/* Copyright (c) 2015 Timur Gafarov Boost Software License - Version 1.0 - August 17th, 2003 Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // dimage is actually stripped out part of dlib - just to support reading PNG and JPEG module dimage.huffman; import dimage.memory; import dimage.bitio; //import dlib.core.memory; //import dlib.core.bitio; struct HuffmanTreeNode { HuffmanTreeNode* parent; HuffmanTreeNode* left; HuffmanTreeNode* right; ubyte ch; uint freq; bool blank = true; this( HuffmanTreeNode* leftNode, HuffmanTreeNode* rightNode, ubyte symbol, uint frequency, bool isBlank) { parent = null; left = leftNode; right = rightNode; if (left !is null) left.parent = &this; if (right !is null) right.parent = &this; ch = symbol; freq = frequency; blank = isBlank; } bool isLeaf() { return (left is null && right is null); } void free() { if (left !is null) { left.free(); Delete(left); } if (right !is null) { right.free(); Delete(right); } } /* // TODO: implement this without GC void getCodes(ref string[ubyte] table, string code = "") { if (isLeaf()) { table[ch] = code; } else { if (left !is null) left.getCodes(table, code ~ '0'); if (right !is null) right.getCodes(table, code ~ '1'); } } void print(string indent = "") { writefln("%s<%s>%x", indent, freq, ch); indent ~= " "; if (left !is null) left.print(indent); if (right !is null) right.print(indent); } */ } /* // TODO: implement this without GC HuffmanTreeNode* buildHuffmanTree(ubyte[] data) { // Count frequencies uint[ubyte] freqs; foreach(s; data) { if (s in freqs) freqs[s] += 1; else freqs[s] = 1; } // Sort in descending order ubyte[] symbols = freqs.keys; sort!((a, b) => freqs[a] > freqs[b])(symbols); // Create node list auto nodeList = new HuffmanTreeNode*[symbols.length]; foreach(i, s; symbols) nodeList[i] = new HuffmanTreeNode(null, null, s, freqs[s], false); // Build tree while (nodeList.length > 1) { // Pop two nodes with minimal frequencies auto n1 = nodeList[$-1]; auto n2 = nodeList[$-2]; nodeList.popBack; nodeList.popBack; // Insert a new parent node uint fsum = n1.freq + n2.freq; auto parent = new HuffmanTreeNode(n1, n2, 0, fsum, false); nodeList ~= parent; sort!((a, b) => a.freq > b.freq)(nodeList); } auto root = nodeList[0]; return root; } void packHuffmanTree(HuffmanTreeNode* node, BitWriter* bw) { if (node.isLeaf) { bw.writeBit(true); bw.writeByte(node.ch); } else { bw.writeBit(false); packHuffmanTree(node.left, bw); packHuffmanTree(node.right, bw); } } HuffmanTreeNode* unpackHuffmanTree(BitReader* br) { if (!br.end) { bool bit = br.readBit(); if (bit) { byte ch = br.readByte(); return new HuffmanTreeNode(null, null, ch, 0, false); } else { HuffmanTreeNode* left = unpackHuffmanTree(br); HuffmanTreeNode* right = unpackHuffmanTree(br); return new HuffmanTreeNode(left, right, 0, 0, false); } } else return null; } ubyte[] encodeHuffman(ubyte[] data, out HuffmanTreeNode* tree) { // Build Huffman tree tree = buildHuffmanTree(data); // Generate binary codes string[ubyte] huffTable; tree.getCodes(huffTable); // Encode data string bitStr; foreach(s; data) bitStr ~= huffTable[s]; // Pack bits to byte array uint octetsLen = 0; ubyte lastBits = 0; if (bitStr.length == 8) { octetsLen = 1; } else if (bitStr.length > 8) { octetsLen = cast(uint)bitStr.length / 8; lastBits = cast(ubyte)(bitStr.length % 8); if (lastBits != 0) octetsLen++; } else { octetsLen = 1; lastBits = cast(ubyte)(bitStr.length); } octetsLen++; auto octets = new ubyte[octetsLen]; octets[0] = lastBits; uint bitPos = 0; uint bytePos = 1; foreach(bit; bitStr) { bool state; if (bit == '0') state = false; else state = true; octets[bytePos] = setBit(octets[bytePos], bitPos, state); bitPos++; if (bitPos == 8) { bitPos = 0; bytePos++; } } return octets; } ubyte[] decodeHuffman(ubyte[] data, HuffmanTreeNode* tree) { // Generate binary codes string[ubyte] huffTable; tree.getCodes(huffTable); //Unpack bits from array ubyte[] result; bool appendNext = true; string code = ""; ubyte lastBits = data[0]; foreach(i, b; data[1..$]) { uint len; if ((lastBits != 0) && (i == data.length-1)) len = lastBits; else len = 8; foreach(bp; 0..len) { char bitChr = getBit(b, bp)? '1':'0'; if (appendNext) { code ~= bitChr; foreach(key, val; huffTable) { if (code == val) { result ~= key; appendNext = false; break; } } } else { code = ""; code ~= bitChr; appendNext = true; } } } return result; } */