freerdp/libfreerdp/crypto/crypto.c

998 lines
22 KiB
C
Raw Normal View History

2023-05-09 21:29:50 +00:00
/**
* FreeRDP: A Remote Desktop Protocol Implementation
* Cryptographic Abstraction Layer
*
* Copyright 2011-2012 Marc-Andre Moreau <marcandre.moreau@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <openssl/objects.h>
#include <winpr/crt.h>
#include <winpr/assert.h>
#include <freerdp/log.h>
#include <freerdp/crypto/crypto.h>
#define TAG FREERDP_TAG("crypto")
CryptoCert crypto_cert_read(BYTE* data, UINT32 length)
{
CryptoCert cert = malloc(sizeof(*cert));
if (!cert)
return NULL;
/* this will move the data pointer but we don't care, we don't use it again */
cert->px509 = d2i_X509(NULL, (D2I_X509_CONST BYTE**)&data, length);
return cert;
}
void crypto_cert_free(CryptoCert cert)
{
if (cert == NULL)
return;
X509_free(cert->px509);
free(cert);
}
BOOL crypto_cert_get_public_key(CryptoCert cert, BYTE** PublicKey, DWORD* PublicKeyLength)
{
BYTE* ptr;
int length;
BOOL status = TRUE;
EVP_PKEY* pkey = NULL;
pkey = X509_get_pubkey(cert->px509);
if (!pkey)
{
WLog_ERR(TAG, "X509_get_pubkey() failed");
status = FALSE;
goto exit;
}
length = i2d_PublicKey(pkey, NULL);
if (length < 1)
{
WLog_ERR(TAG, "i2d_PublicKey() failed");
status = FALSE;
goto exit;
}
*PublicKeyLength = (DWORD)length;
*PublicKey = (BYTE*)malloc(length);
ptr = (BYTE*)(*PublicKey);
if (!ptr)
{
status = FALSE;
goto exit;
}
i2d_PublicKey(pkey, &ptr);
exit:
if (pkey)
EVP_PKEY_free(pkey);
return status;
}
static int crypto_rsa_common(const BYTE* input, int length, UINT32 key_length, const BYTE* modulus,
const BYTE* exponent, int exponent_size, BYTE* output)
{
BN_CTX* ctx = NULL;
int output_length = -1;
BYTE* input_reverse = NULL;
BYTE* modulus_reverse = NULL;
BYTE* exponent_reverse = NULL;
BIGNUM* mod = NULL;
BIGNUM* exp = NULL;
BIGNUM* x = NULL;
BIGNUM* y = NULL;
size_t bufferSize;
if (!input || (length < 0) || (exponent_size < 0) || !modulus || !exponent || !output)
return -1;
if ((size_t)exponent_size > SIZE_MAX / 2)
return -1;
if (key_length >= SIZE_MAX / 2 - exponent_size)
return -1;
bufferSize = 2ULL * key_length + exponent_size;
if ((size_t)length > bufferSize)
bufferSize = (size_t)length;
input_reverse = (BYTE*)calloc(bufferSize, 1);
if (!input_reverse)
return -1;
modulus_reverse = input_reverse + key_length;
exponent_reverse = modulus_reverse + key_length;
memcpy(modulus_reverse, modulus, key_length);
crypto_reverse(modulus_reverse, key_length);
memcpy(exponent_reverse, exponent, exponent_size);
crypto_reverse(exponent_reverse, exponent_size);
memcpy(input_reverse, input, length);
crypto_reverse(input_reverse, length);
if (!(ctx = BN_CTX_new()))
goto fail_bn_ctx;
if (!(mod = BN_new()))
goto fail_bn_mod;
if (!(exp = BN_new()))
goto fail_bn_exp;
if (!(x = BN_new()))
goto fail_bn_x;
if (!(y = BN_new()))
goto fail_bn_y;
if (!BN_bin2bn(modulus_reverse, key_length, mod))
goto fail;
if (!BN_bin2bn(exponent_reverse, exponent_size, exp))
goto fail;
if (!BN_bin2bn(input_reverse, length, x))
goto fail;
if (BN_mod_exp(y, x, exp, mod, ctx) != 1)
goto fail;
output_length = BN_bn2bin(y, output);
if (output_length < 0)
goto fail;
crypto_reverse(output, output_length);
if ((UINT32)output_length < key_length)
memset(output + output_length, 0, key_length - output_length);
fail:
BN_free(y);
fail_bn_y:
BN_clear_free(x);
fail_bn_x:
BN_free(exp);
fail_bn_exp:
BN_free(mod);
fail_bn_mod:
BN_CTX_free(ctx);
fail_bn_ctx:
