9881 lines
326 KiB
C
9881 lines
326 KiB
C
/*
|
|
* Asterisk -- An open source telephony toolkit.
|
|
*
|
|
* Copyright (C) 1999 - 2008, Digium, Inc.
|
|
*
|
|
* Mark Spencer <markster@digium.com>
|
|
*
|
|
* See http://www.asterisk.org for more information about
|
|
* the Asterisk project. Please do not directly contact
|
|
* any of the maintainers of this project for assistance;
|
|
* the project provides a web site, mailing lists and IRC
|
|
* channels for your use.
|
|
*
|
|
* This program is free software, distributed under the terms of
|
|
* the GNU General Public License Version 2. See the LICENSE file
|
|
* at the top of the source tree.
|
|
*/
|
|
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief Supports RTP and RTCP with Symmetric RTP support for NAT traversal.
|
|
*
|
|
* \author Mark Spencer <markster@digium.com>
|
|
*
|
|
* \note RTP is defined in RFC 3550.
|
|
*
|
|
* \ingroup rtp_engines
|
|
*/
|
|
|
|
/*** MODULEINFO
|
|
<use type="external">openssl</use>
|
|
<use type="external">pjproject</use>
|
|
<support_level>core</support_level>
|
|
***/
|
|
|
|
#include "asterisk.h"
|
|
|
|
#include <arpa/nameser.h>
|
|
#include "asterisk/dns_core.h"
|
|
#include "asterisk/dns_internal.h"
|
|
#include "asterisk/dns_recurring.h"
|
|
|
|
#include <sys/time.h>
|
|
#include <signal.h>
|
|
#include <fcntl.h>
|
|
#include <math.h>
|
|
|
|
#ifdef HAVE_OPENSSL
|
|
#define OPENSSL_SUPPRESS_DEPRECATED 1
|
|
#include <openssl/opensslconf.h>
|
|
#include <openssl/opensslv.h>
|
|
#if !defined(OPENSSL_NO_SRTP) && (OPENSSL_VERSION_NUMBER >= 0x10001000L)
|
|
#include <openssl/ssl.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/bio.h>
|
|
#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
|
|
#include <openssl/bn.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_DH
|
|
#include <openssl/dh.h>
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
#include <pjlib.h>
|
|
#include <pjlib-util.h>
|
|
#include <pjnath.h>
|
|
#include <ifaddrs.h>
|
|
#endif
|
|
|
|
#include "asterisk/conversions.h"
|
|
#include "asterisk/options.h"
|
|
#include "asterisk/logger_category.h"
|
|
#include "asterisk/stun.h"
|
|
#include "asterisk/pbx.h"
|
|
#include "asterisk/frame.h"
|
|
#include "asterisk/format_cache.h"
|
|
#include "asterisk/channel.h"
|
|
#include "asterisk/acl.h"
|
|
#include "asterisk/config.h"
|
|
#include "asterisk/lock.h"
|
|
#include "asterisk/utils.h"
|
|
#include "asterisk/cli.h"
|
|
#include "asterisk/manager.h"
|
|
#include "asterisk/unaligned.h"
|
|
#include "asterisk/module.h"
|
|
#include "asterisk/rtp_engine.h"
|
|
#include "asterisk/smoother.h"
|
|
#include "asterisk/uuid.h"
|
|
#include "asterisk/test.h"
|
|
#include "asterisk/data_buffer.h"
|
|
#ifdef HAVE_PJPROJECT
|
|
#include "asterisk/res_pjproject.h"
|
|
#include "asterisk/security_events.h"
|
|
#endif
|
|
|
|
#define MAX_TIMESTAMP_SKEW 640
|
|
|
|
#define RTP_SEQ_MOD (1<<16) /*!< A sequence number can't be more than 16 bits */
|
|
#define RTCP_DEFAULT_INTERVALMS 5000 /*!< Default milli-seconds between RTCP reports we send */
|
|
#define RTCP_MIN_INTERVALMS 500 /*!< Min milli-seconds between RTCP reports we send */
|
|
#define RTCP_MAX_INTERVALMS 60000 /*!< Max milli-seconds between RTCP reports we send */
|
|
|
|
#define DEFAULT_RTP_START 5000 /*!< Default port number to start allocating RTP ports from */
|
|
#define DEFAULT_RTP_END 31000 /*!< Default maximum port number to end allocating RTP ports at */
|
|
|
|
#define MINIMUM_RTP_PORT 1024 /*!< Minimum port number to accept */
|
|
#define MAXIMUM_RTP_PORT 65535 /*!< Maximum port number to accept */
|
|
|
|
#define DEFAULT_TURN_PORT 3478
|
|
|
|
#define TURN_STATE_WAIT_TIME 2000
|
|
|
|
#define DEFAULT_RTP_SEND_BUFFER_SIZE 250 /*!< The initial size of the RTP send buffer */
|
|
#define MAXIMUM_RTP_SEND_BUFFER_SIZE (DEFAULT_RTP_SEND_BUFFER_SIZE + 200) /*!< Maximum RTP send buffer size */
|
|
#define DEFAULT_RTP_RECV_BUFFER_SIZE 20 /*!< The initial size of the RTP receiver buffer */
|
|
#define MAXIMUM_RTP_RECV_BUFFER_SIZE (DEFAULT_RTP_RECV_BUFFER_SIZE + 20) /*!< Maximum RTP receive buffer size */
|
|
#define OLD_PACKET_COUNT 1000 /*!< The number of previous packets that are considered old */
|
|
#define MISSING_SEQNOS_ADDED_TRIGGER 2 /*!< The number of immediate missing packets that will trigger an immediate NACK */
|
|
|
|
#define SEQNO_CYCLE_OVER 65536 /*!< The number after the maximum allowed sequence number */
|
|
|
|
/*! Full INTRA-frame Request / Fast Update Request (From RFC2032) */
|
|
#define RTCP_PT_FUR 192
|
|
/*! Sender Report (From RFC3550) */
|
|
#define RTCP_PT_SR AST_RTP_RTCP_SR
|
|
/*! Receiver Report (From RFC3550) */
|
|
#define RTCP_PT_RR AST_RTP_RTCP_RR
|
|
/*! Source Description (From RFC3550) */
|
|
#define RTCP_PT_SDES 202
|
|
/*! Goodbye (To remove SSRC's from tables) (From RFC3550) */
|
|
#define RTCP_PT_BYE 203
|
|
/*! Application defined (From RFC3550) */
|
|
#define RTCP_PT_APP 204
|
|
/* VP8: RTCP Feedback */
|
|
/*! Payload Specific Feed Back (From RFC4585 also RFC5104) */
|
|
#define RTCP_PT_PSFB AST_RTP_RTCP_PSFB
|
|
|
|
#define RTP_MTU 1200
|
|
#define DTMF_SAMPLE_RATE_MS 8 /*!< DTMF samples per millisecond */
|
|
|
|
#define DEFAULT_DTMF_TIMEOUT (150 * (8000 / 1000)) /*!< samples */
|
|
|
|
#define ZFONE_PROFILE_ID 0x505a
|
|
|
|
#define DEFAULT_LEARNING_MIN_SEQUENTIAL 4
|
|
/*!
|
|
* \brief Calculate the min learning duration in ms.
|
|
*
|
|
* \details
|
|
* The min supported packet size represents 10 ms and we need to account
|
|
* for some jitter and fast clocks while learning. Some messed up devices
|
|
* have very bad jitter for a small packet sample size. Jitter can also
|
|
* be introduced by the network itself.
|
|
*
|
|
* So we'll allow packets to come in every 9ms on average for fast clocking
|
|
* with the last one coming in 5ms early for jitter.
|
|
*/
|
|
#define CALC_LEARNING_MIN_DURATION(count) (((count) - 1) * 9 - 5)
|
|
#define DEFAULT_LEARNING_MIN_DURATION CALC_LEARNING_MIN_DURATION(DEFAULT_LEARNING_MIN_SEQUENTIAL)
|
|
|
|
#define SRTP_MASTER_KEY_LEN 16
|
|
#define SRTP_MASTER_SALT_LEN 14
|
|
#define SRTP_MASTER_LEN (SRTP_MASTER_KEY_LEN + SRTP_MASTER_SALT_LEN)
|
|
|
|
#define RTP_DTLS_ESTABLISHED -37
|
|
|
|
enum strict_rtp_state {
|
|
STRICT_RTP_OPEN = 0, /*! No RTP packets should be dropped, all sources accepted */
|
|
STRICT_RTP_LEARN, /*! Accept next packet as source */
|
|
STRICT_RTP_CLOSED, /*! Drop all RTP packets not coming from source that was learned */
|
|
};
|
|
|
|
enum strict_rtp_mode {
|
|
STRICT_RTP_NO = 0, /*! Don't adhere to any strict RTP rules */
|
|
STRICT_RTP_YES, /*! Strict RTP that restricts packets based on time and sequence number */
|
|
STRICT_RTP_SEQNO, /*! Strict RTP that restricts packets based on sequence number */
|
|
};
|
|
|
|
/*!
|
|
* \brief Strict RTP learning timeout time in milliseconds
|
|
*
|
|
* \note Set to 5 seconds to allow reinvite chains for direct media
|
|
* to settle before media actually starts to arrive. There may be a
|
|
* reinvite collision involved on the other leg.
|
|
*/
|
|
#define STRICT_RTP_LEARN_TIMEOUT 5000
|
|
|
|
#define DEFAULT_STRICT_RTP STRICT_RTP_YES /*!< Enabled by default */
|
|
#define DEFAULT_SRTP_REPLAY_PROTECTION 1
|
|
#define DEFAULT_ICESUPPORT 1
|
|
#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE 1
|
|
#define DEFAULT_DTLS_MTU 1200
|
|
|
|
extern struct ast_srtp_res *res_srtp;
|
|
extern struct ast_srtp_policy_res *res_srtp_policy;
|
|
|
|
static int dtmftimeout = DEFAULT_DTMF_TIMEOUT;
|
|
|
|
static int rtpstart = DEFAULT_RTP_START; /*!< First port for RTP sessions (set in rtp.conf) */
|
|
static int rtpend = DEFAULT_RTP_END; /*!< Last port for RTP sessions (set in rtp.conf) */
|
|
static int rtcpstats; /*!< Are we debugging RTCP? */
|
|
static int rtcpinterval = RTCP_DEFAULT_INTERVALMS; /*!< Time between rtcp reports in millisecs */
|
|
static struct ast_sockaddr rtpdebugaddr; /*!< Debug packets to/from this host */
|
|
static struct ast_sockaddr rtcpdebugaddr; /*!< Debug RTCP packets to/from this host */
|
|
static int rtpdebugport; /*!< Debug only RTP packets from IP or IP+Port if port is > 0 */
|
|
static int rtcpdebugport; /*!< Debug only RTCP packets from IP or IP+Port if port is > 0 */
|
|
#ifdef SO_NO_CHECK
|
|
static int nochecksums;
|
|
#endif
|
|
static int strictrtp = DEFAULT_STRICT_RTP; /*!< Only accept RTP frames from a defined source. If we receive an indication of a changing source, enter learning mode. */
|
|
static int learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL; /*!< Number of sequential RTP frames needed from a single source during learning mode to accept new source. */
|
|
static int learning_min_duration = DEFAULT_LEARNING_MIN_DURATION; /*!< Lowest acceptable timeout between the first and the last sequential RTP frame. */
|
|
static int srtp_replay_protection = DEFAULT_SRTP_REPLAY_PROTECTION;
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
static int dtls_mtu = DEFAULT_DTLS_MTU;
|
|
#endif
|
|
#ifdef HAVE_PJPROJECT
|
|
static int icesupport = DEFAULT_ICESUPPORT;
|
|
static int stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
|
|
static struct sockaddr_in stunaddr;
|
|
static pj_str_t turnaddr;
|
|
static int turnport = DEFAULT_TURN_PORT;
|
|
static pj_str_t turnusername;
|
|
static pj_str_t turnpassword;
|
|
static struct stasis_subscription *acl_change_sub = NULL;
|
|
static struct ast_sockaddr lo6 = { .len = 0 };
|
|
|
|
/*! ACL for ICE addresses */
|
|
static struct ast_acl_list *ice_acl = NULL;
|
|
static ast_rwlock_t ice_acl_lock = AST_RWLOCK_INIT_VALUE;
|
|
|
|
/*! ACL for STUN requests */
|
|
static struct ast_acl_list *stun_acl = NULL;
|
|
static ast_rwlock_t stun_acl_lock = AST_RWLOCK_INIT_VALUE;
|
|
|
|
/*! stunaddr recurring resolution */
|
|
static ast_rwlock_t stunaddr_lock = AST_RWLOCK_INIT_VALUE;
|
|
static struct ast_dns_query_recurring *stunaddr_resolver = NULL;
|
|
|
|
/*! \brief Pool factory used by pjlib to allocate memory. */
|
|
static pj_caching_pool cachingpool;
|
|
|
|
/*! \brief Global memory pool for configuration and timers */
|
|
static pj_pool_t *pool;
|
|
|
|
/*! \brief Global timer heap */
|
|
static pj_timer_heap_t *timer_heap;
|
|
|
|
/*! \brief Thread executing the timer heap */
|
|
static pj_thread_t *timer_thread;
|
|
|
|
/*! \brief Used to tell the timer thread to terminate */
|
|
static int timer_terminate;
|
|
|
|
/*! \brief Structure which contains ioqueue thread information */
|
|
struct ast_rtp_ioqueue_thread {
|
|
/*! \brief Pool used by the thread */
|
|
pj_pool_t *pool;
|
|
/*! \brief The thread handling the queue and timer heap */
|
|
pj_thread_t *thread;
|
|
/*! \brief Ioqueue which polls on sockets */
|
|
pj_ioqueue_t *ioqueue;
|
|
/*! \brief Timer heap for scheduled items */
|
|
pj_timer_heap_t *timerheap;
|
|
/*! \brief Termination request */
|
|
int terminate;
|
|
/*! \brief Current number of descriptors being waited on */
|
|
unsigned int count;
|
|
/*! \brief Linked list information */
|
|
AST_LIST_ENTRY(ast_rtp_ioqueue_thread) next;
|
|
};
|
|
|
|
/*! \brief List of ioqueue threads */
|
|
static AST_LIST_HEAD_STATIC(ioqueues, ast_rtp_ioqueue_thread);
|
|
|
|
