mirror of https://github.com/buggins/dlangui.git
218 lines
6.4 KiB
D
218 lines
6.4 KiB
D
/*
|
|
Copyright (c) 2014 Timur Gafarov
|
|
|
|
Boost Software License - Version 1.0 - August 17th, 2003
|
|
|
|
Permission is hereby granted, free of charge, to any person or organization
|
|
obtaining a copy of the software and accompanying documentation covered by
|
|
this license (the "Software") to use, reproduce, display, distribute,
|
|
execute, and transmit the Software, and to prepare derivative works of the
|
|
Software, and to permit third-parties to whom the Software is furnished to
|
|
do so, all subject to the following:
|
|
|
|
The copyright notices in the Software and this entire statement, including
|
|
the above license grant, this restriction and the following disclaimer,
|
|
must be included in all copies of the Software, in whole or in part, and
|
|
all derivative works of the Software, unless such copies or derivative
|
|
works are solely in the form of machine-executable object code generated by
|
|
a source language processor.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
// dimage is actually stripped out part of dlib - just to support reading PNG and JPEG
|
|
module dimage.idct; //dlib.image.io.idct
|
|
|
|
import std.math;
|
|
|
|
/*
|
|
* Inverse discrete cosine transform (DCT) for 64x64 blocks
|
|
*/
|
|
|
|
enum blockSize = 64; // A DCT block is 8x8.
|
|
|
|
enum w1 = 2841; // 2048*sqrt(2)*cos(1*pi/16)
|
|
enum w2 = 2676; // 2048*sqrt(2)*cos(2*pi/16)
|
|
enum w3 = 2408; // 2048*sqrt(2)*cos(3*pi/16)
|
|
enum w5 = 1609; // 2048*sqrt(2)*cos(5*pi/16)
|
|
enum w6 = 1108; // 2048*sqrt(2)*cos(6*pi/16)
|
|
enum w7 = 565; // 2048*sqrt(2)*cos(7*pi/16)
|
|
|
|
enum w1pw7 = w1 + w7;
|
|
enum w1mw7 = w1 - w7;
|
|
enum w2pw6 = w2 + w6;
|
|
enum w2mw6 = w2 - w6;
|
|
enum w3pw5 = w3 + w5;
|
|
enum w3mw5 = w3 - w5;
|
|
|
|
enum r2 = 181; // 256/sqrt(2)
|
|
|
|
// idct performs a 2-D Inverse Discrete Cosine Transformation.
|
|
//
|
|
// The input coefficients should already have been multiplied by the
|
|
// appropriate quantization table. We use fixed-point computation, with the
|
|
// number of bits for the fractional component varying over the intermediate
|
|
// stages.
|
|
//
|
|
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
|
|
// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
|
|
// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
|
|
void idct64(int* src)
|
|
{
|
|
// Horizontal 1-D IDCT.
|
|
for (uint y = 0; y < 8; y++)
|
|
{
|
|
int y8 = y * 8;
|
|
// If all the AC components are zero, then the IDCT is trivial.
|
|
if (src[y8+1] == 0 && src[y8+2] == 0 && src[y8+3] == 0 &&
|
|
src[y8+4] == 0 && src[y8+5] == 0 && src[y8+6] == 0 && src[y8+7] == 0)
|
|
{
|
|
int dc = src[y8+0] << 3;
|
|
src[y8+0] = dc;
|
|
src[y8+1] = dc;
|
|
src[y8+2] = dc;
|
|
src[y8+3] = dc;
|
|
src[y8+4] = dc;
|
|
src[y8+5] = dc;
|
|
src[y8+6] = dc;
|
|
src[y8+7] = dc;
|
|
continue;
|
|
}
|
|
|
|
// Prescale.
|
|
int x0 = (src[y8+0] << 11) + 128;
|
|
int x1 = src[y8+4] << 11;
|
|
int x2 = src[y8+6];
|
|
int x3 = src[y8+2];
|
|
int x4 = src[y8+1];
|
|
int x5 = src[y8+7];
|
|
int x6 = src[y8+5];
|
|
int x7 = src[y8+3];
|
|
|
|
// Stage 1.
|
|
int x8 = w7 * (x4 + x5);
|
|
x4 = x8 + w1mw7*x4;
|
|
x5 = x8 - w1pw7*x5;
|
|
x8 = w3 * (x6 + x7);
|
|
x6 = x8 - w3mw5*x6;
|
|
x7 = x8 - w3pw5*x7;
|
|
|
|
// Stage 2.
