStep[0] * yTop + roi->left / 2;
|
||
|
const BYTE* pYaV = pYaU + nTotalWidth / 2;
|
||
|
BYTE* pU = pDst[1] + dstStep[1] * yTop + roi->left;
|
||
|
BYTE* pV = pDst[2] + dstStep[2] * yTop + roi->left;
|
||
|
|
||
|
for (x = 0; x < halfWidth - halfPad; x += 16)
|
||
|
{
|
||
|
{
|
||
|
const __m128i u = _mm_loadu_si128((__m128i*)&pYaU[x]);
|
||
|
const __m128i u2 = _mm_unpackhi_epi8(zero, u);
|
||
|
const __m128i u1 = _mm_unpacklo_epi8(zero, u);
|
||
|
_mm_maskmoveu_si128(u1, mask, (char*)&pU[2 * x]);
|
||
|
_mm_maskmoveu_si128(u2, mask, (char*)&pU[2 * x + 16]);
|
||
|
}
|
||
|
{
|
||
|
const __m128i v = _mm_loadu_si128((__m128i*)&pYaV[x]);
|
||
|
const __m128i v2 = _mm_unpackhi_epi8(zero, v);
|
||
|
const __m128i v1 = _mm_unpacklo_epi8(zero, v);
|
||
|
_mm_maskmoveu_si128(v1, mask, (char*)&pV[2 * x]);
|
||
|
_mm_maskmoveu_si128(v2, mask, (char*)&pV[2 * x + 16]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (; x < halfWidth; x++)
|
||
|
{
|
||
|
const UINT32 odd = 2 * x + 1;
|
||
|
pU[odd] = pYaU[x];
|
||
|
pV[odd] = pYaV[x];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* B6 - B9 */
|
||
|
for (y = 0; y < halfHeight; y++)
|
||
|
{
|
||
|
const BYTE* pUaU = pSrc[1] + srcStep[1] * (y + roi->top / 2) + roi->left / 4;
|
||
|
const BYTE* pUaV = pUaU + nTotalWidth / 4;
|
||
|
const BYTE* pVaU = pSrc[2] + srcStep[2] * (y + roi->top / 2) + roi->left / 4;
|
||
|
const BYTE* pVaV = pVaU + nTotalWidth / 4;
|
||
|
BYTE* pU = pDst[1] + dstStep[1] * (2 * y + 1 + roi->top) + roi->left;
|
||
|
BYTE* pV = pDst[2] + dstStep[2] * (2 * y + 1 + roi->top) + roi->left;
|
||
|
|
||
|
for (x = 0; x < quaterWidth - quaterPad; x += 16)
|
||
|
{
|
||
|
{
|
||
|
const __m128i uU = _mm_loadu_si128((__m128i*)&pUaU[x]);
|
||
|
const __m128i uV = _mm_loadu_si128((__m128i*)&pVaU[x]);
|
||
|
const __m128i uHigh = _mm_unpackhi_epi8(uU, uV);
|
||
|
const __m128i uLow = _mm_unpacklo_epi8(uU, uV);
|
||
|
const __m128i u1 = _mm_shuffle_epi8(uLow, shuffle2);
|
||
|
const __m128i u2 = _mm_shuffle_epi8(uLow, shuffle1);
|
||
|
const __m128i u3 = _mm_shuffle_epi8(uHigh, shuffle2);
|
||
|
const __m128i u4 = _mm_shuffle_epi8(uHigh, shuffle1);
|
||
|
_mm_maskmoveu_si128(u1, mask2, (char*)&pU[4 * x + 0]);
|
||
|
_mm_maskmoveu_si128(u2, mask2, (char*)&pU[4 * x + 16]);
|
||
|
_mm_maskmoveu_si128(u3, mask2, (char*)&pU[4 * x + 32]);
|
||
|
_mm_maskmoveu_si128(u4, mask2, (char*)&pU[4 * x + 48]);
|
||
|
}
|
||
|
{
|
||
|
const __m128i vU = _mm_loadu_si128((__m128i*)&pUaV[x]);
|
||
|
