porting miner

This commit is contained in:
Vadim Lopatin 2016-03-21 14:20:18 +03:00
parent 9d86705a55
commit a7f485555a
2 changed files with 958 additions and 0 deletions

View File

@ -0,0 +1,852 @@
module dminer.core.minetypes;
alias cell_t = ubyte;
immutable cell_t NO_CELL = 0;
immutable cell_t END_OF_WORLD = 253;
immutable cell_t VISITED_CELL = 255;
immutable cell_t VISITED_OCCUPIED = 254;
immutable cell_t BOUND_BOTTOM = 253;
immutable cell_t BOUND_SKY = 252;
enum : ubyte {
NORTH = 0,
SOUTH,
WEST,
EAST,
UP,
DOWN,
}
alias Dir = ubyte;
/// Extended Dir simple Dir directions can be combined; first 6 items of DirEx match items of Dir - 26 directions (3*3*3-1)
enum : ubyte {
// main directions
DIR_NORTH = 0,
DIR_SOUTH,
DIR_WEST,
DIR_EAST,
DIR_UP,
DIR_DOWN,
// combined directions
DIR_WEST_UP,
DIR_EAST_UP,
DIR_WEST_DOWN,
DIR_EAST_DOWN,
DIR_NORTH_WEST,
DIR_NORTH_EAST,
DIR_NORTH_UP,
DIR_NORTH_DOWN,
DIR_NORTH_WEST_UP,
DIR_NORTH_EAST_UP,
DIR_NORTH_WEST_DOWN,
DIR_NORTH_EAST_DOWN,
DIR_SOUTH_WEST,
DIR_SOUTH_EAST,
DIR_SOUTH_UP,
DIR_SOUTH_DOWN,
DIR_SOUTH_WEST_UP,
DIR_SOUTH_EAST_UP,
DIR_SOUTH_WEST_DOWN,
DIR_SOUTH_EAST_DOWN,
DIR_MAX,
DIR_MIN = DIR_NORTH,
}
alias DirEx = ubyte;
// 26 direction masks based on Dir
enum : uint {
MASK_NORTH = (1 << NORTH),
MASK_SOUTH = (1 << SOUTH),
MASK_WEST = (1 << WEST),
MASK_EAST = (1 << EAST),
MASK_UP = (1 << UP),
MASK_DOWN = (1 << DOWN),
MASK_WEST_UP = (1 << WEST) | MASK_UP,
MASK_EAST_UP = (1 << EAST) | MASK_UP,
MASK_WEST_DOWN = (1 << WEST) | MASK_DOWN,
MASK_EAST_DOWN = (1 << EAST) | MASK_DOWN,
MASK_NORTH_WEST = MASK_NORTH | MASK_WEST,
MASK_NORTH_EAST = MASK_NORTH | MASK_EAST,
MASK_NORTH_UP = MASK_NORTH | MASK_UP,
MASK_NORTH_DOWN = MASK_NORTH | MASK_DOWN,
MASK_NORTH_WEST_UP = MASK_NORTH | MASK_WEST | MASK_UP,
MASK_NORTH_EAST_UP = MASK_NORTH | MASK_EAST | MASK_UP,
MASK_NORTH_WEST_DOWN = MASK_NORTH | MASK_WEST | MASK_DOWN,
MASK_NORTH_EAST_DOWN = MASK_NORTH | MASK_EAST | MASK_DOWN,
MASK_SOUTH_WEST = MASK_SOUTH | MASK_WEST,
MASK_SOUTH_EAST = MASK_SOUTH | MASK_EAST,
MASK_SOUTH_UP = MASK_SOUTH | MASK_UP,
MASK_SOUTH_DOWN = MASK_SOUTH | MASK_DOWN,
MASK_SOUTH_WEST_UP = MASK_SOUTH | MASK_WEST | MASK_UP,
MASK_SOUTH_EAST_UP = MASK_SOUTH | MASK_EAST | MASK_UP,
MASK_SOUTH_WEST_DOWN = MASK_SOUTH | MASK_WEST | MASK_DOWN,
MASK_SOUTH_EAST_DOWN = MASK_SOUTH | MASK_EAST | MASK_DOWN,
}
alias DirMask = uint;
/+
struct SymmetricMatrix (T, T initValue) {
private:
int _size;
int dx;
int dx2;
T * data;
public:
this(int sz = 1) {
_size = sz;
reset(sz);
}
~this() {
if (data)
delete[] data;
}
T get(int x, int y) {
return data[(x + dx2) * dx + (y + dx2)];
}
void set(int x, int y, T value) {
data[(x + dx2) * dx + (y + dx2)] = value;
}
int size() {
return _size;
}
void reset(int sz) {
if (_size != sz || !data) {
_size = sz;
dx = _size + _size - 1;
dx2 = dx / 2;
if (data)
delete[] data;
data = new T[dx * dx];
}
for (int i = dx * dx - 1; i >= 0; i--)
data[i] = initValue;
}
}
alias BoolSymmetricMatrix = SymmetricMatrix!(bool, false);
+/
struct Vector2d {
int x;
int y;
this(int xx, int yy) {
x = xx;
y = yy;
}
bool opEqual(Vector2d v) const {
return x == v.x && y == v.y;
}
}
immutable Vector2d ZERO2 = Vector2d(0, 0);
struct Vector3d {
int x;
int y;
int z;
this(int xx, int yy, int zz) {
x = xx;
y = yy;
z = zz;
}
bool opEqual(const Vector3d v) const {