free(input_reverse);
return output_length;
}
static int crypto_rsa_public(const BYTE* input, int length, UINT32 key_length, const BYTE* modulus,
const BYTE* exponent, BYTE* output)
{
return crypto_rsa_common(input, length, key_length, modulus, exponent, EXPONENT_MAX_SIZE,
output);
}
static int crypto_rsa_private(const BYTE* input, int length, UINT32 key_length, const BYTE* modulus,
const BYTE* private_exponent, BYTE* output)
{
return crypto_rsa_common(input, length, key_length, modulus, private_exponent, key_length,
output);
}
int crypto_rsa_public_encrypt(const BYTE* input, int length, UINT32 key_length, const BYTE* modulus,
const BYTE* exponent, BYTE* output)
{
return crypto_rsa_public(input, length, key_length, modulus, exponent, output);
}
int crypto_rsa_public_decrypt(const BYTE* input, int length, UINT32 key_length, const BYTE* modulus,
const BYTE* exponent, BYTE* output)
{
return crypto_rsa_public(input, length, key_length, modulus, exponent, output);
}
int crypto_rsa_private_encrypt(const BYTE* input, int length, UINT32 key_length,
const BYTE* modulus, const BYTE* private_exponent, BYTE* output)
{
return crypto_rsa_private(input, length, key_length, modulus, private_exponent, output);
}
int crypto_rsa_private_decrypt(const BYTE* input, int length, UINT32 key_length,
const BYTE* modulus, const BYTE* private_exponent, BYTE* output)
{
return crypto_rsa_private(input, length, key_length, modulus, private_exponent, output);
}
static int crypto_rsa_decrypt(const BYTE* input, int length, UINT32 key_length, const BYTE* modulus,
const BYTE* private_exponent, BYTE* output)
{
return crypto_rsa_common(input, length, key_length, modulus, private_exponent, key_length,
output);
}
void crypto_reverse(BYTE* data, int length)
{
int i, j;
BYTE temp;
for (i = 0, j = length - 1; i < j; i++, j--)
{
temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
char* crypto_cert_fingerprint(X509* xcert)
{
return crypto_cert_fingerprint_by_hash(xcert, "sha256");
}
BYTE* crypto_cert_hash(X509* xcert, const char* hash, UINT32* length)
{
UINT32 fp_len = EVP_MAX_MD_SIZE;
BYTE* fp;
const EVP_MD* md = EVP_get_digestbyname(hash);
if (!md)
return NULL;
if (!length)
return NULL;
if (!xcert)
return NULL;
fp = calloc(fp_len, sizeof(BYTE));
if (!fp)
return NULL;
if (X509_digest(xcert, md, fp, &fp_len) != 1)
{
free(fp);
return NULL;
}
*length = fp_len;
return fp;
}
char* crypto_cert_fingerprint_by_hash(X509* xcert, const char* hash)
{
UINT32 fp_len, i;
BYTE* fp;
char* p;
char* fp_buffer;
fp = crypto_cert_hash(xcert, hash, &fp_len);
if (!fp)
return NULL;
fp_buffer = calloc(fp_len * 3 + 1, sizeof(char));
if (!fp_buffer)
goto fail;
p = fp_buffer;
for (i = 0; i < (fp_len - 1); i++)
{
sprintf_s(p, (fp_len - i) * 3, "%02" PRIx8 ":", fp[i]);
p = &fp_buffer[(i + 1) * 3];
}
sprintf_s(p, (fp_len - i) * 3, "%02" PRIx8 "", fp[i]);
fail:
free(fp);
return fp_buffer;
}
static char* crypto_print_name(X509_NAME* name)
{
char* buffer = NULL;
BIO* outBIO = BIO_new(BIO_s_mem());
if (X509_NAME_print_ex(outBIO, name, 0, XN_FLAG_ONELINE) > 0)
{
unsigned long size = BIO_number_written(outBIO);
buffer = calloc(1, size + 1);
if (!buffer)
return NULL;
BIO_read(outBIO, buffer, size);
}
BIO_free_all(outBIO);
return buffer;
}
char* crypto_cert_subject(X509* xcert)
{
return crypto_print_name(X509_get_subject_name(xcert));
}
char* crypto_cert_subject_common_name(X509* xcert, int* length)
{
int index;
BYTE* common_name_raw;
