update math3d

This commit is contained in:
Vadim Lopatin 2015-12-22 11:23:07 +03:00
parent bc5cee4341
commit 01d04ad99f
2 changed files with 240 additions and 29 deletions

View File

@ -248,28 +248,32 @@ static if (ENABLE_OPENGL) {
checkgl!glDisable(GL_CULL_FACE);
checkgl!glDisable(GL_DEPTH_TEST);
import gl3n.linalg;
glSupport.setPerspectiveProjection(windowRect, rc, 90.0f, 0.5f, 100.0f);
mat4 projectionMatrix = mat4.perspective(rc.width, rc.height, 90.0f, 0.5f, 100.0f);
mat4 viewMatrix = mat4.look_at(vec3(10, 10, 0), vec3(0, 0, 0), vec3(1, -1, 0));//translation(0.0f, 0.0f, 4.0f).rotatez(angle);
//import gl3n.linalg;
glSupport.setPerspectiveProjection(windowRect, rc, 45.0f, 0.5f, 100.0f);
//mat4 projectionMatrix = glSupport.projectionMatrix; //mat4.perspective(rc.width, rc.height, 90.0f, 0.5f, 100.0f);
mat4 projectionMatrix;
float aspectRatio = cast(float)rc.width / cast(float)rc.height;
projectionMatrix.setPerspective(45.0f, aspectRatio, 0.5f, 100.0f);
mat4 viewMatrix = 1.0f;
viewMatrix.lookAt(vec3(10, 10, 0), vec3(0, 0, 0), vec3(1, -1, 0));//translation(0.0f, 0.0f, 4.0f).rotatez(angle);
mat4 modelMatrix = mat4.identity;
mat4 m = projectionMatrix * viewMatrix * modelMatrix;
float[16] matrix;
for (int y = 0; y < 4; y++)
for (int x = 0; x < 4; x++)
matrix[y * 4 + x] = m[x][y];
//float[16] matrix;
//for (int y = 0; y < 4; y++)
// for (int x = 0; x < 4; x++)
// matrix[y * 4 + x] = m[x][y];
//matrix[x * 4 + y] = m[y][x];
Log.d("projectionViewModelMatrix qt: ", glSupport.projectionMatrix);
Log.d("projectionViewModelMatrix: ", matrix);
Log.d("(-1,-1,-1) * matrix: ", m * vec4(-1, -1, -1, 1));
Log.d("(1,1,1) * matrix: ", m * vec4(1, 1, 1, 1));
Log.d("(0,1,0) * matrix: ", m * vec4(0, 1, 0, 1));
Log.d("(1,0,0) * matrix: ", m * vec4(1, 0, 0, 1));
Log.d("(0,0,0) * matrix: ", m * vec4(0, 0, 0, 1));
Log.d("projectionViewModelMatrix: ", cast(float[16])m.m);
//Log.d("(-1,-1,-1) * matrix: ", m * vec4(-1, -1, -1, 1));
//Log.d("(1,1,1) * matrix: ", m * vec4(1, 1, 1, 1));
//Log.d("(0,1,0) * matrix: ", m * vec4(0, 1, 0, 1));
//Log.d("(1,0,0) * matrix: ", m * vec4(1, 0, 0, 1));
//Log.d("(0,0,0) * matrix: ", m * vec4(0, 0, 0, 1));
_program.execute(vertices, colors, texcoords, _tx.texture, true, matrix);
_program.execute(vertices, colors, texcoords, _tx.texture, true, m);
}
/// returns true is widget is being animated - need to call animate() and redraw
@property override bool animating() { return true; }

View File

@ -108,7 +108,7 @@ struct vec3 {
/// add value to all components of vector
vec3 opBinary(string op : "+")(float v) const {
vec3 res;
vec3 res = this;
res.vec[0] += v;
res.vec[1] += v;
res.vec[2] += v;
@ -116,7 +116,7 @@ struct vec3 {
}
/// multiply all components of vector by value
vec3 opBinary(string op : "*")(float v) const {
vec3 res;
vec3 res = this;
res.vec[0] *= v;
res.vec[1] *= v;
res.vec[2] *= v;
@ -124,7 +124,7 @@ struct vec3 {
}
/// subtract value from all components of vector
vec3 opBinary(string op : "-")(float v) const {
vec3 res;