return x == v.x && y == v.y && z == v.z;
}
/// returns vector with all components which are negative of components for this vector
Vector3d opUnary(string op : "-")() const {
return Vector3d(-x, -y, -z);
}
/// subtract vectors
Vector3d opBinary(string op : "-")(const Vector3d v) const {
return Vector3d(x - v.x, y - v.y, z - v.z);
}
/// add vectors
Vector3d opBinary(string op : "+")(const Vector3d v) const {
return Vector3d(x + v.x, y + v.y, z + v.z);
}
///
int opBinary(string op : "*")(const Vector3d v) const {
return x*v.x + y*v.y + z*v.z;
}
///
int opBinary(string op : "*")(int n) const {
return Vector3d(x * n, y * n, z * n);
}
///
ref Vector3d opOpAssign(string op : "+")(const Vector3d v) {
x += v.x;
y += v.y;
z += v.z;
return *this;
}
///
ref Vector3d opOpAssign(string op : "-")(const Vector3d v) {
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
///
ref Vector3d opOpAssign(string op : "*")(int n) {
x *= n;
y *= n;
z *= n;
return *this;
}
Vector3d turnLeft() {
return Vector3d(z, y, -x);
}
Vector3d turnRight() {
return Vector3d(-z, y, x);
}
Vector3d turnUp() {
return Vector3d(x, -z, y);
}
Vector3d turnDown() {
return Vector3d(x, z, -y);
}
Vector3d move(DirEx dir) {
Vector3d res = this;
switch (dir) {
case DIR_NORTH:
res.z--;
break;
case DIR_SOUTH:
res.z++;
break;
case DIR_WEST:
res.x--;
break;
case DIR_EAST:
res.x++;
break;
case DIR_UP:
res.y++;
break;
case DIR_DOWN:
res.y--;
break;
default:
break;
}
return res;
}
};
const Vector3d ZERO3 = Vector3d(0, 0, 0);
struct Array(T) {
private:
int _length;
T[] _data;
public:
T * ptr(int index = 0) {
return _data.ptr + index;
}
void swap(ref Array v) {
int tmp;
tmp = _length; _length = v._length; v._length = tmp;
T[] ptmp;
ptmp = _data; _data = v._data; v._data = ptmp;
}
/// ensure capacity is enough to fit sz items
void reserve(int sz) {
sz += _length;
if (_data.length < sz) {
int oldsize = cast(int)_data.length;
int newsize = 1024;
while (newsize < sz)
newsize <<= 1;
_data.length = newsize;
for (int i = oldsize; i < newsize; i++)
_data[i] = T.init;
_data.assumeSafeAppend();
}
}
@property int length() {
return _length;
}
void append(ref const T value) {
if (_length >= _data.length)
reserve(_data.length == 0 ? 64 : _data.length * 2 - _length);
_data[_length++] = value;
}
void appendNoCheck(ref const T value) {
_data[_length++] = value;
}
/// appends same value several times, return pointer to appended items
T* append(ref const T value, int count) {
reserve(count);
int startLen = _length;
for (int i = 0; i < count; i++)
_data[_length++] = value;
return _data.ptr + startLen;
}
void clear() {
_length = 0;
}
T get(int index) {
return _data[index];
}
void set(int index, T value) {
_data[index] = value;
}
ref T opIndex(int index) {
return _data[index];
}
}
alias FloatArray = Array!(float);
alias IntArray = Array!(int);
alias CellArray = Array!(cell_t);
alias Vector2dArray = Array!(Vector2d);
alias Vector3dArray = Array!(Vector3d);
/// array with support of both positive and negative indexes
struct InfiniteArray(T) {
private:
T[] dataPlus;
T[] dataMinus;
int minIdx;
int maxIdx;
public:
@property int minIndex() { return minIdx; }
@property int maxIndex() { return maxIdx; }
void disposeFunction(T p) {
destroy(p);
}
~this() {
foreach(p; dataPlus)
if (p !is T.init)
disposeFunction(p);