char* common_name;
X509_NAME* subject_name;
X509_NAME_ENTRY* entry;
ASN1_STRING* entry_data;
subject_name = X509_get_subject_name(xcert);
if (subject_name == NULL)
return NULL;
index = X509_NAME_get_index_by_NID(subject_name, NID_commonName, -1);
if (index < 0)
return NULL;
entry = X509_NAME_get_entry(subject_name, index);
if (entry == NULL)
return NULL;
entry_data = X509_NAME_ENTRY_get_data(entry);
if (entry_data == NULL)
return NULL;
*length = ASN1_STRING_to_UTF8(&common_name_raw, entry_data);
if (*length < 0)
return NULL;
common_name = _strdup((char*)common_name_raw);
OPENSSL_free(common_name_raw);
return (char*)common_name;
}
/* GENERAL_NAME type labels */
static const char* general_name_type_labels[] = { "OTHERNAME", "EMAIL ", "DNS ",
"X400 ", "DIRNAME ", "EDIPARTY ",
"URI ", "IPADD ", "RID " };
static const char* general_name_type_label(int general_name_type)
{
if ((0 <= general_name_type) &&
((size_t)general_name_type < ARRAYSIZE(general_name_type_labels)))
{
return general_name_type_labels[general_name_type];
}
else
{
static char buffer[80];
sprintf(buffer, "Unknown general name type (%d)", general_name_type);
return buffer;
}
}
/*
map_subject_alt_name(x509, general_name_type, mapper, data)
Call the function mapper with subjectAltNames found in the x509
certificate and data. if generate_name_type is GEN_ALL, the the
mapper is called for all the names, else it's called only for names
of the given type.
We implement two extractors:
- a string extractor that can be used to get the subjectAltNames of
the following types: GEN_URI, GEN_DNS, GEN_EMAIL
- a ASN1_OBJECT filter/extractor that can be used to get the
subjectAltNames of OTHERNAME type.
Note: usually, it's a string, but some type of otherNames can be
associated with different classes of objects. eg. a KPN may be a
sequence of realm and principal name, instead of a single string
object.
Not implemented yet: extractors for the types: GEN_X400, GEN_DIRNAME,
GEN_EDIPARTY, GEN_RID, GEN_IPADD (the later can contain nul-bytes).
mapper(name, data, index, count)
The mapper is passed:
- the GENERAL_NAME selected,
- the data,
- the index of the general name in the subjectAltNames,
- the total number of names in the subjectAltNames.
The last parameter let's the mapper allocate arrays to collect objects.
Note: if names are filtered, not all the indices from 0 to count-1 are
passed to mapper, only the indices selected.
When the mapper returns 0, map_subject_alt_name stops the iteration immediately.
*/
#define GEN_ALL (-1)
typedef int (*general_name_mapper_pr)(GENERAL_NAME* name, void* data, int index, int count);
static void map_subject_alt_name(X509* x509, int general_name_type, general_name_mapper_pr mapper,
void* data)
{
int i;
int num;
STACK_OF(GENERAL_NAME) * gens;
gens = X509_get_ext_d2i(x509, NID_subject_alt_name, NULL, NULL);
if (!gens)
{
return;
}
num = sk_GENERAL_NAME_num(gens);
for (i = 0; (i < num); i++)
{
GENERAL_NAME* name = sk_GENERAL_NAME_value(gens, i);
if (name)
{
if ((general_name_type == GEN_ALL) || (general_name_type == name->type))
{
if (!mapper(name, data, i, num))
{
break;
}
}
}
}
sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
}
/*
extract_string -- string extractor
- the strings array is allocated lazily, when we first have to store a
string.
- allocated contains the size of the strings array, or -1 if
allocation failed.
- count contains the actual count of strings in the strings array.