vec3 res = this;
res.vec[0] -= v;
res.vec[1] -= v;
res.vec[2] -= v;
@ -132,7 +132,7 @@ struct vec3 {
}
/// divide all components of vector by value
vec3 opBinary(string op : "/")(float v) const {
vec3 res;
vec3 res = this;
res.vec[0] /= v;
res.vec[1] /= v;
res.vec[2] /= v;
@ -201,7 +201,7 @@ struct vec3 {
/// add value to all components of vector
vec3 opBinary(string op : "+")(const vec3 v) const {
vec3 res;
vec3 res = this;
res.vec[0] += v.vec[0];
res.vec[1] += v.vec[1];
res.vec[2] += v.vec[2];
@ -209,7 +209,7 @@ struct vec3 {
}
/// subtract value from all components of vector
vec3 opBinary(string op : "-")(const vec3 v) const {
vec3 res;
vec3 res = this;
res.vec[0] -= v.vec[0];
res.vec[1] -= v.vec[1];
res.vec[2] -= v.vec[2];
@ -228,6 +228,16 @@ struct vec3 {
return res;
}
/// returns vector with all components which are negative of components for this vector
vec3 opUnary(string op : "-")() const {
vec3 ret = this;
ret[0] = vec[0];
ret[1] = vec[1];
ret[2] = vec[2];
return ret;
}
/// sum of squares of all vector components
@property float magnitudeSquared() {
return vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
@ -252,6 +262,12 @@ struct vec3 {
return res;
}
/// cross product
static vec3 crossProduct(const vec3 v1, const vec3 v2) {
return vec3(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
}
/// 4 component vector
@ -380,7 +396,7 @@ struct vec4 {
/// add value to all components of vector
vec4 opBinary(string op : "+")(float v) const {
vec4 res;
vec4 res = this;
res.vec[0] += v;
res.vec[1] += v;
res.vec[2] += v;
@ -389,7 +405,7 @@ struct vec4 {
}
/// multiply all components of vector by value
vec4 opBinary(string op : "*")(float v) const {
vec4 res;
vec4 res = this;
res.vec[0] *= v;
res.vec[1] *= v;
res.vec[2] *= v;
@ -398,7 +414,7 @@ struct vec4 {
}
/// subtract value from all components of vector
vec4 opBinary(string op : "-")(float v) const {
vec4 res;
vec4 res = this;
res.vec[0] -= v;
res.vec[1] -= v;
res.vec[2] -= v;
@ -407,7 +423,7 @@ struct vec4 {
}
/// divide all components of vector by value
vec4 opBinary(string op : "/")(float v) const {
vec4 res;
vec4 res = this;
res.vec[0] /= v;
res.vec[1] /= v;
res.vec[2] /= v;
@ -485,7 +501,7 @@ struct vec4 {
/// add value to all components of vector
vec4 opBinary(string op : "+")(const vec4 v) const {
vec4 res;
vec4 res = this;
res.vec[0] += v.vec[0];
res.vec[1] += v.vec[1];
res.vec[2] += v.vec[2];
@ -494,7 +510,7 @@ struct vec4 {
}
/// subtract value from all components of vector
vec4 opBinary(string op : "-")(const vec4 v) const {
vec4 res;
vec4 res = this;
res.vec[0] -= v.vec[0];
res.vec[1] -= v.vec[1];
res.vec[2] -= v.vec[2];
@ -515,6 +531,18 @@ struct vec4 {
return res;
}
/// returns vector with all components which are negative of components for this vector
vec4 opUnary(string op : "-")() const {
vec4 ret = this;
ret[0] = vec[0];
ret[1] = vec[1];
ret[2] = vec[2];
ret[3] = vec[3];
return ret;
}
/// sum of squares of all vector components
@property float magnitudeSquared() {
return vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2] + vec[3]*vec[3];
@ -547,6 +575,10 @@ struct mat4 {
alias m this;
this(float v) {
setDiagonal(v);
}
this(const ref mat4 v) {
m[0..15] = v.m[0..15];
}
@ -558,6 +590,10 @@ struct mat4 {
m[0..15] = v.m[0..15];
return this;
}
ref mat4 opAssign(const mat4 v) {
m[0..15] = v.m[0..15];
return this;
}
ref mat4 opAssign(const float[16] v) {
m[0..15] = v[0..15];
return this;
@ -622,6 +658,130 @@ struct mat4 {
m[3*4 + 3] = 0.0f;
}
ref mat4 lookAt(const vec3 eye, const vec3 center, const vec3 up) {
vec3 forward = (center - eye).normalized();
vec3 side = vec3.crossProduct(forward, up).normalized();
vec3 upVector = vec3.crossProduct(side, forward);
mat4 m;
m.setIdentity();
m[0*4 + 0] = side.x;
m[1*4 + 0] = side.y;
m[2*4 + 0] = side.z;
m[3*4 + 0] = 0.0f;
m[0*4 + 1] = upVector.x;
m[1*4 + 1] = upVector.y;
m[2*4 + 1] = upVector.z;
m[3*4 + 1] = 0.0f;
m[0*4 + 2] = -forward.x;
m[1*4 + 2] = -forward.y;
m[2*4 + 2] = -forward.z;
m[3*4 + 2] = 0.0f;
m[0*4 + 3] = 0.0f;
m[1*4 + 3] = 0.0f;
m[2*4 + 3] = 0.0f;
m[3*4 + 3] = 1.0f;
this *= m;
translate(-eye);
return this;
}
ref mat4 setLookAt(const vec3 eye, const vec3 center, const vec3 up) {
setIdentity();
lookAt(eye, center, up);
return this;
}
ref mat4 translate(const vec3 v) {
m[3*4 + 0] += m[0*4 + 0] * v.x + m[1*4 + 0] * v.y + m[2*4 + 0] * v.z;
m[3*4 + 1] += m[0*4 + 1] * v.x + m[1*4 + 1] * v.y + m[2*4 + 1] * v.z;
m[3*4 + 2] += m[0*4 + 2] * v.x + m[1*4 + 2] * v.y + m[2*4 + 2] * v.z;
m[3*4 + 3] += m[0*4 + 3] * v.x + m[1*4 + 3] * v.y + m[2*4 + 3] * v.z;
return this;
}
/// multiply this matrix by another matrix
mat4 opBinary(string op : "*")(const ref mat4 m2) const {
return mul(this, m2);
}
/// multiply this matrix by another matrix
mat4 opOpAssign(string op : "*")(const ref mat4 m2) {
this = mul(this, m2);
return this;
}
/// multiply two matrices
static mat4 mul(const ref mat4 m1, const ref mat4 m2) {
mat4 m;
m.m[0*4 + 0] = m1.m[0*4 + 0] * m2.m[0*4 + 0] +
m1.m[1*4 + 0] * m2.m[0*4 + 1] +
m1.m[2*4 + 0] * m2.m[0*4 + 2] +
m1.m[3*4 + 0] * m2.m[0*4 + 3];
m.m[0*4 + 1] = m1.m[0*4 + 1] * m2.m[0*4 + 0] +
m1.m[1*4 + 1] * m2.m[0*4 + 1] +
m1.m[2*4 + 1] * m2.m[0*4 + 2] +
m1.m[3*4 + 1] * m2.m[0*4 + 3];
m.m[0*4 + 2] = m1.m[0*4 + 2] * m2.m[0*4 + 0] +
m1.m[1*4 + 2] * m2.m[0*4 + 1] +
m1.m[2*4 + 2] * m2.m[0*4 + 2] +
m1.m[3*4 + 2] * m2.m[0*4 + 3];
m.m[0*4 + 3] = m1.m[0*4 + 3] * m2.m[0*4 + 0] +
m1.m[1*4 + 3] * m2.m[0*4 + 1] +
m1.m[2*4 + 3] * m2.m[0*4 + 2] +
m1.m[3*4 + 3] * m2.m[0*4 + 3];
m.m[1*4 + 0] = m1.m[0*4 + 0] * m2.m[1*4 + 0] +
m1.m[1*4 + 0] * m2.m[1*4 + 1] +
m1.m[2*4 + 0] * m2.m[1*4 + 2] +
m1.m[3*4 + 0] * m2.m[1*4 + 3];
m.m[1*4 + 1] = m1.m[0*4 + 1] * m2.m[1*4 + 0] +
m1.m[1*4 + 1] * m2.m[1*4 + 1] +
m1.m[2*4 + 1] * m2.m[1*4 + 2] +
m1.m[3*4 + 1] * m2.m[1*4 + 3];
m.m[1*4 + 2] = m1.m[0*4 + 2] * m2.m[1*4 + 0] +
m1.m[1*4 + 2] * m2.m[1*4 + 1] +
m1.m[2*4 + 2] * m2.m[1*4 + 2] +
m1.m[3*4 + 2] * m2.m[1*4 + 3];
m.m[1*4 + 3] = m1.m[0*4 + 3] * m2.m[1*4 + 0] +