/*! \brief Structure which contains ICE host candidate mapping information */
|
|
struct ast_ice_host_candidate {
|
|
struct ast_sockaddr local;
|
|
struct ast_sockaddr advertised;
|
|
unsigned int include_local;
|
|
AST_RWLIST_ENTRY(ast_ice_host_candidate) next;
|
|
};
|
|
|
|
/*! \brief List of ICE host candidate mappings */
|
|
static AST_RWLIST_HEAD_STATIC(host_candidates, ast_ice_host_candidate);
|
|
|
|
static char *generate_random_string(char *buf, size_t size);
|
|
|
|
#endif
|
|
|
|
#define FLAG_3389_WARNING (1 << 0)
|
|
#define FLAG_NAT_ACTIVE (3 << 1)
|
|
#define FLAG_NAT_INACTIVE (0 << 1)
|
|
#define FLAG_NAT_INACTIVE_NOWARN (1 << 1)
|
|
#define FLAG_NEED_MARKER_BIT (1 << 3)
|
|
#define FLAG_DTMF_COMPENSATE (1 << 4)
|
|
#define FLAG_REQ_LOCAL_BRIDGE_BIT (1 << 5)
|
|
|
|
#define TRANSPORT_SOCKET_RTP 0
|
|
#define TRANSPORT_SOCKET_RTCP 1
|
|
#define TRANSPORT_TURN_RTP 2
|
|
#define TRANSPORT_TURN_RTCP 3
|
|
|
|
/*! \brief RTP learning mode tracking information */
|
|
struct rtp_learning_info {
|
|
struct ast_sockaddr proposed_address; /*!< Proposed remote address for strict RTP */
|
|
struct timeval start; /*!< The time learning mode was started */
|
|
struct timeval received; /*!< The time of the first received packet */
|
|
int max_seq; /*!< The highest sequence number received */
|
|
int packets; /*!< The number of remaining packets before the source is accepted */
|
|
/*! Type of media stream carried by the RTP instance */
|
|
enum ast_media_type stream_type;
|
|
};
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
struct dtls_details {
|
|
SSL *ssl; /*!< SSL session */
|
|
BIO *read_bio; /*!< Memory buffer for reading */
|
|
BIO *write_bio; /*!< Memory buffer for writing */
|
|
enum ast_rtp_dtls_setup dtls_setup; /*!< Current setup state */
|
|
enum ast_rtp_dtls_connection connection; /*!< Whether this is a new or existing connection */
|
|
int timeout_timer; /*!< Scheduler id for timeout timer */
|
|
};
|
|
#endif
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
/*! An ao2 wrapper protecting the PJPROJECT ice structure with ref counting. */
|
|
struct ice_wrap {
|
|
pj_ice_sess *real_ice; /*!< ICE session */
|
|
};
|
|
#endif
|
|
|
|
/*! \brief Structure used for mapping an incoming SSRC to an RTP instance */
|
|
struct rtp_ssrc_mapping {
|
|
/*! \brief The received SSRC */
|
|
unsigned int ssrc;
|
|
/*! True if the SSRC is available. Otherwise, this is a placeholder mapping until the SSRC is set. */
|
|
unsigned int ssrc_valid;
|
|
/*! \brief The RTP instance this SSRC belongs to*/
|
|
struct ast_rtp_instance *instance;
|
|
};
|
|
|
|
/*! \brief Packet statistics (used for transport-cc) */
|
|
struct rtp_transport_wide_cc_packet_statistics {
|
|
/*! The transport specific sequence number */
|
|
unsigned int seqno;
|
|
/*! The time at which the packet was received */
|
|
struct timeval received;
|
|
/*! The delta between this packet and the previous */
|
|
int delta;
|
|
};
|
|
|
|
/*! \brief Statistics information (used for transport-cc) */
|
|
struct rtp_transport_wide_cc_statistics {
|
|
/*! A vector of packet statistics */
|
|
AST_VECTOR(, struct rtp_transport_wide_cc_packet_statistics) packet_statistics; /*!< Packet statistics, used for transport-cc */
|
|
/*! The last sequence number received */
|
|
unsigned int last_seqno;
|
|
/*! The last extended sequence number */
|
|
unsigned int last_extended_seqno;
|
|
/*! How many feedback packets have gone out */
|
|
unsigned int feedback_count;
|
|
/*! How many cycles have occurred for the sequence numbers */
|
|
unsigned int cycles;
|
|
/*! Scheduler id for periodic feedback transmission */
|
|
int schedid;
|
|
};
|
|
|
|
typedef struct {
|
|
unsigned int ts;
|
|
unsigned char is_set;
|
|
} optional_ts;
|
|
|
|
/*! \brief RTP session description */
|
|
struct ast_rtp {
|
|
int s;
|
|
/*! \note The f.subclass.format holds a ref. */
|
|
struct ast_frame f;
|
|
unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
|
|
unsigned int ssrc; /*!< Synchronization source, RFC 3550, page 10. */
|
|
unsigned int ssrc_orig; /*!< SSRC used before native bridge activated */
|
|
unsigned char ssrc_saved; /*!< indicates if ssrc_orig has a value */
|
|
char cname[AST_UUID_STR_LEN]; /*!< Our local CNAME */
|
|
unsigned int themssrc; /*!< Their SSRC */
|
|
unsigned int themssrc_valid; /*!< True if their SSRC is available. */
|
|
unsigned int lastts;
|
|
unsigned int lastividtimestamp;
|
|
unsigned int lastovidtimestamp;
|
|
unsigned int lastitexttimestamp;
|
|
unsigned int lastotexttimestamp;
|
|
int lastrxseqno; /*!< Last received sequence number, from the network */
|
|
int expectedrxseqno; /*!< Next expected sequence number, from the network */
|
|
AST_VECTOR(, int) missing_seqno; /*!< A vector of sequence numbers we never received */
|
|
int expectedseqno; /*!< Next expected sequence number, from the core */
|
|
unsigned short seedrxseqno; /*!< What sequence number did they start with?*/
|
|
unsigned int seedrxts; /*!< What RTP timestamp did they start with? */
|
|
unsigned int rxcount; /*!< How many packets have we received? */
|
|
unsigned int rxoctetcount; /*!< How many octets have we received? should be rxcount *160*/
|
|
unsigned int txcount; /*!< How many packets have we sent? */
|
|
unsigned int txoctetcount; /*!< How many octets have we sent? (txcount*160)*/
|
|
unsigned int cycles; /*!< Shifted count of sequence number cycles */
|
|
double rxjitter; /*!< Interarrival jitter at the moment in seconds to be reported */
|
|
double rxtransit; /*!< Relative transit time for previous packet */
|
|
struct ast_format *lasttxformat;
|
|
struct ast_format *lastrxformat;
|
|
|
|
/* DTMF Reception Variables */
|
|
char resp; /*!< The current digit being processed */
|
|
unsigned int last_seqno; /*!< The last known sequence number for any DTMF packet */
|
|
optional_ts last_end_timestamp; /*!< The last known timestamp received from an END packet */
|
|
unsigned int dtmf_duration; /*!< Total duration in samples since the digit start event */
|
|
unsigned int dtmf_timeout; /*!< When this timestamp is reached we consider END frame lost and forcibly abort digit */
|
|
unsigned int dtmfsamples;
|
|
enum ast_rtp_dtmf_mode dtmfmode; /*!< The current DTMF mode of the RTP stream */
|
|
/* DTMF Transmission Variables */
|
|
unsigned int lastdigitts;
|
|
char sending_digit; /*!< boolean - are we sending digits */
|
|
char send_digit; /*!< digit we are sending */
|
|
int send_payload;
|
|
int send_duration;
|
|
unsigned int flags;
|
|
struct timeval rxcore;
|
|
struct timeval txcore;
|
|
double drxcore; /*!< The double representation of the first received packet */
|
|
struct timeval dtmfmute;
|
|
struct ast_smoother *smoother;
|
|
unsigned short seqno; /*!< Sequence number, RFC 3550, page 13. */
|
|
struct ast_sched_context *sched;
|
|
struct ast_rtcp *rtcp;
|
|
unsigned int asymmetric_codec; /*!< Indicate if asymmetric send/receive codecs are allowed */
|
|
|
|
struct ast_rtp_instance *bundled; /*!< The RTP instance we are bundled to */
|
|
int stream_num; /*!< Stream num for this RTP instance */
|
|
AST_VECTOR(, struct rtp_ssrc_mapping) ssrc_mapping; /*!< Mappings of SSRC to RTP instances */
|
|
struct ast_sockaddr bind_address; /*!< Requested bind address for the sockets */
|
|
|
|
enum strict_rtp_state strict_rtp_state; /*!< Current state that strict RTP protection is in */
|
|
struct ast_sockaddr strict_rtp_address; /*!< Remote address information for strict RTP purposes */
|
|
|
|
/*
|
|
* Learning mode values based on pjmedia's probation mode. Many of these values are redundant to the above,
|
|
* but these are in place to keep learning mode sequence values sealed from their normal counterparts.
|
|
*/
|
|
struct rtp_learning_info rtp_source_learn; /* Learning mode track for the expected RTP source */
|
|
|
|
struct rtp_red *red;
|
|
|
|
struct ast_data_buffer *send_buffer; /*!< Buffer for storing sent packets for retransmission */
|
|
struct ast_data_buffer *recv_buffer; /*!< Buffer for storing received packets for retransmission */
|
|
|
|
struct rtp_transport_wide_cc_statistics transport_wide_cc; /*!< Transport-cc statistics information */
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
ast_cond_t cond; /*!< ICE/TURN condition for signaling */
|
|
|
|
struct ice_wrap *ice; /*!< ao2 wrapped ICE session */
|
|
enum ast_rtp_ice_role role; /*!< Our role in ICE negotiation */
|
|
pj_turn_sock *turn_rtp; /*!< RTP TURN relay */
|
|
pj_turn_sock *turn_rtcp; /*!< RTCP TURN relay */
|
|
pj_turn_state_t turn_state; /*!< Current state of the TURN relay session */
|
|
unsigned int passthrough:1; /*!< Bit to indicate that the received packet should be passed through */
|
|
unsigned int rtp_passthrough:1; /*!< Bit to indicate that TURN RTP should be passed through */
|
|
unsigned int rtcp_passthrough:1; /*!< Bit to indicate that TURN RTCP should be passed through */
|
|
unsigned int ice_port; /*!< Port that ICE was started with if it was previously started */
|
|
struct ast_sockaddr rtp_loop; /*!< Loopback address for forwarding RTP from TURN */
|
|
struct ast_sockaddr rtcp_loop; /*!< Loopback address for forwarding RTCP from TURN */
|
|
|
|
struct ast_rtp_ioqueue_thread *ioqueue; /*!< The ioqueue thread handling us */
|
|
|
|
char remote_ufrag[256]; /*!< The remote ICE username */
|
|
char remote_passwd[256]; /*!< The remote ICE password */
|
|
|
|
char local_ufrag[256]; /*!< The local ICE username */
|
|
char local_passwd[256]; /*!< The local ICE password */
|
|
|
|
struct ao2_container *ice_local_candidates; /*!< The local ICE candidates */
|
|
struct ao2_container *ice_active_remote_candidates; /*!< The remote ICE candidates */
|
|
struct ao2_container *ice_proposed_remote_candidates; /*!< Incoming remote ICE candidates for new session */
|
|
struct ast_sockaddr ice_original_rtp_addr; /*!< rtp address that ICE started on first session */
|
|
unsigned int ice_num_components; /*!< The number of ICE components */
|
|
unsigned int ice_media_started:1; /*!< ICE media has started, either on a valid pair or on ICE completion */
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
SSL_CTX *ssl_ctx; /*!< SSL context */
|
|
enum ast_rtp_dtls_verify dtls_verify; /*!< What to verify */
|
|
enum ast_srtp_suite suite; /*!< SRTP crypto suite */
|
|
enum ast_rtp_dtls_hash local_hash; /*!< Local hash used for the fingerprint */
|
|
char local_fingerprint[160]; /*!< Fingerprint of our certificate */
|
|
enum ast_rtp_dtls_hash remote_hash; /*!< Remote hash used for the fingerprint */
|
|
unsigned char remote_fingerprint[EVP_MAX_MD_SIZE]; /*!< Fingerprint of the peer certificate */
|
|
unsigned int rekey; /*!< Interval at which to renegotiate and rekey */
|
|
int rekeyid; /*!< Scheduled item id for rekeying */
|
|
struct dtls_details dtls; /*!< DTLS state information */
|
|
#endif
|
|
};
|
|
|
|
/*!
|
|
* \brief Structure defining an RTCP session.
|
|
*
|
|
* The concept "RTCP session" is not defined in RFC 3550, but since
|
|
* this structure is analogous to ast_rtp, which tracks a RTP session,
|
|
* it is logical to think of this as a RTCP session.
|
|
*
|
|
* RTCP packet is defined on page 9 of RFC 3550.