|
|
x8 = x0 + x1;
|
|
x0 -= x1;
|
|
x1 = w6 * (x3 + x2);
|
|
x2 = x1 - w2pw6*x2;
|
|
x3 = x1 + w2mw6*x3;
|
|
x1 = x4 + x6;
|
|
x4 -= x6;
|
|
x6 = x5 + x7;
|
|
x5 -= x7;
|
|
|
|
// Stage 3.
|
|
x7 = x8 + x3;
|
|
x8 -= x3;
|
|
x3 = x0 + x2;
|
|
x0 -= x2;
|
|
x2 = (r2*(x4+x5) + 128) >> 8;
|
|
x4 = (r2*(x4-x5) + 128) >> 8;
|
|
|
|
// Stage 4.
|
|
src[y8+0] = (x7 + x1) >> 8;
|
|
src[y8+1] = (x3 + x2) >> 8;
|
|
src[y8+2] = (x0 + x4) >> 8;
|
|
src[y8+3] = (x8 + x6) >> 8;
|
|
src[y8+4] = (x8 - x6) >> 8;
|
|
src[y8+5] = (x0 - x4) >> 8;
|
|
src[y8+6] = (x3 - x2) >> 8;
|
|
src[y8+7] = (x7 - x1) >> 8;
|
|
}
|
|
|
|
// Vertical 1-D IDCT.
|
|
for (uint x = 0; x < 8; x++)
|
|
{
|
|
// Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
|
|
// However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
|
|
// we do not bother to check for the all-zero case.
|
|
|
|
// Prescale.
|
|
int y0 = (src[8*0+x] << 8) + 8192;
|
|
int y1 = src[8*4+x] << 8;
|
|
int y2 = src[8*6+x];
|
|
int y3 = src[8*2+x];
|
|
int y4 = src[8*1+x];
|
|
int y5 = src[8*7+x];
|
|
int y6 = src[8*5+x];
|
|
int y7 = src[8*3+x];
|
|
|
|
// Stage 1.
|
|
int y8 = w7*(y4+y5) + 4;
|
|
y4 = (y8 + w1mw7*y4) >> 3;
|
|
y5 = (y8 - w1pw7*y5) >> 3;
|
|
y8 = w3*(y6+y7) + 4;
|
|
y6 = (y8 - w3mw5*y6) >> 3;
|
|
y7 = (y8 - w3pw5*y7) >> 3;
|
|
|
|
// Stage 2.
|
|
y8 = y0 + y1;
|
|
y0 -= y1;
|
|
y1 = w6*(y3+y2) + 4;
|
|
y2 = (y1 - w2pw6*y2) >> 3;
|
|
y3 = (y1 + w2mw6*y3) >> 3;
|
|
y1 = y4 + y6;
|
|
y4 -= y6;
|
|
y6 = y5 + y7;
|
|
y5 -= y7;
|
|
|
|
// Stage 3.
|
|
y7 = y8 + y3;
|
|
y8 -= y3;
|
|
y3 = y0 + y2;
|
|
y0 -= y2;
|
|
y2 = (r2*(y4+y5) + 128) >> 8;
|
|
y4 = (r2*(y4-y5) + 128) >> 8;
|
|
|
|
// Stage 4.
|
|
src[8*0+x] = (y7 + y1) >> 14;
|
|
src[8*1+x] = (y3 + y2) >> 14;
|
|
src[8*2+x] = (y0 + y4) >> 14;
|
|
src[8*3+x] = (y8 + y6) >> 14;
|
|
src[8*4+x] = (y8 - y6) >> 14;
|
|
src[8*5+x] = (y0 - y4) >> 14;
|
|
src[8*6+x] = (y3 - y2) >> 14;
|
|
src[8*7+x] = (y7 - y1) >> 14;
|
|
}
|
|
}
|
|
|
|
/*
|
|
void idct(float* inMat, float* outMat)
|
|
{
|
|
uint i, j, u, v;
|
|
float s;
|
|
|
|
for (i = 0; i < 8; i++)
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
s = 0;
|
|
|
|
for (u = 0; u < 8; u++)
|
|
for (v = 0; v < 8; v++)
|
|
{
|
|
s += inMat[u * 8 + v]
|
|
* cos((2 * i + 1) * u * PI / 16.0f)
|
|
* cos((2 * j + 1) * v * PI / 16.0f)
|
|
* ((u == 0) ? 1 / sqrt(2.0f) : 1.0f)
|
|
* ((v == 0) ? 1 / sqrt(2.0f) : 1.0f);
|
|
}
|
|
|
|
outMat[i * 8 + j] = s / 4.0f;
|
|
}
|
|
}
|
|
*/
|
|
|