m1.m[1*4 + 3] * m2.m[1*4 + 1] +
m1.m[2*4 + 3] * m2.m[1*4 + 2] +
m1.m[3*4 + 3] * m2.m[1*4 + 3];
m.m[2*4 + 0] = m1.m[0*4 + 0] * m2.m[2*4 + 0] +
m1.m[1*4 + 0] * m2.m[2*4 + 1] +
m1.m[2*4 + 0] * m2.m[2*4 + 2] +
m1.m[3*4 + 0] * m2.m[2*4 + 3];
m.m[2*4 + 1] = m1.m[0*4 + 1] * m2.m[2*4 + 0] +
m1.m[1*4 + 1] * m2.m[2*4 + 1] +
m1.m[2*4 + 1] * m2.m[2*4 + 2] +
m1.m[3*4 + 1] * m2.m[2*4 + 3];
m.m[2*4 + 2] = m1.m[0*4 + 2] * m2.m[2*4 + 0] +
m1.m[1*4 + 2] * m2.m[2*4 + 1] +
m1.m[2*4 + 2] * m2.m[2*4 + 2] +
m1.m[3*4 + 2] * m2.m[2*4 + 3];
m.m[2*4 + 3] = m1.m[0*4 + 3] * m2.m[2*4 + 0] +
m1.m[1*4 + 3] * m2.m[2*4 + 1] +
m1.m[2*4 + 3] * m2.m[2*4 + 2] +
m1.m[3*4 + 3] * m2.m[2*4 + 3];
m.m[3*4 + 0] = m1.m[0*4 + 0] * m2.m[3*4 + 0] +
m1.m[1*4 + 0] * m2.m[3*4 + 1] +
m1.m[2*4 + 0] * m2.m[3*4 + 2] +
m1.m[3*4 + 0] * m2.m[3*4 + 3];
m.m[3*4 + 1] = m1.m[0*4 + 1] * m2.m[3*4 + 0] +
m1.m[1*4 + 1] * m2.m[3*4 + 1] +
m1.m[2*4 + 1] * m2.m[3*4 + 2] +
m1.m[3*4 + 1] * m2.m[3*4 + 3];
m.m[3*4 + 2] = m1.m[0*4 + 2] * m2.m[3*4 + 0] +
m1.m[1*4 + 2] * m2.m[3*4 + 1] +
m1.m[2*4 + 2] * m2.m[3*4 + 2] +
m1.m[3*4 + 2] * m2.m[3*4 + 3];
m.m[3*4 + 3] = m1.m[0*4 + 3] * m2.m[3*4 + 0] +
m1.m[1*4 + 3] * m2.m[3*4 + 1] +
m1.m[2*4 + 3] * m2.m[3*4 + 2] +
m1.m[3*4 + 3] * m2.m[3*4 + 3];
return m;
}
/// 2d index by row, col
ref float opIndex(int y, int x) {
return m[y*4 + x];
@ -642,31 +802,72 @@ struct mat4 {
return m[index];
}
/// set to identity
/// set to identity: fill all items of matrix with zero except main diagonal items which will be assigned to 1.0f
ref mat4 setIdentity() {
return setDiagonal(1.0f);
}
/// set to diagonal: fill all items of matrix with zero except main diagonal items which will be assigned to v
ref mat4 setDiagonal(float v) {
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
if (x == y)
m[y * 4 + x] = 1.0f;
m[y * 4 + x] = v;
else
m[y * 4 + x] = 0.0f;
}
}
return this;
}
/// fill all items of matrix with specified value
ref mat4 fill(float v) {
foreach(ref f; m)
f = v;
return this;
}
/// fill all items of matrix with zero
ref mat4 setZero() {
foreach(ref f; m)
f = 0.0f;
return this;
}
/// creates identity matrix
static mat4 identity() {
mat4 res;
return res.setIdentity();
}
/// creates zero matrix
static mat4 zero() {
mat4 res;
return res.setZero();
}
/// add value to all components of matrix
ref mat4 opOpAssign(string op : "+")(float v) {
foreach(ref item; m)
item += v;
return this;
}
/// multiply all components of matrix by value
ref mat4 opOpAssign(string op : "*")(float v) {
foreach(ref item; m)
item *= v;
return this;
}
/// subtract value from all components of matrix
ref mat4 opOpAssign(string op : "-")(float v) {
foreach(ref item; m)
item -= v;
return this;
}
/// divide all components of vector by matrix
ref mat4 opOpAssign(string op : "/")(float v) {
foreach(ref item; m)
item /= v;
return this;
}
}
@ -725,4 +926,10 @@ unittest {
float r;
r = m[1, 3];
m[2, 1] = 0.0f;
m += 1;
m -= 2;
m *= 3;
m /= 3;
m.translate(vec3(2, 3, 4));
m.setLookAt(vec3(5, 5, 5), vec3(0, 0, 0), vec3(-1, 1, 1));
}