const __m128i vV = _mm_loadu_si128((__m128i*)&pVaV[x]);
|
||
|
const __m128i vHigh = _mm_unpackhi_epi8(vU, vV);
|
||
|
const __m128i vLow = _mm_unpacklo_epi8(vU, vV);
|
||
|
const __m128i v1 = _mm_shuffle_epi8(vLow, shuffle2);
|
||
|
const __m128i v2 = _mm_shuffle_epi8(vLow, shuffle1);
|
||
|
const __m128i v3 = _mm_shuffle_epi8(vHigh, shuffle2);
|
||
|
const __m128i v4 = _mm_shuffle_epi8(vHigh, shuffle1);
|
||
|
_mm_maskmoveu_si128(v1, mask2, (char*)&pV[4 * x + 0]);
|
||
|
_mm_maskmoveu_si128(v2, mask2, (char*)&pV[4 * x + 16]);
|
||
|
_mm_maskmoveu_si128(v3, mask2, (char*)&pV[4 * x + 32]);
|
||
|
_mm_maskmoveu_si128(v4, mask2, (char*)&pV[4 * x + 48]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (; x < quaterWidth; x++)
|
||
|
{
|
||
|
pU[4 * x + 0] = pUaU[x];
|
||
|
pV[4 * x + 0] = pUaV[x];
|
||
|
pU[4 * x + 2] = pVaU[x];
|
||
|
pV[4 * x + 2] = pVaV[x];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ssse3_ChromaFilter(pDst, dstStep, roi);
|
||
|
}
|
||
|
|
||
|
static pstatus_t ssse3_YUV420CombineToYUV444(avc444_frame_type type, const BYTE* const pSrc[3],
|
||
|
const UINT32 srcStep[3], UINT32 nWidth, UINT32 nHeight,
|
||
|
BYTE* pDst[3], const UINT32 dstStep[3],
|
||
|
const RECTANGLE_16* roi)
|
||
|
{
|
||
|
if (!pSrc || !pSrc[0] || !pSrc[1] || !pSrc[2])
|
||
|
return -1;
|
||
|
|
||
|
if (!pDst || !pDst[0] || !pDst[1] || !pDst[2])
|
||
|
return -1;
|
||
|
|
||
|
if (!roi)
|
||
|
return -1;
|
||
|
|
||
|
switch (type)
|
||
|
{
|
||
|
case AVC444_LUMA:
|
||
|
return ssse3_LumaToYUV444(pSrc, srcStep, pDst, dstStep, roi);
|
||
|
|
||
|
case AVC444_CHROMAv1:
|
||
|
return ssse3_ChromaV1ToYUV444(pSrc, srcStep, pDst, dstStep, roi);
|
||
|
|
||
|
case AVC444_CHROMAv2:
|
||
|
return ssse3_ChromaV2ToYUV444(pSrc, srcStep, nWidth, nHeight, pDst, dstStep, roi);
|
||
|
|
||
|
default:
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void primitives_init_YUV_opt(primitives_t* prims)
|
||
|
{
|
||
|
generic = primitives_get_generic();
|
||
|
primitives_init_YUV(prims);
|
||
|
|
||
|
if (IsProcessorFeaturePresentEx(PF_EX_SSSE3) &&
|
||
|
IsProcessorFeaturePresent(PF_SSE3_INSTRUCTIONS_AVAILABLE))
|
||
|
{
|
||
|
prims->RGBToYUV420_8u_P3AC4R = ssse3_RGBToYUV420;
|
||
|
prims->RGBToAVC444YUV = ssse3_RGBToAVC444YUV;
|
||
|
prims->RGBToAVC444YUVv2 = ssse3_RGBToAVC444YUVv2;
|
||
|
prims->YUV420ToRGB_8u_P3AC4R = ssse3_YUV420ToRGB;
|
||
|
prims->YUV444ToRGB_8u_P3AC4R = ssse3_YUV444ToRGB_8u_P3AC4R;
|
||
|
prims->YUV420CombineToYUV444 = ssse3_YUV420CombineToYUV444;
|
||
|
}
|
||
|
}
|