|
|
*
|
|
*/
|
|
struct ast_rtcp {
|
|
int rtcp_info;
|
|
int s; /*!< Socket */
|
|
struct ast_sockaddr us; /*!< Socket representation of the local endpoint. */
|
|
struct ast_sockaddr them; /*!< Socket representation of the remote endpoint. */
|
|
unsigned int soc; /*!< What they told us */
|
|
unsigned int spc; /*!< What they told us */
|
|
unsigned int themrxlsr; /*!< The middle 32 bits of the NTP timestamp in the last received SR*/
|
|
struct timeval rxlsr; /*!< Time when we got their last SR */
|
|
struct timeval txlsr; /*!< Time when we sent or last SR*/
|
|
unsigned int expected_prior; /*!< no. packets in previous interval */
|
|
unsigned int received_prior; /*!< no. packets received in previous interval */
|
|
int schedid; /*!< Schedid returned from ast_sched_add() to schedule RTCP-transmissions*/
|
|
unsigned int rr_count; /*!< number of RRs we've sent, not including report blocks in SR's */
|
|
unsigned int sr_count; /*!< number of SRs we've sent */
|
|
unsigned int lastsrtxcount; /*!< Transmit packet count when last SR sent */
|
|
double accumulated_transit; /*!< accumulated a-dlsr-lsr */
|
|
double rtt; /*!< Last reported rtt */
|
|
unsigned int reported_jitter; /*!< The contents of their last jitter entry in the RR */
|
|
unsigned int reported_lost; /*!< Reported lost packets in their RR */
|
|
|
|
double reported_maxjitter; /*!< Maximum reported interarrival jitter */
|
|
double reported_minjitter; /*!< Minimum reported interarrival jitter */
|
|
double reported_normdev_jitter; /*!< Mean of reported interarrival jitter */
|
|
double reported_stdev_jitter; /*!< Standard deviation of reported interarrival jitter */
|
|
unsigned int reported_jitter_count; /*!< Reported interarrival jitter count */
|
|
|
|
double reported_maxlost; /*!< Maximum reported packets lost */
|
|
double reported_minlost; /*!< Minimum reported packets lost */
|
|
double reported_normdev_lost; /*!< Mean of reported packets lost */
|
|
double reported_stdev_lost; /*!< Standard deviation of reported packets lost */
|
|
unsigned int reported_lost_count; /*!< Reported packets lost count */
|
|
|
|
double rxlost; /*!< Calculated number of lost packets since last report */
|
|
double maxrxlost; /*!< Maximum calculated lost number of packets between reports */
|
|
double minrxlost; /*!< Minimum calculated lost number of packets between reports */
|
|
double normdev_rxlost; /*!< Mean of calculated lost packets between reports */
|
|
double stdev_rxlost; /*!< Standard deviation of calculated lost packets between reports */
|
|
unsigned int rxlost_count; /*!< Calculated lost packets sample count */
|
|
|
|
double maxrxjitter; /*!< Maximum of calculated interarrival jitter */
|
|
double minrxjitter; /*!< Minimum of calculated interarrival jitter */
|
|
double normdev_rxjitter; /*!< Mean of calculated interarrival jitter */
|
|
double stdev_rxjitter; /*!< Standard deviation of calculated interarrival jitter */
|
|
unsigned int rxjitter_count; /*!< Calculated interarrival jitter count */
|
|
|
|
double maxrtt; /*!< Maximum of calculated round trip time */
|
|
double minrtt; /*!< Minimum of calculated round trip time */
|
|
double normdevrtt; /*!< Mean of calculated round trip time */
|
|
double stdevrtt; /*!< Standard deviation of calculated round trip time */
|
|
unsigned int rtt_count; /*!< Calculated round trip time count */
|
|
|
|
/* VP8: sequence number for the RTCP FIR FCI */
|
|
int firseq;
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
struct dtls_details dtls; /*!< DTLS state information */
|
|
#endif
|
|
|
|
/* Cached local address string allows us to generate
|
|
* RTCP stasis messages without having to look up our
|
|
* own address every time
|
|
*/
|
|
char *local_addr_str;
|
|
enum ast_rtp_instance_rtcp type;
|
|
/* Buffer for frames created during RTCP interpretation */
|
|
unsigned char frame_buf[512 + AST_FRIENDLY_OFFSET];
|
|
};
|
|
|
|
struct rtp_red {
|
|
struct ast_frame t140; /*!< Primary data */
|
|
struct ast_frame t140red; /*!< Redundant t140*/
|
|
unsigned char pt[AST_RED_MAX_GENERATION]; /*!< Payload types for redundancy data */
|
|
unsigned char ts[AST_RED_MAX_GENERATION]; /*!< Time stamps */
|
|
unsigned char len[AST_RED_MAX_GENERATION]; /*!< length of each generation */
|
|
int num_gen; /*!< Number of generations */
|
|
int schedid; /*!< Timer id */
|
|
int ti; /*!< How long to buffer data before send */
|
|
unsigned char t140red_data[64000];
|
|
unsigned char buf_data[64000]; /*!< buffered primary data */
|
|
int hdrlen;
|
|
long int prev_ts;
|
|
};
|
|
|
|
/*! \brief Structure for storing RTP packets for retransmission */
|
|
struct ast_rtp_rtcp_nack_payload {
|
|
size_t size; /*!< The size of the payload */
|
|
unsigned char buf[0]; /*!< The payload data */
|
|
};
|
|
|
|
AST_LIST_HEAD_NOLOCK(frame_list, ast_frame);
|
|
|
|
/* Forward Declarations */
|
|
static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data);
|
|
static int ast_rtp_destroy(struct ast_rtp_instance *instance);
|
|
static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit);
|
|
static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit);
|
|
static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration);
|
|
static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode);
|
|
static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance);
|
|
static void ast_rtp_update_source(struct ast_rtp_instance *instance);
|
|
static void ast_rtp_change_source(struct ast_rtp_instance *instance);
|
|
static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame);
|
|
static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp);
|
|
static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value);
|
|
static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp);
|
|
static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr);
|
|
static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations);
|
|
static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame);
|
|
static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1);
|
|
static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat);
|
|
static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1);
|
|
static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username);
|
|
static void ast_rtp_stop(struct ast_rtp_instance *instance);
|
|
static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char* desc);
|
|
static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level);
|
|
static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance);
|
|
static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance);
|
|
static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc);
|
|
static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num);
|
|
static int ast_rtp_extension_enable(struct ast_rtp_instance *instance, enum ast_rtp_extension extension);
|
|
static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent);
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
static int ast_rtp_activate(struct ast_rtp_instance *instance);
|
|
static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
|
|
static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
|
|
static int dtls_bio_write(BIO *bio, const char *buf, int len);
|
|
static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2);
|
|
static int dtls_bio_new(BIO *bio);
|
|
static int dtls_bio_free(BIO *bio);
|
|
|
|
#ifndef HAVE_OPENSSL_BIO_METHOD
|
|
static BIO_METHOD dtls_bio_methods = {
|
|
.type = BIO_TYPE_BIO,
|
|
.name = "rtp write",
|
|
.bwrite = dtls_bio_write,
|
|
.ctrl = dtls_bio_ctrl,
|
|
.create = dtls_bio_new,
|
|
.destroy = dtls_bio_free,
|
|
};
|
|
#else
|
|
static BIO_METHOD *dtls_bio_methods;
|
|
#endif
|
|
#endif
|
|
|
|
static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp);
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
static void stunaddr_resolve_callback(const struct ast_dns_query *query);
|
|
static int store_stunaddr_resolved(const struct ast_dns_query *query);
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
static int dtls_bio_new(BIO *bio)
|
|
{
|
|
#ifdef HAVE_OPENSSL_BIO_METHOD
|
|
BIO_set_init(bio, 1);
|
|
BIO_set_data(bio, NULL);
|
|
BIO_set_shutdown(bio, 0);
|
|
#else
|
|
bio->init = 1;
|
|
bio->ptr = NULL;
|
|
bio->flags = 0;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static int dtls_bio_free(BIO *bio)
|
|
{
|
|
/* The pointer on the BIO is that of the RTP instance. It is not reference counted as the BIO
|
|
* lifetime is tied to the instance, and actions on the BIO are taken by the thread handling
|
|
* the RTP instance - not another thread.
|
|
*/
|
|
#ifdef HAVE_OPENSSL_BIO_METHOD
|
|
BIO_set_data(bio, NULL);
|
|
#else
|
|
bio->ptr = NULL;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static int dtls_bio_write(BIO *bio, const char *buf, int len)
|
|
{
|
|
#ifdef HAVE_OPENSSL_BIO_METHOD
|
|
struct ast_rtp_instance *instance = BIO_get_data(bio);
|
|
#else
|
|
struct ast_rtp_instance *instance = bio->ptr;
|
|
#endif
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int rtcp = 0;
|
|
struct ast_sockaddr remote_address = { {0, } };
|
|
int ice;
|
|
int bytes_sent;
|
|
|
|
/* OpenSSL can't tolerate a packet not being sent, so we always state that
|
|
* we sent the packet. If it isn't then retransmission will occur.
|
|
*/
|
|
|
|
if (rtp->rtcp && rtp->rtcp->dtls.write_bio == bio) {
|
|
rtcp = 1;
|
|
ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
|
|
} else {
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
return len;
|
|
}
|
|
|
|
bytes_sent = __rtp_sendto(instance, (char *)buf, len, 0, &remote_address, rtcp, &ice, 0);
|
|
|
|
if (bytes_sent > 0 && ast_debug_dtls_packet_is_allowed) {
|
|
ast_debug(0, "(%p) DTLS - sent %s packet to %s%s (len %-6.6d)\n",
|
|
instance, rtcp ? "RTCP" : "RTP", ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "", bytes_sent);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2)
|
|
{
|
|
switch (cmd) {
|
|
case BIO_CTRL_FLUSH:
|
|
return 1;
|
|
case BIO_CTRL_DGRAM_QUERY_MTU:
|
|
return dtls_mtu;
|
|
case BIO_CTRL_WPENDING:
|
|
case BIO_CTRL_PENDING:
|
|
return 0L;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
/*! \brief Helper function which clears the ICE host candidate mapping */
|
|
static void host_candidate_overrides_clear(void)
|
|
{
|
|
struct ast_ice_host_candidate *candidate;
|
|
|
|
AST_RWLIST_WRLOCK(&host_candidates);
|
|
AST_RWLIST_TRAVERSE_SAFE_BEGIN(&host_candidates, candidate, next) {
|
|
AST_RWLIST_REMOVE_CURRENT(next);
|
|
ast_free(candidate);
|
|
}
|
|
AST_RWLIST_TRAVERSE_SAFE_END;
|
|
AST_RWLIST_UNLOCK(&host_candidates);
|
|
}
|
|
|
|
/*! \brief Helper function which updates an ast_sockaddr with the candidate used for the component */
|
|
static void update_address_with_ice_candidate(pj_ice_sess *ice, enum ast_rtp_ice_component_type component,
|
|
struct ast_sockaddr *cand_address)
|
|
{
|
|
char address[PJ_INET6_ADDRSTRLEN];
|
|
|
|
if (component < 1 || !ice->comp[component - 1].valid_check) {
|
|
return;
|
|
}
|
|
|
|
ast_sockaddr_parse(cand_address,
|
|
pj_sockaddr_print(&ice->comp[component - 1].valid_check->rcand->addr, address,
|
|
sizeof(address), 0), 0);
|
|
ast_sockaddr_set_port(cand_address,
|
|
pj_sockaddr_get_port(&ice->comp[component - 1].valid_check->rcand->addr));
|
|
}
|
|
|
|
/*! \brief Destructor for locally created ICE candidates */
|
|
static void ast_rtp_ice_candidate_destroy(void *obj)
|
|
{
|
|
struct ast_rtp_engine_ice_candidate *candidate = obj;
|
|
|
|
if (candidate->foundation) {
|
|
ast_free(candidate->foundation);
|
|
}
|
|
|
|
if (candidate->transport) {
|
|
ast_free(candidate->transport);
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_set_authentication(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int ice_attrb_reset = 0;
|
|
|
|
if (!ast_strlen_zero(ufrag)) {
|
|
if (!ast_strlen_zero(rtp->remote_ufrag) && strcmp(ufrag, rtp->remote_ufrag)) {
|
|
ice_attrb_reset = 1;
|
|
}
|
|
ast_copy_string(rtp->remote_ufrag, ufrag, sizeof(rtp->remote_ufrag));
|
|
}
|
|
|
|
if (!ast_strlen_zero(password)) {
|
|
if (!ast_strlen_zero(rtp->remote_passwd) && strcmp(password, rtp->remote_passwd)) {
|
|
ice_attrb_reset = 1;
|
|
}
|
|
ast_copy_string(rtp->remote_passwd, password, sizeof(rtp->remote_passwd));
|
|
}
|
|
|
|
/* If the remote ufrag or passwd changed, local ufrag and passwd need to regenerate */
|
|
if (ice_attrb_reset) {
|
|
generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
|
|
generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
|
|
}
|
|
}
|
|
|
|
static int ice_candidate_cmp(void *obj, void *arg, int flags)
|
|
{
|
|
struct ast_rtp_engine_ice_candidate *candidate1 = obj, *candidate2 = arg;
|
|
|
|
if (strcmp(candidate1->foundation, candidate2->foundation) ||
|
|
candidate1->id != candidate2->id ||
|
|
candidate1->type != candidate2->type ||
|
|
ast_sockaddr_cmp(&candidate1->address, &candidate2->address)) {
|
|
return 0;
|
|
}
|
|
|
|
return CMP_MATCH | CMP_STOP;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_add_remote_candidate(struct ast_rtp_instance *instance, const struct ast_rtp_engine_ice_candidate *candidate)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_rtp_engine_ice_candidate *remote_candidate;
|
|
|
|
/* ICE sessions only support UDP candidates */
|
|
if (strcasecmp(candidate->transport, "udp")) {
|
|
return;
|
|
}
|
|
|
|
if (!rtp->ice_proposed_remote_candidates) {
|
|
rtp->ice_proposed_remote_candidates = ao2_container_alloc_list(
|
|
AO2_ALLOC_OPT_LOCK_MUTEX, 0, NULL, ice_candidate_cmp);
|
|
if (!rtp->ice_proposed_remote_candidates) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If this is going to exceed the maximum number of ICE candidates don't even add it */
|
|
if (ao2_container_count(rtp->ice_proposed_remote_candidates) == PJ_ICE_MAX_CAND) {
|
|
return;
|
|
}
|
|
|
|
if (!(remote_candidate = ao2_alloc(sizeof(*remote_candidate), ast_rtp_ice_candidate_destroy))) {
|
|
return;
|
|
}
|
|
|
|
remote_candidate->foundation = ast_strdup(candidate->foundation);
|
|
remote_candidate->id = candidate->id;
|
|
remote_candidate->transport = ast_strdup(candidate->transport);
|
|
remote_candidate->priority = candidate->priority;
|
|
ast_sockaddr_copy(&remote_candidate->address, &candidate->address);
|
|
ast_sockaddr_copy(&remote_candidate->relay_address, &candidate->relay_address);
|
|
remote_candidate->type = candidate->type;
|
|
|
|
ast_debug_ice(2, "(%p) ICE add remote candidate\n", instance);
|
|
|
|
ao2_link(rtp->ice_proposed_remote_candidates, remote_candidate);
|
|
ao2_ref(remote_candidate, -1);
|
|
}
|
|
|
|
AST_THREADSTORAGE(pj_thread_storage);
|
|
|
|
/*! \brief Function used to check if the calling thread is registered with pjlib. If it is not it will be registered. */
|
|
static void pj_thread_register_check(void)
|
|
{
|
|
pj_thread_desc *desc;
|
|
pj_thread_t *thread;
|
|
|
|
if (pj_thread_is_registered() == PJ_TRUE) {
|
|
return;
|
|
}
|
|
|
|
desc = ast_threadstorage_get(&pj_thread_storage, sizeof(pj_thread_desc));
|
|
if (!desc) {
|
|
ast_log(LOG_ERROR, "Could not get thread desc from thread-local storage. Expect awful things to occur\n");
|
|
return;
|
|
}
|
|
pj_bzero(*desc, sizeof(*desc));
|
|
|
|
if (pj_thread_register("Asterisk Thread", *desc, &thread) != PJ_SUCCESS) {
|
|
ast_log(LOG_ERROR, "Coudln't register thread with PJLIB.\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
|
|
int port, int replace);
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_stop(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ice_wrap *ice;
|
|
|
|
ice = rtp->ice;
|
|
rtp->ice = NULL;
|
|
if (ice) {
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
ao2_ref(ice, -1);
|
|
ao2_lock(instance);
|
|
ast_debug_ice(2, "(%p) ICE stopped\n", instance);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief ao2 ICE wrapper object destructor.