foreach(p; dataMinus)
if (p !is T.init)
disposeFunction(p);
}
T get(int index) {
if (index >= 0) {
if (index >= maxIdx)
return T.init;
return dataPlus[index];
} else {
if (index <= minIdx)
return T.init;
return dataMinus[-index];
}
}
void set(int index, T value) {
if (index >= 0) {
if (index >= maxIdx) {
// extend array
if (index <= dataPlus.length) {
int oldsize = dataPlus.length;
int newsize = 1024;
while (newsize <= index)
newsize <<= 1;
dataPlus.length = newsize;
dataPlus.assumeSafeAppend;
for(int i = oldsize; i < newsize; i++)
dataPlus[i] = T.init;
}
maxIdx = index + 1;
}
if (dataPlus[index] !is T.init && dataPlus[index] !is value)
disposeFunction(dataPlus[index]);
dataPlus[index] = value;
} else {
if (index <= minIdx) {
// extend array
if (-index <= dataMinus.length) {
int oldsize = dataMinus.length;
int newsize = 1024;
while (newsize <= -index)
newsize <<= 1;
dataMinus.length = newsize;
dataMinus.assumeSafeAppend;
for(int i = oldsize; i < newsize; i++)
dataMinus[i] = T.init;
}
maxIdx = index - 1;
}
if (dataMinus[-index] !is T.init && dataMinus[-index] !is value)
disposeFunction(dataMinus[-index]);
dataMinus[-index] = value;
}
}
}
struct InfiniteMatrix(T) {
private:
int _minx = 0;
int _maxx = 0;
int _miny = 0;
int _maxy = 0;
int _size = 0;
int _sizeShift = 0;
T[] _data;
void resize(int newSizeShift) {
int newSize = (1<<newSizeShift);
T[] newdata;
newdata.length = newSize * 2 * newSize * 2;
newdata[0 .. $] = null;
for (int y = -_size; y < _size; y++) {
for (int x = -_size; x < _size; x++) {
T v = get(x, y);
if (x < -newSize || x >= newSize || y < -newSize || y >= newSize) {
// destory: // outside new size
destroy(v);
} else {
// move
newdata[((y + newSize) << (newSizeShift + 1)) | (x + newSize)] = v;
}
}
}
_data = newdata;
_size = newSize;
_sizeShift = newSizeShift;
}
int calcIndex(int x, int y) {
return ((y + _size) << (_sizeShift + 1)) + (x + _size);
}
public:
@property int size() { return _size; }
T get(int x, int y) {
if (x < -_size || x >= _size || y < -_size || y >= _size)
return null;
return _data[calcIndex(x, y)];
}
void set(int x, int y, T v) {
if (x < -_size || x >= _size || y < -_size || y >= _size) {
int newSizeShift = _sizeShift < 6 ? 6 : _sizeShift + 1;
for (; ;newSizeShift++) {
int sz = 1 << newSizeShift;
if (x < -sz || x >= sz || y < -sz || y >= sz)
continue;
break;
}
resize(newSizeShift);
}
int index = calcIndex(x, y);
if (_data[index])
destroy(_data[index]);
_data[index] = v;
}
~this() {
foreach(ref v; _data)
if (v)
destroy(v);
}
}
/+
template<typename T, T initValue, void(*disposeFunction)(T value) > struct InfiniteArray {
private:
T * data;
int size;
int minIdx;
int maxIdx;
void resize(int sz) {
if (sz < 128)
sz = 128;
else
sz = sz * 2;
if (size < sz) {
data = (T*)realloc(data, sizeof(T) * sz);
for (int i = size; i < sz; i++)
data[i] = initValue;
size = sz;
}
}
public:
int minIndex() {
return minIdx;
}
int maxIndex() {
return maxIdx;
}
void set(int index, T value) {
int idx = index < 0 ? (-index) * 2 - 1 : index * 2;
resize(idx + 1);
T oldData = data[idx];
if (oldData != initValue)
disposeFunction(oldData);
data[idx] = value;
if (minIdx > index)
minIdx = index;
if (maxIdx < index + 1)
maxIdx = index + 1;
}
T get(int index) {
if (index < minIdx || index >= maxIdx)
return initValue;