- maximum limits the number of strings we can store in the strings
array: beyond, the extractor returns 0 to short-cut the search.
extract_string stores in the string list OPENSSL strings,
that must be freed with OPENSSL_free.
*/
typedef struct string_list
{
char** strings;
int allocated;
int count;
int maximum;
} string_list;
static void string_list_initialize(string_list* list)
{
list->strings = 0;
list->allocated = 0;
list->count = 0;
list->maximum = INT_MAX;
}
static void string_list_allocate(string_list* list, int allocate_count)
{
if (!list->strings && list->allocated == 0)
{
list->strings = calloc((size_t)allocate_count, sizeof(char*));
list->allocated = list->strings ? allocate_count : -1;
list->count = 0;
}
}
static void string_list_free(string_list* list)
{
/* Note: we don't free the contents of the strings array: this */
/* is handled by the caller, either by returning this */
/* content, or freeing it itself. */
free(list->strings);
}
static int extract_string(GENERAL_NAME* name, void* data, int index, int count)
{
string_list* list = data;
unsigned char* cstring = 0;
ASN1_STRING* str;
switch (name->type)
{
case GEN_URI:
str = name->d.uniformResourceIdentifier;
break;
case GEN_DNS:
str = name->d.dNSName;
break;
case GEN_EMAIL:
str = name->d.rfc822Name;
break;
default:
return 1;
}
if ((ASN1_STRING_to_UTF8(&cstring, str)) < 0)
{
WLog_ERR(TAG, "ASN1_STRING_to_UTF8() failed for %s: %s",
general_name_type_label(name->type), ERR_error_string(ERR_get_error(), NULL));
return 1;
}
string_list_allocate(list, count);
if (list->allocated <= 0)
{
OPENSSL_free(cstring);
return 0;
}
list->strings[list->count] = (char*)cstring;
list->count++;
if (list->count >= list->maximum)
{
return 0;
}
return 1;
}
/*
extract_othername_object -- object extractor.
- the objects array is allocated lazily, when we first have to store a
string.
- allocated contains the size of the objects array, or -1 if
allocation failed.
- count contains the actual count of objects in the objects array.
- maximum limits the number of objects we can store in the objects
array: beyond, the extractor returns 0 to short-cut the search.
extract_othername_objects stores in the objects array ASN1_TYPE *
pointers directly obtained from the GENERAL_NAME.
*/
typedef struct object_list
{
ASN1_OBJECT* type_id;
char** strings;
int allocated;
int count;
int maximum;
} object_list;
static void object_list_initialize(object_list* list)
{
list->type_id = 0;
list->strings = 0;
list->allocated = 0;
list->count = 0;
list->maximum = INT_MAX;
}
static void object_list_allocate(object_list* list, int allocate_count)
{
if (!list->strings && list->allocated == 0)
{
list->strings = calloc(allocate_count, sizeof(list->strings[0]));
list->allocated = list->strings ? allocate_count : -1;
list->count = 0;
}
}
static char* object_string(ASN1_TYPE* object)
{
char* result;
unsigned char* utf8String;
int length;
/* TODO: check that object.type is a string type. */
length = ASN1_STRING_to_UTF8(&utf8String, object->value.asn1_string);
if (length < 0)
{
return 0;
}
result = (char*)_strdup((char*)utf8String);
OPENSSL_free(utf8String);
return result;
}
static void object_list_free(object_list* list)
{
free(list->strings);
}
static int extract_othername_object_as_string(GENERAL_NAME* name, void* data, int index, int count)
{
object_list* list = data;
if (name->type != GEN_OTHERNAME)
{
return 1;
}
if (0 != OBJ_cmp(name->d.otherName->type_id, list->type_id))
{
return 1;
}
object_list_allocate(list, count);
if (list->allocated <= 0)
{
return 0;
}
list->strings[list->count] = object_string(name->d.otherName->value);
if (list->strings[list->count])
{
list->count++;
}
if (list->count >= list->maximum)
{
return 0;
}
return 1;
}
/*
crypto_cert_get_email returns a dynamically allocated copy of the
first email found in the subjectAltNames (use free to free it).