|
|
*
|
|
* \param vdoomed Object being destroyed.
|
|
*
|
|
* \note The associated struct ast_rtp_instance object must not
|
|
* be locked when unreffing the object. Otherwise we could
|
|
* deadlock trying to destroy the PJPROJECT ICE structure.
|
|
*/
|
|
static void ice_wrap_dtor(void *vdoomed)
|
|
{
|
|
struct ice_wrap *ice = vdoomed;
|
|
|
|
if (ice->real_ice) {
|
|
pj_thread_register_check();
|
|
|
|
pj_ice_sess_destroy(ice->real_ice);
|
|
}
|
|
}
|
|
|
|
static void ast2pj_rtp_ice_role(enum ast_rtp_ice_role ast_role, enum pj_ice_sess_role *pj_role)
|
|
{
|
|
switch (ast_role) {
|
|
case AST_RTP_ICE_ROLE_CONTROLLED:
|
|
*pj_role = PJ_ICE_SESS_ROLE_CONTROLLED;
|
|
break;
|
|
case AST_RTP_ICE_ROLE_CONTROLLING:
|
|
*pj_role = PJ_ICE_SESS_ROLE_CONTROLLING;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void pj2ast_rtp_ice_role(enum pj_ice_sess_role pj_role, enum ast_rtp_ice_role *ast_role)
|
|
{
|
|
switch (pj_role) {
|
|
case PJ_ICE_SESS_ROLE_CONTROLLED:
|
|
*ast_role = AST_RTP_ICE_ROLE_CONTROLLED;
|
|
return;
|
|
case PJ_ICE_SESS_ROLE_CONTROLLING:
|
|
*ast_role = AST_RTP_ICE_ROLE_CONTROLLING;
|
|
return;
|
|
case PJ_ICE_SESS_ROLE_UNKNOWN:
|
|
/* Don't change anything */
|
|
return;
|
|
default:
|
|
/* If we aren't explicitly handling something, it's a bug */
|
|
ast_assert(0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ice_reset_session(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int res;
|
|
|
|
ast_debug_ice(3, "(%p) ICE resetting\n", instance);
|
|
if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
|
|
ast_debug_ice(3, " (%p) ICE nevermind, not ready for a reset\n", instance);
|
|
return 0;
|
|
}
|
|
|
|
ast_debug_ice(3, "(%p) ICE recreating ICE session %s (%d)\n",
|
|
instance, ast_sockaddr_stringify(&rtp->ice_original_rtp_addr), rtp->ice_port);
|
|
res = ice_create(instance, &rtp->ice_original_rtp_addr, rtp->ice_port, 1);
|
|
if (!res) {
|
|
/* Use the current expected role for the ICE session */
|
|
enum pj_ice_sess_role role = PJ_ICE_SESS_ROLE_UNKNOWN;
|
|
ast2pj_rtp_ice_role(rtp->role, &role);
|
|
pj_ice_sess_change_role(rtp->ice->real_ice, role);
|
|
}
|
|
|
|
/* If we only have one component now, and we previously set up TURN for RTCP,
|
|
* we need to destroy that TURN socket.
|
|
*/
|
|
if (rtp->ice_num_components == 1 && rtp->turn_rtcp) {
|
|
struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
|
|
struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
|
|
|
|
rtp->turn_state = PJ_TURN_STATE_NULL;
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
pj_turn_sock_destroy(rtp->turn_rtcp);
|
|
ao2_lock(instance);
|
|
while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
|
|
ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
|
|
}
|
|
}
|
|
|
|
rtp->ice_media_started = 0;
|
|
|
|
return res;
|
|
}
|
|
|
|
static int ice_candidates_compare(struct ao2_container *left, struct ao2_container *right)
|
|
{
|
|
struct ao2_iterator i;
|
|
struct ast_rtp_engine_ice_candidate *right_candidate;
|
|
|
|
if (ao2_container_count(left) != ao2_container_count(right)) {
|
|
return -1;
|
|
}
|
|
|
|
i = ao2_iterator_init(right, 0);
|
|
while ((right_candidate = ao2_iterator_next(&i))) {
|
|
struct ast_rtp_engine_ice_candidate *left_candidate = ao2_find(left, right_candidate, OBJ_POINTER);
|
|
|
|
if (!left_candidate) {
|
|
ao2_ref(right_candidate, -1);
|
|
ao2_iterator_destroy(&i);
|
|
return -1;
|
|
}
|
|
|
|
ao2_ref(left_candidate, -1);
|
|
ao2_ref(right_candidate, -1);
|
|
}
|
|
ao2_iterator_destroy(&i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_start(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
pj_str_t ufrag = pj_str(rtp->remote_ufrag), passwd = pj_str(rtp->remote_passwd);
|
|
pj_ice_sess_cand candidates[PJ_ICE_MAX_CAND];
|
|
struct ao2_iterator i;
|
|
struct ast_rtp_engine_ice_candidate *candidate;
|
|
int cand_cnt = 0, has_rtp = 0, has_rtcp = 0;
|
|
|
|
if (!rtp->ice || !rtp->ice_proposed_remote_candidates) {
|
|
return;
|
|
}
|
|
|
|
/* Check for equivalence in the lists */
|
|
if (rtp->ice_active_remote_candidates &&
|
|
!ice_candidates_compare(rtp->ice_proposed_remote_candidates, rtp->ice_active_remote_candidates)) {
|
|
ast_debug_ice(2, "(%p) ICE proposed equals active candidates\n", instance);
|
|
ao2_cleanup(rtp->ice_proposed_remote_candidates);
|
|
rtp->ice_proposed_remote_candidates = NULL;
|
|
/* If this ICE session is being preserved then go back to the role it currently is */
|
|
pj2ast_rtp_ice_role(rtp->ice->real_ice->role, &rtp->role);
|
|
return;
|
|
}
|
|
|
|
/* Out with the old, in with the new */
|
|
ao2_cleanup(rtp->ice_active_remote_candidates);
|
|
rtp->ice_active_remote_candidates = rtp->ice_proposed_remote_candidates;
|
|
rtp->ice_proposed_remote_candidates = NULL;
|
|
|
|
ast_debug_ice(2, "(%p) ICE start\n", instance);
|
|
|
|
/* Reset the ICE session. Is this going to work? */
|
|
if (ice_reset_session(instance)) {
|
|
ast_log(LOG_NOTICE, "(%p) ICE failed to create replacement session\n", instance);
|
|
return;
|
|
}
|
|
|
|
pj_thread_register_check();
|
|
|
|
i = ao2_iterator_init(rtp->ice_active_remote_candidates, 0);
|
|
|
|
while ((candidate = ao2_iterator_next(&i)) && (cand_cnt < PJ_ICE_MAX_CAND)) {
|
|
pj_str_t address;
|
|
|
|
/* there needs to be at least one rtp and rtcp candidate in the list */
|
|
has_rtp |= candidate->id == AST_RTP_ICE_COMPONENT_RTP;
|
|
has_rtcp |= candidate->id == AST_RTP_ICE_COMPONENT_RTCP;
|
|
|
|
pj_strdup2(rtp->ice->real_ice->pool, &candidates[cand_cnt].foundation,
|
|
candidate->foundation);
|
|
candidates[cand_cnt].comp_id = candidate->id;
|
|
candidates[cand_cnt].prio = candidate->priority;
|
|
|
|
pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->address)), &candidates[cand_cnt].addr);
|
|
|
|
if (!ast_sockaddr_isnull(&candidate->relay_address)) {
|
|
pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->relay_address)), &candidates[cand_cnt].rel_addr);
|
|
}
|
|
|
|
if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_HOST) {
|
|
candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_HOST;
|
|
} else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_SRFLX) {
|
|
candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_SRFLX;
|
|
} else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_RELAYED) {
|
|
candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_RELAYED;
|
|
}
|
|
|
|
if (candidate->id == AST_RTP_ICE_COMPONENT_RTP && rtp->turn_rtp) {
|
|
ast_debug_ice(2, "(%p) ICE RTP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
pj_turn_sock_set_perm(rtp->turn_rtp, 1, &candidates[cand_cnt].addr, 1);
|
|
ao2_lock(instance);
|
|
} else if (candidate->id == AST_RTP_ICE_COMPONENT_RTCP && rtp->turn_rtcp) {
|
|
ast_debug_ice(2, "(%p) ICE RTCP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
pj_turn_sock_set_perm(rtp->turn_rtcp, 1, &candidates[cand_cnt].addr, 1);
|
|
ao2_lock(instance);
|
|
}
|
|
|
|
cand_cnt++;
|
|
ao2_ref(candidate, -1);
|
|
}
|
|
|
|
ao2_iterator_destroy(&i);
|
|
|
|
if (cand_cnt < ao2_container_count(rtp->ice_active_remote_candidates)) {
|
|
ast_log(LOG_WARNING, "(%p) ICE lost %d candidates. Consider increasing PJ_ICE_MAX_CAND in PJSIP\n",
|
|
instance, ao2_container_count(rtp->ice_active_remote_candidates) - cand_cnt);
|
|
}
|
|
|
|
if (!has_rtp) {
|
|
ast_log(LOG_WARNING, "(%p) ICE no RTP candidates; skipping checklist\n", instance);
|
|
}
|
|
|
|
/* If we're only dealing with one ICE component, then we don't care about the lack of RTCP candidates */
|
|
if (!has_rtcp && rtp->ice_num_components > 1) {
|
|
ast_log(LOG_WARNING, "(%p) ICE no RTCP candidates; skipping checklist\n", instance);
|
|
}
|
|
|
|
if (rtp->ice && has_rtp && (has_rtcp || rtp->ice_num_components == 1)) {
|
|
pj_status_t res;
|
|
char reason[80];
|
|
struct ice_wrap *ice;
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ice = rtp->ice;
|
|
ao2_ref(ice, +1);
|
|
ao2_unlock(instance);
|
|
res = pj_ice_sess_create_check_list(ice->real_ice, &ufrag, &passwd, cand_cnt, &candidates[0]);
|
|
if (res == PJ_SUCCESS) {
|
|
ast_debug_ice(2, "(%p) ICE successfully created checklist\n", instance);
|
|
ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: SUCCESS");
|
|
pj_ice_sess_start_check(ice->real_ice);
|
|
pj_timer_heap_poll(timer_heap, NULL);
|
|
ao2_ref(ice, -1);
|
|
ao2_lock(instance);
|
|
rtp->strict_rtp_state = STRICT_RTP_OPEN;
|
|
return;
|
|
}
|
|
ao2_ref(ice, -1);
|
|
ao2_lock(instance);
|
|
|
|
pj_strerror(res, reason, sizeof(reason));
|
|
ast_log(LOG_WARNING, "(%p) ICE failed to create session check list: %s\n", instance, reason);
|
|
}
|
|
|
|
ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: FAILURE");
|
|
|
|
/* even though create check list failed don't stop ice as
|
|
it might still work */
|
|
/* however we do need to reset remote candidates since
|
|
this function may be re-entered */
|
|
ao2_ref(rtp->ice_active_remote_candidates, -1);
|
|
rtp->ice_active_remote_candidates = NULL;
|
|
if (rtp->ice) {
|
|
rtp->ice->real_ice->rcand_cnt = rtp->ice->real_ice->clist.count = 0;
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static const char *ast_rtp_ice_get_ufrag(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->local_ufrag;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static const char *ast_rtp_ice_get_password(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->local_passwd;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static struct ao2_container *ast_rtp_ice_get_local_candidates(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp->ice_local_candidates) {
|
|
ao2_ref(rtp->ice_local_candidates, +1);
|
|
}
|
|
|
|
return rtp->ice_local_candidates;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_lite(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (!rtp->ice) {
|
|
return;
|
|
}
|
|
|
|
pj_thread_register_check();
|
|
|
|
pj_ice_sess_change_role(rtp->ice->real_ice, PJ_ICE_SESS_ROLE_CONTROLLING);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_set_role(struct ast_rtp_instance *instance, enum ast_rtp_ice_role role)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (!rtp->ice) {
|
|
ast_debug_ice(3, "(%p) ICE set role failed; no ice instance\n", instance);
|
|
return;
|
|
}
|
|
|
|
rtp->role = role;
|
|
|
|
if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
|
|
pj_thread_register_check();
|
|
ast_debug_ice(2, "(%p) ICE set role to %s\n",
|
|
instance, role == AST_RTP_ICE_ROLE_CONTROLLED ? "CONTROLLED" : "CONTROLLING");
|
|
pj_ice_sess_change_role(rtp->ice->real_ice, role == AST_RTP_ICE_ROLE_CONTROLLED ?