int idx = index < 0 ? (-index) * 2 - 1 : index * 2;
return data[idx];
}
InfiniteArray() : data(NULL), size(0), minIdx(0), maxIdx(0) {
}
~InfiniteArray() {
if (data) {
for (int i = 0; i < size; i++) {
if (data[i] != initValue)
disposeFunction(data[i]);
}
free(data);
}
data = NULL;
size = 0;
}
};
/// returns opposite direction to specified direction
Dir opposite(Dir d) {
return (Dir)(d ^ 1);
}
Dir turnLeft(Dir d) {
switch (d) {
case WEST:
return SOUTH;
case EAST:
return NORTH;
default:
case NORTH:
return WEST;
case SOUTH:
return EAST;
case UP:
return SOUTH;
case DOWN:
return NORTH;
}
}
Dir turnRight(Dir d) {
switch (d) {
case WEST:
return NORTH;
case EAST:
return SOUTH;
default:
case NORTH:
return EAST;
case SOUTH:
return WEST;
case UP:
return NORTH;
case DOWN:
return SOUTH;
}
}
Dir turnUp(Dir d) {
switch (d) {
case WEST:
return UP;
case EAST:
return UP;
default:
case NORTH:
return UP;
case SOUTH:
return UP;
case UP:
return SOUTH;
case DOWN:
return NORTH;
}
}
Dir turnDown(Dir d) {
switch (d) {
case WEST:
return DOWN;
case EAST:
return DOWN;
default:
case NORTH:
return DOWN;
case SOUTH:
return DOWN;
case UP:
return NORTH;
case DOWN:
return SOUTH;
}
}
class Direction {
this(int x, int y, int z) {
set(x, y, z);
}
this(Vector3d v) {
set(v);
}
this(Dir d) {
set(d);
}
this() {
set(0, 0, -1);
}
/// set by direction code
void set(Dir d);
/// set by vector
void set(int x, int y, int z);
/// set by vector
void set(Vector3d v) { set(v.x, v.y, v.z); }
void turnLeft() {
set(::turnLeft(dir));
}
void turnRight() {
set(::turnRight(dir));
}
void turnUp() {
set(::turnUp(dir));
}
void turnDown() {
set(::turnDown(dir));
}
Dir dir;
Vector3d forward;
Vector3d up;
Vector3d right;
Vector3d left;
Vector3d down;
Vector3d forwardUp;
Vector3d forwardDown;
Vector3d forwardLeft;
Vector3d forwardLeftUp;
Vector3d forwardLeftDown;
Vector3d forwardRight;
Vector3d forwardRightUp;
Vector3d forwardRightDown;
};
struct Position {
Vector3d pos;
Direction direction;
Position() {
}
Position(Position & p) : pos(p.pos), direction(p.direction) {
}
Position(Vector3d position, Vector3d dir) : pos(position), direction(dir) {
}
Vector2d calcPlaneCoords(Vector3d v) {
v = v - pos;
switch (direction.dir) {
default:
case NORTH:
return Vector2d(v.x, v.y);
case SOUTH:
return Vector2d(-v.x, v.y);
case EAST:
return Vector2d(v.z, v.y);
case WEST:
return Vector2d(-v.z, v.y);
case UP:
return Vector2d(-v.z, v.x);
case DOWN:
return Vector2d(v.z, v.x);
}
}
void turnLeft() {
direction.turnLeft();
}
void turnRight() {
direction.turnRight();
}
void turnUp() {
direction.turnUp();
}
void turnDown() {
direction.turnDown();
}
void forward(int step = 1) {
pos += direction.forward * step;
}
void backward(int step = 1) {
pos -= direction.forward * step;
}
};
struct CellToVisit {
union {
struct {
int index;
cell_t cell;
ubyte dir;
};
ulong data;
};
CellToVisit() : data(0) {}
CellToVisit(int idx, cell_t cellValue, DirEx direction) : index(idx), cell(cellValue), dir(direction) {}
CellToVisit(const CellToVisit & v) : data(v.data) {}
CellToVisit(lUInt64 v) : data(v) {}
inline CellToVisit& operator = (CellToVisit v) {
data = v.data;
return *this;
}
inline CellToVisit& operator = (lUInt64 v) {
data = v;
return *this;
}
};
struct VolumeData {
int MAX_DIST_BITS;
int ROW_BITS;
int MAX_DIST;
int ROW_SIZE;
int DATA_SIZE;