*/
char* crypto_cert_get_email(X509* x509)
{
char* result = 0;
string_list list;
string_list_initialize(&list);
list.maximum = 1;
map_subject_alt_name(x509, GEN_EMAIL, extract_string, &list);
if (list.count == 0)
{
string_list_free(&list);
return 0;
}
result = _strdup(list.strings[0]);
OPENSSL_free(list.strings[0]);
string_list_free(&list);
return result;
}
/*
crypto_cert_get_upn returns a dynamically allocated copy of the
first UPN otherNames in the subjectAltNames (use free to free it).
Note: if this first UPN otherName is not a string, then 0 is returned,
instead of searching for another UPN that would be a string.
*/
char* crypto_cert_get_upn(X509* x509)
{
char* result = 0;
object_list list;
object_list_initialize(&list);
list.type_id = OBJ_nid2obj(NID_ms_upn);
list.maximum = 1;
map_subject_alt_name(x509, GEN_OTHERNAME, extract_othername_object_as_string, &list);
if (list.count == 0)
{
object_list_free(&list);
return 0;
}
result = list.strings[0];
object_list_free(&list);
return result;
}
#if !defined(DEFINE_NO_DEPRECATED)
/* Deprecated name.*/
void crypto_cert_subject_alt_name_free(int count, int* lengths, char** alt_names)
{
crypto_cert_dns_names_free(count, lengths, alt_names);
}
#endif
void crypto_cert_dns_names_free(int count, int* lengths, char** dns_names)
{
free(lengths);
if (dns_names)
{
int i;
for (i = 0; i < count; i++)
{
if (dns_names[i])
{
OPENSSL_free(dns_names[i]);
}
}
free(dns_names);
}
}
#if !defined(DEFINE_NO_DEPRECATED)
/* Deprecated name.*/
char** crypto_cert_subject_alt_name(X509* xcert, int* count, int** lengths)
{
return crypto_cert_get_dns_names(xcert, count, lengths);
}
#endif
char** crypto_cert_get_dns_names(X509* x509, int* count, int** lengths)
{
int i;
char** result = 0;
string_list list;
string_list_initialize(&list);
map_subject_alt_name(x509, GEN_DNS, extract_string, &list);
(*count) = list.count;
if (list.count == 0)
{
string_list_free(&list);
return NULL;
}
/* lengths are not useful, since we converted the
strings to utf-8, there cannot be nul-bytes in them. */
result = calloc(list.count, sizeof(*result));
(*lengths) = calloc(list.count, sizeof(**lengths));
if (!result || !(*lengths))
{
string_list_free(&list);
free(result);
free(*lengths);
(*lengths) = 0;
(*count) = 0;
return NULL;
}
for (i = 0; i < list.count; i++)
{
result[i] = list.strings[i];
(*lengths)[i] = strlen(result[i]);
}
string_list_free(&list);
return result;
}
char* crypto_cert_issuer(X509* xcert)
{
return crypto_print_name(X509_get_issuer_name(xcert));
}
static int verify_cb(int ok, X509_STORE_CTX* csc)
{
if (ok != 1)
{
int err = X509_STORE_CTX_get_error(csc);
int derr = X509_STORE_CTX_get_error_depth(csc);
X509* where = X509_STORE_CTX_get_current_cert(csc);
const char* what = X509_verify_cert_error_string(err);
char* name = crypto_cert_subject(where);
WLog_WARN(TAG, "Certificate verification failure '%s (%d)' at stack position %d", what, err,
derr);
WLog_WARN(TAG, "%s", name);
free(name);
}
return ok;
}
BOOL x509_verify_certificate(CryptoCert cert, const char* certificate_store_path)
{
size_t i;
const int purposes[3] = { X509_PURPOSE_SSL_SERVER, X509_PURPOSE_SSL_CLIENT, X509_PURPOSE_ANY };
X509_STORE_CTX* csc;
BOOL status = FALSE;
X509_STORE* cert_ctx = NULL;
X509_LOOKUP* lookup = NULL;
cert_ctx = X509_STORE_new();
if (cert_ctx == NULL)
goto end;