|
|
PJ_ICE_SESS_ROLE_CONTROLLED : PJ_ICE_SESS_ROLE_CONTROLLING);
|
|
} else {
|
|
ast_debug_ice(2, "(%p) ICE not setting role because state is %s\n",
|
|
instance, rtp->ice->real_ice->is_nominating ? "nominating" : "complete");
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_add_cand(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
|
|
unsigned comp_id, unsigned transport_id, pj_ice_cand_type type, pj_uint16_t local_pref,
|
|
const pj_sockaddr_t *addr, const pj_sockaddr_t *base_addr, const pj_sockaddr_t *rel_addr,
|
|
int addr_len)
|
|
{
|
|
pj_str_t foundation;
|
|
struct ast_rtp_engine_ice_candidate *candidate, *existing;
|
|
struct ice_wrap *ice;
|
|
char address[PJ_INET6_ADDRSTRLEN];
|
|
pj_status_t status;
|
|
|
|
if (!rtp->ice) {
|
|
return;
|
|
}
|
|
|
|
pj_thread_register_check();
|
|
|
|
pj_ice_calc_foundation(rtp->ice->real_ice->pool, &foundation, type, addr);
|
|
|
|
if (!rtp->ice_local_candidates) {
|
|
rtp->ice_local_candidates = ao2_container_alloc_list(AO2_ALLOC_OPT_LOCK_MUTEX, 0,
|
|
NULL, ice_candidate_cmp);
|
|
if (!rtp->ice_local_candidates) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!(candidate = ao2_alloc(sizeof(*candidate), ast_rtp_ice_candidate_destroy))) {
|
|
return;
|
|
}
|
|
|
|
candidate->foundation = ast_strndup(pj_strbuf(&foundation), pj_strlen(&foundation));
|
|
candidate->id = comp_id;
|
|
candidate->transport = ast_strdup("UDP");
|
|
|
|
ast_sockaddr_parse(&candidate->address, pj_sockaddr_print(addr, address, sizeof(address), 0), 0);
|
|
ast_sockaddr_set_port(&candidate->address, pj_sockaddr_get_port(addr));
|
|
|
|
if (rel_addr) {
|
|
ast_sockaddr_parse(&candidate->relay_address, pj_sockaddr_print(rel_addr, address, sizeof(address), 0), 0);
|
|
ast_sockaddr_set_port(&candidate->relay_address, pj_sockaddr_get_port(rel_addr));
|
|
}
|
|
|
|
if (type == PJ_ICE_CAND_TYPE_HOST) {
|
|
candidate->type = AST_RTP_ICE_CANDIDATE_TYPE_HOST;
|
|
} else if (type == PJ_ICE_CAND_TYPE_SRFLX) {
|
|
candidate->type = AST_RTP_ICE_CANDIDATE_TYPE_SRFLX;
|
|
} else if (type == PJ_ICE_CAND_TYPE_RELAYED) {
|
|
candidate->type = AST_RTP_ICE_CANDIDATE_TYPE_RELAYED;
|
|
}
|
|
|
|
if ((existing = ao2_find(rtp->ice_local_candidates, candidate, OBJ_POINTER))) {
|
|
ao2_ref(existing, -1);
|
|
ao2_ref(candidate, -1);
|
|
return;
|
|
}
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ice = rtp->ice;
|
|
ao2_ref(ice, +1);
|
|
ao2_unlock(instance);
|
|
status = pj_ice_sess_add_cand(ice->real_ice, comp_id, transport_id, type, local_pref,
|
|
&foundation, addr, base_addr, rel_addr, addr_len, NULL);
|
|
ao2_ref(ice, -1);
|
|
ao2_lock(instance);
|
|
if (!rtp->ice || status != PJ_SUCCESS) {
|
|
ast_debug_ice(2, "(%p) ICE unable to add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
|
|
&candidate->address), candidate->priority);
|
|
ao2_ref(candidate, -1);
|
|
return;
|
|
}
|
|
|
|
/* By placing the candidate into the ICE session it will have produced the priority, so update the local candidate with it */
|
|
candidate->priority = rtp->ice->real_ice->lcand[rtp->ice->real_ice->lcand_cnt - 1].prio;
|
|
|
|
ast_debug_ice(2, "(%p) ICE add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
|
|
&candidate->address), candidate->priority);
|
|
|
|
ao2_link(rtp->ice_local_candidates, candidate);
|
|
ao2_ref(candidate, -1);
|
|
}
|
|
|
|
/* PJPROJECT TURN callback */
|
|
static void ast_rtp_on_turn_rx_rtp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
|
|
{
|
|
struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ice_wrap *ice;
|
|
pj_status_t status;
|
|
|
|
ao2_lock(instance);
|
|
ice = ao2_bump(rtp->ice);
|
|
ao2_unlock(instance);
|
|
|
|
if (ice) {
|
|
status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTP,
|
|
TRANSPORT_TURN_RTP, pkt, pkt_len, peer_addr, addr_len);
|
|
ao2_ref(ice, -1);
|
|
if (status != PJ_SUCCESS) {
|
|
char buf[100];
|
|
|
|
pj_strerror(status, buf, sizeof(buf));
|
|
ast_log(LOG_WARNING, "(%p) ICE PJ Rx error status code: %d '%s'.\n",
|
|
instance, (int)status, buf);
|
|
return;
|
|
}
|
|
if (!rtp->rtp_passthrough) {
|
|
return;
|
|
}
|
|
rtp->rtp_passthrough = 0;
|
|
}
|
|
|
|
ast_sendto(rtp->s, pkt, pkt_len, 0, &rtp->rtp_loop);
|
|
}
|
|
|
|
/* PJPROJECT TURN callback */
|
|
static void ast_rtp_on_turn_rtp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
|
|
{
|
|
struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
|
|
struct ast_rtp *rtp;
|
|
|
|
/* If this is a leftover from an already notified RTP instance just ignore the state change */
|
|
if (!instance) {
|
|
return;
|
|
}
|
|
|
|
rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ao2_lock(instance);
|
|
|
|
/* We store the new state so the other thread can actually handle it */
|
|
rtp->turn_state = new_state;
|
|
ast_cond_signal(&rtp->cond);
|
|
|
|
if (new_state == PJ_TURN_STATE_DESTROYING) {
|
|
pj_turn_sock_set_user_data(rtp->turn_rtp, NULL);
|
|
rtp->turn_rtp = NULL;
|
|
}
|
|
|
|
ao2_unlock(instance);
|
|
}
|
|
|
|
/* RTP TURN Socket interface declaration */
|
|
static pj_turn_sock_cb ast_rtp_turn_rtp_sock_cb = {
|
|
.on_rx_data = ast_rtp_on_turn_rx_rtp_data,
|
|
.on_state = ast_rtp_on_turn_rtp_state,
|
|
};
|
|
|
|
/* PJPROJECT TURN callback */
|
|
static void ast_rtp_on_turn_rx_rtcp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
|
|
{
|
|
struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ice_wrap *ice;
|
|
pj_status_t status;
|
|
|
|
ao2_lock(instance);
|
|
ice = ao2_bump(rtp->ice);
|
|
ao2_unlock(instance);
|
|
|
|
if (ice) {
|
|
status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTCP,
|
|
TRANSPORT_TURN_RTCP, pkt, pkt_len, peer_addr, addr_len);
|
|
ao2_ref(ice, -1);
|
|
if (status != PJ_SUCCESS) {
|
|
char buf[100];
|
|
|
|
pj_strerror(status, buf, sizeof(buf));
|
|
ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
|
|
(int)status, buf);
|
|
return;
|
|
}
|
|
if (!rtp->rtcp_passthrough) {
|
|
return;
|
|
}
|
|
rtp->rtcp_passthrough = 0;
|
|
}
|
|
|
|
ast_sendto(rtp->rtcp->s, pkt, pkt_len, 0, &rtp->rtcp_loop);
|
|
}
|
|
|
|
/* PJPROJECT TURN callback */
|
|
static void ast_rtp_on_turn_rtcp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
|
|
{
|
|
struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
|
|
struct ast_rtp *rtp;
|
|
|
|
/* If this is a leftover from an already destroyed RTP instance just ignore the state change */
|
|
if (!instance) {
|
|
return;
|
|
}
|
|
|
|
rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ao2_lock(instance);
|
|
|
|
/* We store the new state so the other thread can actually handle it */
|
|
rtp->turn_state = new_state;
|
|
ast_cond_signal(&rtp->cond);
|
|
|
|
if (new_state == PJ_TURN_STATE_DESTROYING) {
|
|
pj_turn_sock_set_user_data(rtp->turn_rtcp, NULL);
|
|
rtp->turn_rtcp = NULL;
|
|
}
|
|
|
|
ao2_unlock(instance);
|
|
}
|
|
|
|
/* RTCP TURN Socket interface declaration */
|
|
static pj_turn_sock_cb ast_rtp_turn_rtcp_sock_cb = {
|
|
.on_rx_data = ast_rtp_on_turn_rx_rtcp_data,
|
|
.on_state = ast_rtp_on_turn_rtcp_state,
|
|
};
|
|
|
|
/*! \brief Worker thread for ioqueue and timerheap */
|
|
static int ioqueue_worker_thread(void *data)
|
|
{
|
|
struct ast_rtp_ioqueue_thread *ioqueue = data;
|
|
|
|
while (!ioqueue->terminate) {
|
|
const pj_time_val delay = {0, 10};
|
|
|
|
pj_ioqueue_poll(ioqueue->ioqueue, &delay);
|
|
|
|
pj_timer_heap_poll(ioqueue->timerheap, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \brief Destroyer for ioqueue thread */
|
|
static void rtp_ioqueue_thread_destroy(struct ast_rtp_ioqueue_thread *ioqueue)
|
|
{
|
|
if (ioqueue->thread) {
|
|
ioqueue->terminate = 1;
|
|
pj_thread_join(ioqueue->thread);
|
|
pj_thread_destroy(ioqueue->thread);
|
|
}
|
|
|
|
if (ioqueue->pool) {
|
|
/* This mimics the behavior of pj_pool_safe_release
|
|
* which was introduced in pjproject 2.6.
|
|
*/
|
|
pj_pool_t *temp_pool = ioqueue->pool;
|
|
|
|
ioqueue->pool = NULL;
|
|
pj_pool_release(temp_pool);
|
|
}
|
|
|
|
ast_free(ioqueue);
|
|
}
|
|
|
|
/*! \brief Removal function for ioqueue thread, determines if it should be terminated and destroyed */
|
|
static void rtp_ioqueue_thread_remove(struct ast_rtp_ioqueue_thread *ioqueue)
|
|
{
|
|
int destroy = 0;
|
|
|
|
/* If nothing is using this ioqueue thread destroy it */
|
|
AST_LIST_LOCK(&ioqueues);
|
|
if ((ioqueue->count - 2) == 0) {
|
|
destroy = 1;
|
|
AST_LIST_REMOVE(&ioqueues, ioqueue, next);
|
|
}
|
|
AST_LIST_UNLOCK(&ioqueues);
|
|
|
|
if (!destroy) {
|
|
return;
|
|
}
|
|
|
|
rtp_ioqueue_thread_destroy(ioqueue);
|
|
}
|
|
|
|
/*! \brief Finder and allocator for an ioqueue thread */
|
|
static struct ast_rtp_ioqueue_thread *rtp_ioqueue_thread_get_or_create(void)
|
|
{
|
|
struct ast_rtp_ioqueue_thread *ioqueue;
|
|
pj_lock_t *lock;
|
|
|
|
AST_LIST_LOCK(&ioqueues);
|
|
|
|
/* See if an ioqueue thread exists that can handle more */
|
|
AST_LIST_TRAVERSE(&ioqueues, ioqueue, next) {
|
|
if ((ioqueue->count + 2) < PJ_IOQUEUE_MAX_HANDLES) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we found one bump it up and return it */
|
|
if (ioqueue) {
|
|
ioqueue->count += 2;
|
|
goto end;
|
|
}
|
|
|
|
ioqueue = ast_calloc(1, sizeof(*ioqueue));
|
|
if (!ioqueue) {
|
|
goto end;
|
|
}
|
|
|
|
ioqueue->pool = pj_pool_create(&cachingpool.factory, "rtp", 512, 512, NULL);
|
|
|
|
/* We use a timer on the ioqueue thread for TURN so that two threads aren't operating
|
|
* on a session at the same time
|
|
*/
|
|
if (pj_timer_heap_create(ioqueue->pool, 4, &ioqueue->timerheap) != PJ_SUCCESS) {
|
|
goto fatal;
|
|
}
|
|
|
|
if (pj_lock_create_recursive_mutex(ioqueue->pool, "rtp%p", &lock) != PJ_SUCCESS) {
|
|
goto fatal;
|
|
}
|
|
|
|
pj_timer_heap_set_lock(ioqueue->timerheap, lock, PJ_TRUE);
|
|
|
|
if (pj_ioqueue_create(ioqueue->pool, PJ_IOQUEUE_MAX_HANDLES, &ioqueue->ioqueue) != PJ_SUCCESS) {
|
|
goto fatal;
|
|
}
|
|
|
|
if (pj_thread_create(ioqueue->pool, "ice", &ioqueue_worker_thread, ioqueue, 0, 0, &ioqueue->thread) != PJ_SUCCESS) {
|
|
goto fatal;
|
|
}
|
|
|
|
AST_LIST_INSERT_HEAD(&ioqueues, ioqueue, next);
|
|
|
|
/* Since this is being returned to an active session the count always starts at 2 */
|
|
ioqueue->count = 2;
|
|
|
|
goto end;
|
|
|
|
fatal:
|
|
rtp_ioqueue_thread_destroy(ioqueue);
|
|
ioqueue = NULL;
|
|
|
|
end:
|
|
AST_LIST_UNLOCK(&ioqueues);
|
|
return ioqueue;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_turn_request(struct ast_rtp_instance *instance, enum ast_rtp_ice_component_type component,
|
|
enum ast_transport transport, const char *server, unsigned int port, const char *username, const char *password)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
pj_turn_sock **turn_sock;
|
|
const pj_turn_sock_cb *turn_cb;
|
|
pj_turn_tp_type conn_type;
|
|
int conn_transport;
|
|
pj_stun_auth_cred cred = { 0, };
|
|
pj_str_t turn_addr;
|
|
struct ast_sockaddr addr = { { 0, } };
|
|
pj_stun_config stun_config;
|
|
struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
|
|
struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
|
|
pj_turn_session_info info;
|
|
struct ast_sockaddr local, loop;
|
|
pj_status_t status;
|
|
pj_turn_sock_cfg turn_sock_cfg;
|
|
struct ice_wrap *ice;
|
|
|
|
ast_rtp_instance_get_local_address(instance, &local);
|
|
if (ast_sockaddr_is_ipv4(&local)) {
|
|
ast_sockaddr_parse(&loop, "127.0.0.1", PARSE_PORT_FORBID);
|
|
} else {
|
|
ast_sockaddr_parse(&loop, "::1", PARSE_PORT_FORBID);
|
|
}
|
|
|
|
/* Determine what component we are requesting a TURN session for */
|
|
if (component == AST_RTP_ICE_COMPONENT_RTP) {
|
|
turn_sock = &rtp->turn_rtp;
|
|
turn_cb = &ast_rtp_turn_rtp_sock_cb;
|
|
conn_transport = TRANSPORT_TURN_RTP;
|
|
ast_sockaddr_set_port(&loop, ast_sockaddr_port(&local));
|
|
} else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
|
|
turn_sock = &rtp->turn_rtcp;
|
|
turn_cb = &ast_rtp_turn_rtcp_sock_cb;
|
|
conn_transport = TRANSPORT_TURN_RTCP;
|
|
ast_sockaddr_set_port(&loop, ast_sockaddr_port(&rtp->rtcp->us));
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
if (transport == AST_TRANSPORT_UDP) {
|
|
conn_type = PJ_TURN_TP_UDP;
|
|
} else if (transport == AST_TRANSPORT_TCP) {
|
|
conn_type = PJ_TURN_TP_TCP;
|
|
} else {
|
|
ast_assert(0);
|
|
return;
|
|
}
|
|
|
|
ast_sockaddr_parse(&addr, server, PARSE_PORT_FORBID);
|
|
|
|
if (*turn_sock) {
|
|
rtp->turn_state = PJ_TURN_STATE_NULL;
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
pj_turn_sock_destroy(*turn_sock);
|
|
ao2_lock(instance);
|
|
while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
|
|
ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
|
|
}
|
|
}
|
|
|
|
if (component == AST_RTP_ICE_COMPONENT_RTP && !rtp->ioqueue) {
|
|
/*
|
|
* We cannot hold the instance lock because we could wait
|
|
* for the ioqueue thread to die and we might deadlock as
|
|
* a result.