int ROW_MASK;
cell_t * _data;
int directionDelta[64];
int directionExDelta[26];
int mainDirectionDeltas[6][9];
int mainDirectionDeltasNoForward[6][9];
VolumeData(int distBits);
~VolumeData() {
delete[] _data;
}
int size() { return MAX_DIST; }
void clear() {
memset(_data, 0, sizeof(cell_t) * DATA_SIZE);
}
cell_t * ptr() { return _data; }
/// put cell w/o bounds checking, (0,0,0) is center of array
inline void put(Vector3d v, cell_t cell) {
_data[((v.y + MAX_DIST) << (ROW_BITS * 2)) | ((v.z + MAX_DIST) << ROW_BITS) | (v.x + MAX_DIST)] = cell;
}
/// v is zero based destination coordinates
void putLayer(Vector3d v, cell_t * layer, int dx, int dz, int stripe);
/// put cell w/o bounds checking
inline void put(int index, cell_t cell) {
_data[index] = cell;
}
/// read w/o bounds checking, (0,0,0) is center of array
inline cell_t get(Vector3d v) {
return _data[((v.y + MAX_DIST) << (ROW_BITS * 2)) | ((v.z + MAX_DIST) << ROW_BITS) | (v.x + MAX_DIST)];
}
inline cell_t get(int index) {
return _data[index];
}
/// get array index for point - (0,0,0) is center
inline int getIndex(Vector3d v) {
return ((v.y + MAX_DIST) << (ROW_BITS * 2)) | ((v.z + MAX_DIST) << ROW_BITS) | (v.x + MAX_DIST);
}
inline Vector3d indexToPoint(int index) {
return Vector3d((index & ROW_MASK) - MAX_DIST,
((index >> (ROW_BITS * 2)) & ROW_MASK) - MAX_DIST,
((index >> (ROW_BITS)) & ROW_MASK) - MAX_DIST);
}
inline int moveIndex(int oldIndex, DirMask direction) {
return oldIndex + directionDelta[direction];
}
inline int moveIndex(int oldIndex, DirEx direction) {
return oldIndex + directionExDelta[direction];
}
inline CellToVisit getNext(int index, DirEx direction, DirEx baseDir) {
int nextIndex = index + directionExDelta[direction];
return CellToVisit(nextIndex, _data[nextIndex], baseDir);
}
void getNearCellsForDirection(int index, DirEx direction, CellToVisit cells[9]);
void getNearCellsForDirectionNoForward(int index, DirEx direction, CellToVisit cells[9]);
void getNearCellsForDirection(int index, DirEx direction, cell_t cells[9]);
void getNearCellsForDirectionNoForward(int index, DirEx direction, cell_t cells[9]);
void fillLayer(int y, cell_t cell);
int * thisPlaneDirections(DirEx dir) { return mainDirectionDeltasNoForward[dir]; }
int * nextPlaneDirections(DirEx dir) { return mainDirectionDeltas[dir]; }
};
struct DirectionHelper {
DirEx dir;
IntArray oldcells;
IntArray newcells;
IntArray spreadcells;
int forwardCellCount;
void start(int index, DirEx direction);
void nextDistance();
void prepareSpreading();
};
class World;
class CellVisitor {
public:
virtual ~CellVisitor() {}
virtual void newDirection(Position & camPosition) { }
virtual void visitFace(World * world, Position & camPosition, Vector3d pos, cell_t cell, Dir face) { }
virtual void visit(World * world, Position & camPosition, Vector3d pos, cell_t cell, int visibleFaces) { }
}
struct VolumeVisitor {
World * world;
VolumeData * volume;
CellVisitor * visitor;
Position * position;
DirectionHelper helpers[6];
DirEx direction; // camera forward direction
DirEx oppdirection; // opposite direction
Vector3d dirvector;
int distance;
VolumeVisitor();
void init(World * w, Position * pos, VolumeData * data, CellVisitor * v);
~VolumeVisitor();
bool visitCell(int index, cell_t cell);
void appendNewCell(int index, int distance);