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
OpenSSL_add_all_algorithms();
#else
OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_CIPHERS | OPENSSL_INIT_ADD_ALL_DIGESTS |
OPENSSL_INIT_LOAD_CONFIG,
NULL);
#endif
if (X509_STORE_set_default_paths(cert_ctx) != 1)
goto end;
lookup = X509_STORE_add_lookup(cert_ctx, X509_LOOKUP_hash_dir());
if (lookup == NULL)
goto end;
X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
if (certificate_store_path != NULL)
{
X509_LOOKUP_add_dir(lookup, certificate_store_path, X509_FILETYPE_PEM);
}
X509_STORE_set_flags(cert_ctx, 0);
for (i = 0; i < ARRAYSIZE(purposes); i++)
{
int err = -1, rc = -1;
int purpose = purposes[i];
csc = X509_STORE_CTX_new();
if (csc == NULL)
goto skip;
if (!X509_STORE_CTX_init(csc, cert_ctx, cert->px509, cert->px509chain))
goto skip;
X509_STORE_CTX_set_purpose(csc, purpose);
X509_STORE_CTX_set_verify_cb(csc, verify_cb);
rc = X509_verify_cert(csc);
err = X509_STORE_CTX_get_error(csc);
skip:
X509_STORE_CTX_free(csc);
if (rc == 1)
{
status = TRUE;
break;
}
else if (err != X509_V_ERR_INVALID_PURPOSE)
break;
}
X509_STORE_free(cert_ctx);
end:
return status;
}
rdpCertificateData* crypto_get_certificate_data(X509* xcert, const char* hostname, UINT16 port)
{
char* issuer;
char* subject;
char* fp;
rdpCertificateData* certdata;
fp = crypto_cert_fingerprint(xcert);
if (!fp)
return NULL;
issuer = crypto_cert_issuer(xcert);
subject = crypto_cert_subject(xcert);
certdata = certificate_data_new(hostname, port, issuer, subject, fp);
free(subject);
free(issuer);
free(fp);
return certdata;
}
void crypto_cert_print_info(X509* xcert)
{
char* fp;
char* issuer;
char* subject;
subject = crypto_cert_subject(xcert);
issuer = crypto_cert_issuer(xcert);
fp = crypto_cert_fingerprint(xcert);
if (!fp)
{
WLog_ERR(TAG, "error computing fingerprint");
goto out_free_issuer;
}
WLog_INFO(TAG, "Certificate details:");
WLog_INFO(TAG, "\tSubject: %s", subject);
WLog_INFO(TAG, "\tIssuer: %s", issuer);
WLog_INFO(TAG, "\tThumbprint: %s", fp);
WLog_INFO(TAG,
"The above X.509 certificate could not be verified, possibly because you do not have "
"the CA certificate in your certificate store, or the certificate has expired. "
"Please look at the OpenSSL documentation on how to add a private CA to the store.");
free(fp);
out_free_issuer:
free(issuer);
free(subject);
}
WINPR_MD_TYPE crypto_cert_get_signature_alg(X509* xcert)
{
WINPR_ASSERT(xcert);
const int nid = X509_get_signature_nid(xcert);
int hash_nid = 0;
if (OBJ_find_sigid_algs(nid, &hash_nid, NULL) != 1)
return WINPR_MD_NONE;
switch (hash_nid)
{
case NID_md2:
return WINPR_MD_MD2;
case NID_md4:
return WINPR_MD_MD4;
case NID_md5:
return WINPR_MD_MD5;
case NID_sha1:
return WINPR_MD_SHA1;
case NID_sha224:
return WINPR_MD_SHA224;
case NID_sha256:
return WINPR_MD_SHA256;
case NID_sha384:
return WINPR_MD_SHA384;
case NID_sha512:
return WINPR_MD_SHA512;
case NID_ripemd160:
return WINPR_MD_RIPEMD160;
#if (OPENSSL_VERSION_NUMBER >= 0x1010101fL) || defined(LIBRESSL_VERSION_NUMBER)
case NID_sha3_224:
return WINPR_MD_SHA3_224;
case NID_sha3_256:
return WINPR_MD_SHA3_256;
case NID_sha3_384:
return WINPR_MD_SHA3_384;
case NID_sha3_512:
return WINPR_MD_SHA3_512;
#endif
case NID_shake128:
return WINPR_MD_SHAKE128;
case NID_shake256:
return WINPR_MD_SHAKE256;
case NID_undef:
default:
return WINPR_MD_NONE;
}
}