|
|
*/
|
|
ao2_unlock(instance);
|
|
rtp->ioqueue = rtp_ioqueue_thread_get_or_create();
|
|
ao2_lock(instance);
|
|
if (!rtp->ioqueue) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
pj_stun_config_init(&stun_config, &cachingpool.factory, 0, rtp->ioqueue->ioqueue, rtp->ioqueue->timerheap);
|
|
if (!stun_software_attribute) {
|
|
stun_config.software_name = pj_str(NULL);
|
|
}
|
|
|
|
/* Use ICE session group lock for TURN session to avoid deadlock */
|
|
pj_turn_sock_cfg_default(&turn_sock_cfg);
|
|
ice = rtp->ice;
|
|
if (ice) {
|
|
turn_sock_cfg.grp_lock = ice->real_ice->grp_lock;
|
|
ao2_ref(ice, +1);
|
|
}
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
status = pj_turn_sock_create(&stun_config,
|
|
ast_sockaddr_is_ipv4(&addr) ? pj_AF_INET() : pj_AF_INET6(), conn_type,
|
|
turn_cb, &turn_sock_cfg, instance, turn_sock);
|
|
ao2_cleanup(ice);
|
|
if (status != PJ_SUCCESS) {
|
|
ast_log(LOG_WARNING, "(%p) Could not create a TURN client socket\n", instance);
|
|
ao2_lock(instance);
|
|
return;
|
|
}
|
|
|
|
cred.type = PJ_STUN_AUTH_CRED_STATIC;
|
|
pj_strset2(&cred.data.static_cred.username, (char*)username);
|
|
cred.data.static_cred.data_type = PJ_STUN_PASSWD_PLAIN;
|
|
pj_strset2(&cred.data.static_cred.data, (char*)password);
|
|
|
|
pj_turn_sock_alloc(*turn_sock, pj_cstr(&turn_addr, server), port, NULL, &cred, NULL);
|
|
|
|
ast_debug_ice(2, "(%p) ICE request TURN %s %s candidate\n", instance,
|
|
transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
|
|
component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
|
|
|
|
ao2_lock(instance);
|
|
|
|
/*
|
|
* Because the TURN socket is asynchronous and we are synchronous we need to
|
|
* wait until it is done
|
|
*/
|
|
while (rtp->turn_state < PJ_TURN_STATE_READY) {
|
|
ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
|
|
}
|
|
|
|
/* If a TURN session was allocated add it as a candidate */
|
|
if (rtp->turn_state != PJ_TURN_STATE_READY) {
|
|
return;
|
|
}
|
|
|
|
pj_turn_sock_get_info(*turn_sock, &info);
|
|
|
|
ast_rtp_ice_add_cand(instance, rtp, component, conn_transport,
|
|
PJ_ICE_CAND_TYPE_RELAYED, 65535, &info.relay_addr, &info.relay_addr,
|
|
&info.mapped_addr, pj_sockaddr_get_len(&info.relay_addr));
|
|
|
|
if (component == AST_RTP_ICE_COMPONENT_RTP) {
|
|
ast_sockaddr_copy(&rtp->rtp_loop, &loop);
|
|
} else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
|
|
ast_sockaddr_copy(&rtp->rtcp_loop, &loop);
|
|
}
|
|
}
|
|
|
|
static char *generate_random_string(char *buf, size_t size)
|
|
{
|
|
long val[4];
|
|
int x;
|
|
|
|
for (x=0; x<4; x++) {
|
|
val[x] = ast_random();
|
|
}
|
|
snprintf(buf, size, "%08lx%08lx%08lx%08lx", (long unsigned)val[0], (long unsigned)val[1], (long unsigned)val[2], (long unsigned)val[3]);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_ice_change_components(struct ast_rtp_instance *instance, int num_components)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
/* Don't do anything if ICE is unsupported or if we're not changing the
|
|
* number of components
|
|
*/
|
|
if (!icesupport || !rtp->ice || rtp->ice_num_components == num_components) {
|
|
return;
|
|
}
|
|
|
|
ast_debug_ice(2, "(%p) ICE change number of components %u -> %u\n", instance,
|
|
rtp->ice_num_components, num_components);
|
|
|
|
rtp->ice_num_components = num_components;
|
|
ice_reset_session(instance);
|
|
}
|
|
|
|
/* ICE RTP Engine interface declaration */
|
|
static struct ast_rtp_engine_ice ast_rtp_ice = {
|
|
.set_authentication = ast_rtp_ice_set_authentication,
|
|
.add_remote_candidate = ast_rtp_ice_add_remote_candidate,
|
|
.start = ast_rtp_ice_start,
|
|
.stop = ast_rtp_ice_stop,
|
|
.get_ufrag = ast_rtp_ice_get_ufrag,
|
|
.get_password = ast_rtp_ice_get_password,
|
|
.get_local_candidates = ast_rtp_ice_get_local_candidates,
|
|
.ice_lite = ast_rtp_ice_lite,
|
|
.set_role = ast_rtp_ice_set_role,
|
|
.turn_request = ast_rtp_ice_turn_request,
|
|
.change_components = ast_rtp_ice_change_components,
|
|
};
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
static int dtls_verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
|
|
{
|
|
/* We don't want to actually verify the certificate so just accept what they have provided */
|
|
return 1;
|
|
}
|
|
|
|
static int dtls_details_initialize(struct dtls_details *dtls, SSL_CTX *ssl_ctx,
|
|
enum ast_rtp_dtls_setup setup, struct ast_rtp_instance *instance)
|
|
{
|
|
dtls->dtls_setup = setup;
|
|
|
|
if (!(dtls->ssl = SSL_new(ssl_ctx))) {
|
|
ast_log(LOG_ERROR, "Failed to allocate memory for SSL\n");
|
|
goto error;
|
|
}
|
|
|
|
if (!(dtls->read_bio = BIO_new(BIO_s_mem()))) {
|
|
ast_log(LOG_ERROR, "Failed to allocate memory for inbound SSL traffic\n");
|
|
goto error;
|
|
}
|
|
BIO_set_mem_eof_return(dtls->read_bio, -1);
|
|
|
|
#ifdef HAVE_OPENSSL_BIO_METHOD
|
|
if (!(dtls->write_bio = BIO_new(dtls_bio_methods))) {
|
|
ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
|
|
goto error;
|
|
}
|
|
|
|
BIO_set_data(dtls->write_bio, instance);
|
|
#else
|
|
if (!(dtls->write_bio = BIO_new(&dtls_bio_methods))) {
|
|
ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
|
|
goto error;
|
|
}
|
|
dtls->write_bio->ptr = instance;
|
|
#endif
|
|
SSL_set_bio(dtls->ssl, dtls->read_bio, dtls->write_bio);
|
|
|
|
if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
|
|
SSL_set_accept_state(dtls->ssl);
|
|
} else {
|
|
SSL_set_connect_state(dtls->ssl);
|
|
}
|
|
dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (dtls->read_bio) {
|
|
BIO_free(dtls->read_bio);
|
|
dtls->read_bio = NULL;
|
|
}
|
|
|
|
if (dtls->write_bio) {
|
|
BIO_free(dtls->write_bio);
|
|
dtls->write_bio = NULL;
|
|
}
|
|
|
|
if (dtls->ssl) {
|
|
SSL_free(dtls->ssl);
|
|
dtls->ssl = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int dtls_setup_rtcp(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (!rtp->ssl_ctx || !rtp->rtcp) {
|
|
return 0;
|
|
}
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS RTCP setup\n", instance);
|
|
return dtls_details_initialize(&rtp->rtcp->dtls, rtp->ssl_ctx, rtp->dtls.dtls_setup, instance);
|
|
}
|
|
|
|
static const SSL_METHOD *get_dtls_method(void)
|
|
{
|
|
#if OPENSSL_VERSION_NUMBER < 0x10002000L || defined(LIBRESSL_VERSION_NUMBER)
|
|
return DTLSv1_method();
|
|
#else
|
|
return DTLS_method();
|
|
#endif
|
|
}
|
|
|
|
struct dtls_cert_info {
|
|
EVP_PKEY *private_key;
|
|
X509 *certificate;
|
|
};
|
|
|
|
static void configure_dhparams(const struct ast_rtp *rtp, const struct ast_rtp_dtls_cfg *dtls_cfg)
|
|
{
|
|
#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
|
|
EC_KEY *ecdh;
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
if (!ast_strlen_zero(dtls_cfg->pvtfile)) {
|
|
BIO *bio = BIO_new_file(dtls_cfg->pvtfile, "r");
|
|
if (bio) {
|
|
DH *dh = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
|
|
if (dh) {
|
|
if (SSL_CTX_set_tmp_dh(rtp->ssl_ctx, dh)) {
|
|
long options = SSL_OP_CIPHER_SERVER_PREFERENCE |
|
|
SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE;
|
|
options = SSL_CTX_set_options(rtp->ssl_ctx, options);
|
|
ast_verb(2, "DTLS DH initialized, PFS enabled\n");
|
|
}
|
|
DH_free(dh);
|
|
}
|
|
BIO_free(bio);
|
|
}
|
|
}
|
|
#endif /* !OPENSSL_NO_DH */
|
|
|
|
#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
|
|
/* enables AES-128 ciphers, to get AES-256 use NID_secp384r1 */
|
|
ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
|
|
if (ecdh) {
|
|
if (SSL_CTX_set_tmp_ecdh(rtp->ssl_ctx, ecdh)) {
|
|
#ifndef SSL_CTRL_SET_ECDH_AUTO
|
|
#define SSL_CTRL_SET_ECDH_AUTO 94
|
|
#endif
|
|
/* SSL_CTX_set_ecdh_auto(rtp->ssl_ctx, on); requires OpenSSL 1.0.2 which wraps: */
|
|
if (SSL_CTX_ctrl(rtp->ssl_ctx, SSL_CTRL_SET_ECDH_AUTO, 1, NULL)) {
|
|
ast_verb(2, "DTLS ECDH initialized (automatic), faster PFS enabled\n");
|
|
} else {
|
|
ast_verb(2, "DTLS ECDH initialized (secp256r1), faster PFS enabled\n");
|
|
}
|
|
}
|
|
EC_KEY_free(ecdh);
|
|
}
|
|
#endif /* !OPENSSL_NO_ECDH */
|
|
}
|
|
|
|
#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
|
|
|
|
static int create_ephemeral_ec_keypair(EVP_PKEY **keypair)
|
|
{
|
|
EC_KEY *eckey = NULL;
|
|
EC_GROUP *group = NULL;
|
|
|
|
group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
|
|
if (!group) {
|
|
goto error;
|
|
}
|
|
|
|
EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE);
|
|
EC_GROUP_set_point_conversion_form(group, POINT_CONVERSION_UNCOMPRESSED);
|
|
|
|
eckey = EC_KEY_new();
|
|
if (!eckey) {
|
|
goto error;
|
|
}
|
|
|
|
if (!EC_KEY_set_group(eckey, group)) {
|
|
goto error;
|
|
}
|
|
|
|
if (!EC_KEY_generate_key(eckey)) {
|
|
goto error;
|
|
}
|
|
|
|
*keypair = EVP_PKEY_new();
|
|
if (!*keypair) {
|
|
goto error;
|
|
}
|
|
|
|
EVP_PKEY_assign_EC_KEY(*keypair, eckey);
|
|
EC_GROUP_free(group);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
EC_KEY_free(eckey);
|
|
EC_GROUP_free(group);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* From OpenSSL's x509 command */
|
|
#define SERIAL_RAND_BITS 159
|
|
|
|
static int create_ephemeral_certificate(EVP_PKEY *keypair, X509 **certificate)
|
|
{
|
|
X509 *cert = NULL;
|
|
BIGNUM *serial = NULL;
|
|
X509_NAME *name = NULL;
|
|
|
|
cert = X509_new();
|
|
if (!cert) {
|
|
goto error;
|
|
}
|
|
|
|
if (!X509_set_version(cert, 2)) {
|
|
goto error;
|
|
}
|
|
|
|
/* Set the public key */
|
|
X509_set_pubkey(cert, keypair);
|
|
|
|
/* Generate a random serial number */
|
|
if (!(serial = BN_new())
|
|
|| !BN_rand(serial, SERIAL_RAND_BITS, -1, 0)
|
|
|| !BN_to_ASN1_INTEGER(serial, X509_get_serialNumber(cert))) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Validity period - Current Chrome & Firefox make it 31 days starting
|
|
* with yesterday at the current time, so we will do the same.