void visitPlaneForward(int startIndex, DirEx direction);
// move in forward direction
void visitPlaneSpread(int startIndex, DirEx direction);
void visitAll();
}
+/
immutable ulong RANDOM_MULTIPLIER = ((cast(ulong)1 << 48) - 1);
immutable ulong RANDOM_MASK = ((cast(ulong)1 << 48) - 1);
immutable ulong RANDOM_ADDEND = cast(ulong)0xB;
struct Random {
ulong seed;
//Random();
void setSeed(ulong value) {
seed = (value ^ RANDOM_MULTIPLIER) & RANDOM_MASK;
}
int next(int bits) {
seed = (seed * RANDOM_MULTIPLIER + RANDOM_ADDEND) & RANDOM_MASK;
return cast(int)(seed >> (48 - bits));
}
int nextInt() {
return next(31);
}
int nextInt(int n);
}
extern const Vector3d DIRECTION_VECTORS[6];

View File

@ -0,0 +1,106 @@
module dminer.core.world;
import dminer.core.minetypes;
const int MAX_VIEW_DISTANCE_BITS = 7;
const int MAX_VIEW_DISTANCE = (1 << MAX_VIEW_DISTANCE_BITS);
// Layer is 16x16 (CHUNK_DX_SHIFT x CHUNK_DX_SHIFT) cells
immutable int CHUNK_DX_SHIFT = 4;
immutable int CHUNK_DX = (1<<CHUNK_DX_SHIFT);
immutable int CHUNK_DX_MASK = (CHUNK_DX - 1);
immutable int CHUNK_DY_SHIFT = 7;
immutable int CHUNK_DY = (1<<CHUNK_DY_SHIFT);
immutable int CHUNK_DY_MASK = (CHUNK_DY - 1);
//extern bool HIGHLIGHT_GRID;
// Layer is 256x16x16 CHUNK_DY layers = CHUNK_DY * (CHUNK_DX_SHIFT x CHUNK_DX_SHIFT) cells
struct ChunkLayer {
private:
cell_t cells[CHUNK_DX * CHUNK_DX];
public:
cell_t* ptr(int x, int z) {
return &cells[(z << CHUNK_DX_SHIFT) + x];
}
cell_t get(int x, int z) {
return cells[(z << CHUNK_DX_SHIFT) + x];
}
void set(int x, int z, cell_t cell) {
cells[(z << CHUNK_DX_SHIFT) + x] = cell;
}
}
struct Chunk {
private:
ChunkLayer * layers[CHUNK_DY];
int bottomLayer = - 1;
int topLayer = -1;
public:
~this() {
for (int i = 0; i < CHUNK_DY; i++)
if (layers[i])
destroy(layers[i]);
}
int getMinLayer() { return bottomLayer; }
int getMaxLayer() { return topLayer; }
void updateMinMaxLayer(ref int minLayer, ref int maxLayer) {
if (minLayer == -1 || minLayer > bottomLayer)
minLayer = bottomLayer;
if (maxLayer == -1 || maxLayer < topLayer)
maxLayer = topLayer;
}
cell_t get(int x, int y, int z) {
//if (!this)
// return NO_CELL;
ChunkLayer * layer = layers[y & CHUNK_DY_MASK];
if (!layer)
return NO_CELL;
return layer.get(x & CHUNK_DX_MASK, z & CHUNK_DY_MASK);
}
void set(int x, int y, int z, cell_t cell) {
int layerIndex = y & CHUNK_DY_MASK;
ChunkLayer * layer = layers[layerIndex];
if (!layer) {
layer = new ChunkLayer();
layers[layerIndex] = layer;
if (topLayer == -1 || topLayer < layerIndex)
topLayer = layerIndex;
if (bottomLayer == -1 || bottomLayer > layerIndex)
bottomLayer = layerIndex;
}
layer.set(x & CHUNK_DX_MASK, z & CHUNK_DY_MASK, cell);
}
/// srcpos coords x, z are in chunk bounds
//void getCells(Vector3d srcpos, Vector3d dstpos, Vector3d size, VolumeData & buf);
}
struct ChunkMatrix {
private:
int minx;
int maxx;
int minz;
int maxz;
InfiniteMatrix!(Chunk *) matrix;
public:
@property int minX() { return minx; }
@property int maxX() { return maxx; }
@property int minZ() { return minz; }
@property int maxZ() { return maxz; }
Chunk * get(int x, int z) {
return matrix.get(x, z);
}
void set(int x, int z, Chunk * chunk) {
matrix.set(x, z, chunk);
if (minz > z)
minz = z;
if (maxz < z + 1)
maxz = z + 1;
if (minx > x)
minx = x;
if (maxx < x + 1)
maxx = x + 1;
}
}