|
|
*/
|
|
#if OPENSSL_VERSION_NUMBER < 0x10100000L
|
|
if (!X509_time_adj_ex(X509_get_notBefore(cert), -1, 0, NULL)
|
|
|| !X509_time_adj_ex(X509_get_notAfter(cert), 30, 0, NULL)) {
|
|
goto error;
|
|
}
|
|
#else
|
|
if (!X509_time_adj_ex(X509_getm_notBefore(cert), -1, 0, NULL)
|
|
|| !X509_time_adj_ex(X509_getm_notAfter(cert), 30, 0, NULL)) {
|
|
goto error;
|
|
}
|
|
#endif
|
|
|
|
/* Set the name and issuer */
|
|
if (!(name = X509_get_subject_name(cert))
|
|
|| !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_ASC,
|
|
(unsigned char *) "asterisk", -1, -1, 0)
|
|
|| !X509_set_issuer_name(cert, name)) {
|
|
goto error;
|
|
}
|
|
|
|
/* Sign it */
|
|
if (!X509_sign(cert, keypair, EVP_sha256())) {
|
|
goto error;
|
|
}
|
|
|
|
*certificate = cert;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
BN_free(serial);
|
|
X509_free(cert);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
|
|
const struct ast_rtp_dtls_cfg *dtls_cfg,
|
|
struct dtls_cert_info *cert_info)
|
|
{
|
|
/* Make sure these are initialized */
|
|
cert_info->private_key = NULL;
|
|
cert_info->certificate = NULL;
|
|
|
|
if (create_ephemeral_ec_keypair(&cert_info->private_key)) {
|
|
ast_log(LOG_ERROR, "Failed to create ephemeral ECDSA keypair\n");
|
|
goto error;
|
|
}
|
|
|
|
if (create_ephemeral_certificate(cert_info->private_key, &cert_info->certificate)) {
|
|
ast_log(LOG_ERROR, "Failed to create ephemeral X509 certificate\n");
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
X509_free(cert_info->certificate);
|
|
EVP_PKEY_free(cert_info->private_key);
|
|
|
|
return -1;
|
|
}
|
|
|
|
#else
|
|
|
|
static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
|
|
const struct ast_rtp_dtls_cfg *dtls_cfg,
|
|
struct dtls_cert_info *cert_info)
|
|
{
|
|
ast_log(LOG_ERROR, "Your version of OpenSSL does not support ECDSA keys\n");
|
|
return -1;
|
|
}
|
|
|
|
#endif /* !OPENSSL_NO_ECDH */
|
|
|
|
static int create_certificate_from_file(struct ast_rtp_instance *instance,
|
|
const struct ast_rtp_dtls_cfg *dtls_cfg,
|
|
struct dtls_cert_info *cert_info)
|
|
{
|
|
FILE *fp;
|
|
BIO *certbio = NULL;
|
|
EVP_PKEY *private_key = NULL;
|
|
X509 *cert = NULL;
|
|
char *private_key_file = ast_strlen_zero(dtls_cfg->pvtfile) ? dtls_cfg->certfile : dtls_cfg->pvtfile;
|
|
|
|
fp = fopen(private_key_file, "r");
|
|
if (!fp) {
|
|
ast_log(LOG_ERROR, "Failed to read private key from file '%s': %s\n", private_key_file, strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
if (!PEM_read_PrivateKey(fp, &private_key, NULL, NULL)) {
|
|
ast_log(LOG_ERROR, "Failed to read private key from PEM file '%s'\n", private_key_file);
|
|
fclose(fp);
|
|
goto error;
|
|
}
|
|
|
|
if (fclose(fp)) {
|
|
ast_log(LOG_ERROR, "Failed to close private key file '%s': %s\n", private_key_file, strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
certbio = BIO_new(BIO_s_file());
|
|
if (!certbio) {
|
|
ast_log(LOG_ERROR, "Failed to allocate memory for certificate fingerprinting on RTP instance '%p'\n",
|
|
instance);
|
|
goto error;
|
|
}
|
|
|
|
if (!BIO_read_filename(certbio, dtls_cfg->certfile)
|
|
|| !(cert = PEM_read_bio_X509(certbio, NULL, 0, NULL))) {
|
|
ast_log(LOG_ERROR, "Failed to read certificate from file '%s'\n", dtls_cfg->certfile);
|
|
goto error;
|
|
}
|
|
|
|
cert_info->private_key = private_key;
|
|
cert_info->certificate = cert;
|
|
|
|
BIO_free_all(certbio);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
X509_free(cert);
|
|
BIO_free_all(certbio);
|
|
EVP_PKEY_free(private_key);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int load_dtls_certificate(struct ast_rtp_instance *instance,
|
|
const struct ast_rtp_dtls_cfg *dtls_cfg,
|
|
struct dtls_cert_info *cert_info)
|
|
{
|
|
if (dtls_cfg->ephemeral_cert) {
|
|
return create_certificate_ephemeral(instance, dtls_cfg, cert_info);
|
|
} else if (!ast_strlen_zero(dtls_cfg->certfile)) {
|
|
return create_certificate_from_file(instance, dtls_cfg, cert_info);
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtls_set_configuration(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct dtls_cert_info cert_info = { 0 };
|
|
int res;
|
|
|
|
if (!dtls_cfg->enabled) {
|
|
return 0;
|
|
}
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS RTP setup\n", instance);
|
|
|
|
if (!ast_rtp_engine_srtp_is_registered()) {
|
|
ast_log(LOG_ERROR, "SRTP support module is not loaded or available. Try loading res_srtp.so.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rtp->ssl_ctx) {
|
|
return 0;
|
|
}
|
|
|
|
rtp->ssl_ctx = SSL_CTX_new(get_dtls_method());
|
|
if (!rtp->ssl_ctx) {
|
|
return -1;
|
|
}
|
|
|
|
SSL_CTX_set_read_ahead(rtp->ssl_ctx, 1);
|
|
|
|
configure_dhparams(rtp, dtls_cfg);
|
|
|
|
rtp->dtls_verify = dtls_cfg->verify;
|
|
|
|
SSL_CTX_set_verify(rtp->ssl_ctx, (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) || (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
|
|
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT : SSL_VERIFY_NONE, !(rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
|
|
dtls_verify_callback : NULL);
|
|
|
|
if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_80) {
|
|
SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_80");
|
|
} else if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_32) {
|
|
SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_32");
|
|
} else {
|
|
ast_log(LOG_ERROR, "Unsupported suite specified for DTLS-SRTP on RTP instance '%p'\n", instance);
|
|
return -1;
|
|
}
|
|
|
|
rtp->local_hash = dtls_cfg->hash;
|
|
|
|
if (!load_dtls_certificate(instance, dtls_cfg, &cert_info)) {
|
|
const EVP_MD *type;
|
|
unsigned int size, i;
|
|
unsigned char fingerprint[EVP_MAX_MD_SIZE];
|
|
char *local_fingerprint = rtp->local_fingerprint;
|
|
|
|
if (!SSL_CTX_use_certificate(rtp->ssl_ctx, cert_info.certificate)) {
|
|
ast_log(LOG_ERROR, "Specified certificate for RTP instance '%p' could not be used\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
|
|
if (!SSL_CTX_use_PrivateKey(rtp->ssl_ctx, cert_info.private_key)
|
|
|| !SSL_CTX_check_private_key(rtp->ssl_ctx)) {
|
|
ast_log(LOG_ERROR, "Specified private key for RTP instance '%p' could not be used\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
|
|
if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA1) {
|
|
type = EVP_sha1();
|
|
} else if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA256) {
|
|
type = EVP_sha256();
|
|
} else {
|
|
ast_log(LOG_ERROR, "Unsupported fingerprint hash type on RTP instance '%p'\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
|
|
if (!X509_digest(cert_info.certificate, type, fingerprint, &size) || !size) {
|
|
ast_log(LOG_ERROR, "Could not produce fingerprint from certificate for RTP instance '%p'\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
sprintf(local_fingerprint, "%02hhX:", fingerprint[i]);
|
|
local_fingerprint += 3;
|
|
}
|
|
|
|
*(local_fingerprint - 1) = 0;
|
|
|
|
EVP_PKEY_free(cert_info.private_key);
|
|
X509_free(cert_info.certificate);
|
|
}
|
|
|
|
if (!ast_strlen_zero(dtls_cfg->cipher)) {
|
|
if (!SSL_CTX_set_cipher_list(rtp->ssl_ctx, dtls_cfg->cipher)) {
|
|
ast_log(LOG_ERROR, "Invalid cipher specified in cipher list '%s' for RTP instance '%p'\n",
|
|
dtls_cfg->cipher, instance);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!ast_strlen_zero(dtls_cfg->cafile) || !ast_strlen_zero(dtls_cfg->capath)) {
|
|
if (!SSL_CTX_load_verify_locations(rtp->ssl_ctx, S_OR(dtls_cfg->cafile, NULL), S_OR(dtls_cfg->capath, NULL))) {
|
|
ast_log(LOG_ERROR, "Invalid certificate authority file '%s' or path '%s' specified for RTP instance '%p'\n",
|
|
S_OR(dtls_cfg->cafile, ""), S_OR(dtls_cfg->capath, ""), instance);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
rtp->rekey = dtls_cfg->rekey;
|
|
rtp->suite = dtls_cfg->suite;
|
|
|
|
res = dtls_details_initialize(&rtp->dtls, rtp->ssl_ctx, dtls_cfg->default_setup, instance);
|
|
if (!res) {
|
|
dtls_setup_rtcp(instance);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtls_active(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return !rtp->ssl_ctx ? 0 : 1;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_dtls_stop(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
SSL *ssl = rtp->dtls.ssl;
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS stop\n", instance);
|
|
ao2_unlock(instance);
|
|
dtls_srtp_stop_timeout_timer(instance, rtp, 0);
|
|
ao2_lock(instance);
|
|
|
|
if (rtp->ssl_ctx) {
|
|
SSL_CTX_free(rtp->ssl_ctx);
|
|
rtp->ssl_ctx = NULL;
|
|
}
|
|
|
|
if (rtp->dtls.ssl) {
|
|
SSL_free(rtp->dtls.ssl);
|
|
rtp->dtls.ssl = NULL;
|
|
}
|
|
|
|
if (rtp->rtcp) {
|
|
ao2_unlock(instance);
|
|
dtls_srtp_stop_timeout_timer(instance, rtp, 1);
|
|
ao2_lock(instance);
|
|
|
|
if (rtp->rtcp->dtls.ssl) {
|
|
if (rtp->rtcp->dtls.ssl != ssl) {
|
|
SSL_free(rtp->rtcp->dtls.ssl);
|
|
}
|
|
rtp->rtcp->dtls.ssl = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_dtls_reset(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (SSL_is_init_finished(rtp->dtls.ssl)) {
|
|
SSL_shutdown(rtp->dtls.ssl);
|
|
rtp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
|
|
}
|
|
|
|
if (rtp->rtcp && SSL_is_init_finished(rtp->rtcp->dtls.ssl)) {
|
|
SSL_shutdown(rtp->rtcp->dtls.ssl);
|
|
rtp->rtcp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static enum ast_rtp_dtls_connection ast_rtp_dtls_get_connection(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->dtls.connection;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static enum ast_rtp_dtls_setup ast_rtp_dtls_get_setup(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->dtls.dtls_setup;
|
|
}
|
|
|
|
static void dtls_set_setup(enum ast_rtp_dtls_setup *dtls_setup, enum ast_rtp_dtls_setup setup, SSL *ssl)
|
|
{
|
|
enum ast_rtp_dtls_setup old = *dtls_setup;
|
|
|
|
switch (setup) {
|
|
case AST_RTP_DTLS_SETUP_ACTIVE:
|
|
*dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
|
|
break;
|
|
case AST_RTP_DTLS_SETUP_PASSIVE:
|
|
*dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
|
|
break;
|
|
case AST_RTP_DTLS_SETUP_ACTPASS:
|
|
/* We can't respond to an actpass setup with actpass ourselves... so respond with active, as we can initiate connections */
|
|
if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
|
|
*dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
|
|
}
|
|
break;
|
|
case AST_RTP_DTLS_SETUP_HOLDCONN:
|
|
*dtls_setup = AST_RTP_DTLS_SETUP_HOLDCONN;
|
|
break;
|
|
default:
|
|
/* This should never occur... if it does exit early as we don't know what state things are in */
|
|
return;
|
|
}
|
|
|
|
/* If the setup state did not change we go on as if nothing happened */
|
|
if (old == *dtls_setup) {
|
|
return;
|
|
}
|
|
|
|
/* If they don't want us to establish a connection wait until later */
|
|
if (*dtls_setup == AST_RTP_DTLS_SETUP_HOLDCONN) {
|
|
return;
|
|
}
|
|
|
|
if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
|
|
SSL_set_connect_state(ssl);
|
|
} else if (*dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
|
|
SSL_set_accept_state(ssl);
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_dtls_set_setup(struct ast_rtp_instance *instance, enum ast_rtp_dtls_setup setup)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp->dtls.ssl) {
|
|
dtls_set_setup(&rtp->dtls.dtls_setup, setup, rtp->dtls.ssl);
|
|
}
|
|
|
|
if (rtp->rtcp && rtp->rtcp->dtls.ssl) {
|
|
dtls_set_setup(&rtp->rtcp->dtls.dtls_setup, setup, rtp->rtcp->dtls.ssl);
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_dtls_set_fingerprint(struct ast_rtp_instance *instance, enum ast_rtp_dtls_hash hash, const char *fingerprint)
|
|
{
|
|
char *tmp = ast_strdupa(fingerprint), *value;
|
|
int pos = 0;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (hash != AST_RTP_DTLS_HASH_SHA1 && hash != AST_RTP_DTLS_HASH_SHA256) {
|
|
return;
|
|
}
|
|
|
|
rtp->remote_hash = hash;
|
|
|
|
while ((value = strsep(&tmp, ":")) && (pos != (EVP_MAX_MD_SIZE - 1))) {
|
|
sscanf(value, "%02hhx", &rtp->remote_fingerprint[pos++]);
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static enum ast_rtp_dtls_hash ast_rtp_dtls_get_fingerprint_hash(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->local_hash;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static const char *ast_rtp_dtls_get_fingerprint(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->local_fingerprint;
|
|
}
|
|
|
|
/* DTLS RTP Engine interface declaration */
|
|
static struct ast_rtp_engine_dtls ast_rtp_dtls = {
|
|
.set_configuration = ast_rtp_dtls_set_configuration,
|
|
.active = ast_rtp_dtls_active,
|
|
.stop = ast_rtp_dtls_stop,
|
|
.reset = ast_rtp_dtls_reset,
|
|
.get_connection = ast_rtp_dtls_get_connection,
|
|
.get_setup = ast_rtp_dtls_get_setup,
|
|
.set_setup = ast_rtp_dtls_set_setup,
|
|
.set_fingerprint = ast_rtp_dtls_set_fingerprint,
|
|
.get_fingerprint_hash = ast_rtp_dtls_get_fingerprint_hash,
|
|
.get_fingerprint = ast_rtp_dtls_get_fingerprint,
|
|
};
|
|
|
|
#endif
|
|
|
|
#ifdef TEST_FRAMEWORK
|
|
static size_t get_recv_buffer_count(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp && rtp->recv_buffer) {
|
|
return ast_data_buffer_count(rtp->recv_buffer);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t get_recv_buffer_max(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp && rtp->recv_buffer) {
|
|
return ast_data_buffer_max(rtp->recv_buffer);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t get_send_buffer_count(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp && rtp->send_buffer) {
|
|
return ast_data_buffer_count(rtp->send_buffer);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_rtp_rtcp_schedid(struct ast_rtp_instance *instance, int id)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp && rtp->rtcp) {
|
|
rtp->rtcp->schedid = id;
|
|
}
|
|
}
|
|
|
|
static struct ast_rtp_engine_test ast_rtp_test = {
|
|
.packets_to_drop = 0,
|
|
.send_report = 0,
|
|
.sdes_received = 0,
|
|
.recv_buffer_count = get_recv_buffer_count,
|
|
.recv_buffer_max = get_recv_buffer_max,
|
|
.send_buffer_count = get_send_buffer_count,
|
|
.set_schedid = set_rtp_rtcp_schedid,
|
|
};
|
|
#endif
|
|
|
|
/* RTP Engine Declaration */
|
|
static struct ast_rtp_engine asterisk_rtp_engine = {
|
|
.name = "asterisk",
|
|
.new = ast_rtp_new,
|
|
.destroy = ast_rtp_destroy,
|
|
.dtmf_begin = ast_rtp_dtmf_begin,
|
|
.dtmf_end = ast_rtp_dtmf_end,
|
|
.dtmf_end_with_duration = ast_rtp_dtmf_end_with_duration,
|
|
.dtmf_mode_set = ast_rtp_dtmf_mode_set,
|
|
.dtmf_mode_get = ast_rtp_dtmf_mode_get,
|
|
.update_source = ast_rtp_update_source,
|
|
.change_source = ast_rtp_change_source,
|
|
.write = ast_rtp_write,
|
|
.read = ast_rtp_read,
|
|
.prop_set = ast_rtp_prop_set,
|
|
.fd = ast_rtp_fd,
|
|
.remote_address_set = ast_rtp_remote_address_set,
|
|
.red_init = rtp_red_init,
|
|
.red_buffer = rtp_red_buffer,
|
|
.local_bridge = ast_rtp_local_bridge,
|
|
.get_stat = ast_rtp_get_stat,
|
|
.dtmf_compatible = ast_rtp_dtmf_compatible,
|
|
.stun_request = ast_rtp_stun_request,
|
|
.stop = ast_rtp_stop,
|
|
.qos = ast_rtp_qos_set,
|
|
.sendcng = ast_rtp_sendcng,
|
|
#ifdef HAVE_PJPROJECT
|
|
.ice = &ast_rtp_ice,
|
|
#endif
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
.dtls = &ast_rtp_dtls,
|
|
.activate = ast_rtp_activate,
|
|
#endif
|
|
.ssrc_get = ast_rtp_get_ssrc,
|
|
.cname_get = ast_rtp_get_cname,
|
|
.set_remote_ssrc = ast_rtp_set_remote_ssrc,
|
|
.set_stream_num = ast_rtp_set_stream_num,
|
|
.extension_enable = ast_rtp_extension_enable,
|
|
.bundle = ast_rtp_bundle,
|
|
#ifdef TEST_FRAMEWORK
|
|
.test = &ast_rtp_test,
|
|
#endif
|
|
};
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
/*! \pre instance is locked */
|
|
static void dtls_perform_handshake(struct ast_rtp_instance *instance, struct dtls_details *dtls, int rtcp)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS perform handshake - ssl = %p, setup = %d\n",
|
|
rtp, dtls->ssl, dtls->dtls_setup);
|
|
|
|
/* If we are not acting as a client connecting to the remote side then
|
|
* don't start the handshake as it will accomplish nothing and would conflict
|
|
* with the handshake we receive from the remote side.
|
|
*/
|
|
if (!dtls->ssl || (dtls->dtls_setup != AST_RTP_DTLS_SETUP_ACTIVE)) {
|
|
return;
|
|
}
|
|
|
|
SSL_do_handshake(dtls->ssl);
|
|
|
|
/*
|
|
* A race condition is prevented between this function and __rtp_recvfrom()
|
|
* because both functions have to get the instance lock before they can do
|
|
* anything. Without holding the instance lock, this function could start
|
|
* the SSL handshake above in one thread and the __rtp_recvfrom() function
|
|
* called by the channel thread could read the response and stop the timeout
|
|
* timer before we have a chance to even start it.
|
|
*/
|
|
dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
static void dtls_perform_setup(struct dtls_details *dtls)
|
|
{
|
|
if (!dtls->ssl || !SSL_is_init_finished(dtls->ssl)) {
|
|
return;
|
|
}
|
|
|
|
SSL_clear(dtls->ssl);
|
|
if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
|
|
SSL_set_accept_state(dtls->ssl);
|
|
} else {
|
|
SSL_set_connect_state(dtls->ssl);
|
|
}
|
|
dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
|
|
|
|
ast_debug_dtls(3, "DTLS perform setup - connection reset\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
static void rtp_learning_start(struct ast_rtp *rtp);
|
|
|
|
/* Handles start of media during ICE negotiation or completion */
|
|
static void ast_rtp_ice_start_media(pj_ice_sess *ice, pj_status_t status)
|
|
{
|
|
struct ast_rtp_instance *instance = ice->user_data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ao2_lock(instance);
|
|
|
|
if (status == PJ_SUCCESS) {
|
|
struct ast_sockaddr remote_address;
|
|
|
|
ast_sockaddr_setnull(&remote_address);
|
|
update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTP, &remote_address);
|
|
if (!ast_sockaddr_isnull(&remote_address)) {
|
|
/* Symmetric RTP must be disabled for the remote address to not get overwritten */
|
|
ast_rtp_instance_set_prop(instance, AST_RTP_PROPERTY_NAT, 0);
|
|
|
|
ast_rtp_instance_set_remote_address(instance, &remote_address);
|
|
}
|
|
|
|
if (rtp->rtcp) {
|
|
update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTCP, &rtp->rtcp->them);
|
|
}
|
|
}
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
/* If we've already started media, no need to do all of this again */
|
|
if (rtp->ice_media_started) {
|
|
ao2_unlock(instance);
|
|
return;
|
|
}
|
|
|
|
ast_debug_category(2, AST_DEBUG_CATEGORY_ICE | AST_DEBUG_CATEGORY_DTLS,
|
|
"(%p) ICE starting media - perform DTLS - (%p)\n", instance, rtp);
|
|
|
|
/*
|
|
* Seemingly no reason to call dtls_perform_setup here. Currently we'll do a full
|
|
* protocol level renegotiation if things do change. And if bundled is being used
|
|
* then ICE is reused when a stream is added.
|
|
*
|
|
* Note, if for some reason in the future dtls_perform_setup does need to done here
|
|
* be aware that creates a race condition between the call here (on ice completion)
|
|
* and potential DTLS handshaking when receiving RTP. What happens is the ssl object
|
|
* can get cleared (SSL_clear) during that handshaking process (DTLS init). If that
|
|
* happens then Asterisk won't complete DTLS initialization. RTP packets are still
|
|
* sent/received but won't be encrypted/decrypted.
|
|
*/
|
|
dtls_perform_handshake(instance, &rtp->dtls, 0);
|
|
|
|
if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
|
|
}
|
|
#endif
|
|
|
|
rtp->ice_media_started = 1;
|
|
|
|
if (!strictrtp) {
|
|
ao2_unlock(instance);
|
|
return;
|
|
}
|
|
|
|
ast_verb(4, "%p -- Strict RTP learning after ICE completion\n", rtp);
|
|
rtp_learning_start(rtp);
|
|
ao2_unlock(instance);
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
|
|
/* PJPROJECT ICE optional callback */
|
|
static void ast_rtp_on_valid_pair(pj_ice_sess *ice)
|
|
{
|
|
ast_debug_ice(2, "(%p) ICE valid pair, start media\n", ice->user_data);
|
|
ast_rtp_ice_start_media(ice, PJ_SUCCESS);
|
|
}
|
|
#endif
|
|
|
|
/* PJPROJECT ICE callback */
|
|
static void ast_rtp_on_ice_complete(pj_ice_sess *ice, pj_status_t status)
|
|
{
|
|
ast_debug_ice(2, "(%p) ICE complete, start media\n", ice->user_data);
|
|
ast_rtp_ice_start_media(ice, status);
|
|
}
|
|
|
|
/* PJPROJECT ICE callback */
|
|
static void ast_rtp_on_ice_rx_data(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, void *pkt, pj_size_t size, const pj_sockaddr_t *src_addr, unsigned src_addr_len)
|
|
{
|
|
struct ast_rtp_instance *instance = ice->user_data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
/* Instead of handling the packet here (which really doesn't work with our architecture) we set a bit to indicate that it should be handled after pj_ice_sess_on_rx_pkt
|
|
* returns */
|
|
if (transport_id == TRANSPORT_SOCKET_RTP || transport_id == TRANSPORT_SOCKET_RTCP) {
|
|
rtp->passthrough = 1;
|
|
} else if (transport_id == TRANSPORT_TURN_RTP) {
|
|
rtp->rtp_passthrough = 1;
|
|
} else if (transport_id == TRANSPORT_TURN_RTCP) {
|
|
rtp->rtcp_passthrough = 1;
|
|
}
|
|
}
|
|
|
|
/* PJPROJECT ICE callback */
|
|
static pj_status_t ast_rtp_on_ice_tx_pkt(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, const void *pkt, pj_size_t size, const pj_sockaddr_t *dst_addr, unsigned dst_addr_len)
|
|
{
|
|
struct ast_rtp_instance *instance = ice->user_data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
pj_status_t status = PJ_EINVALIDOP;
|
|
pj_ssize_t _size = (pj_ssize_t)size;
|
|
|
|
if (transport_id == TRANSPORT_SOCKET_RTP) {
|
|
/* Traffic is destined to go right out the RTP socket we already have */
|
|
status = pj_sock_sendto(rtp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
|
|
/* sendto on a connectionless socket should send all the data, or none at all */
|
|
ast_assert(_size == size || status != PJ_SUCCESS);
|
|
} else if (transport_id == TRANSPORT_SOCKET_RTCP) {
|
|
/* Traffic is destined to go right out the RTCP socket we already have */
|
|
if (rtp->rtcp) {
|
|
status = pj_sock_sendto(rtp->rtcp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
|
|
/* sendto on a connectionless socket should send all the data, or none at all */
|
|
ast_assert(_size == size || status != PJ_SUCCESS);
|
|
} else {
|
|
status = PJ_SUCCESS;
|
|
}
|
|
} else if (transport_id == TRANSPORT_TURN_RTP) {
|
|
/* Traffic is going through the RTP TURN relay */
|
|
if (rtp->turn_rtp) {
|
|
status = pj_turn_sock_sendto(rtp->turn_rtp, pkt, size, dst_addr, dst_addr_len);
|
|
}
|
|
} else if (transport_id == TRANSPORT_TURN_RTCP) {
|
|
/* Traffic is going through the RTCP TURN relay */
|
|
if (rtp->turn_rtcp) {
|
|
status = pj_turn_sock_sendto(rtp->turn_rtcp, pkt, size, dst_addr, dst_addr_len);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/* ICE Session interface declaration */
|
|
static pj_ice_sess_cb ast_rtp_ice_sess_cb = {
|
|
#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
|
|
.on_valid_pair = ast_rtp_on_valid_pair,
|
|
#endif
|
|
.on_ice_complete = ast_rtp_on_ice_complete,
|
|
.on_rx_data = ast_rtp_on_ice_rx_data,
|
|
.on_tx_pkt = ast_rtp_on_ice_tx_pkt,
|
|
};
|
|
|
|
/*! \brief Worker thread for timerheap */
|
|
static int timer_worker_thread(void *data)
|
|
{
|
|
pj_ioqueue_t *ioqueue;
|
|
|
|
if (pj_ioqueue_create(pool, 1, &ioqueue) != PJ_SUCCESS) {
|
|
return -1;
|
|
}
|
|
|
|
while (!timer_terminate) {
|
|
const pj_time_val delay = {0, 10};
|
|
|
|
pj_timer_heap_poll(timer_heap, NULL);
|
|
pj_ioqueue_poll(ioqueue, &delay);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static inline int rtp_debug_test_addr(struct ast_sockaddr *addr)
|
|
{
|
|
if (!ast_debug_rtp_packet_is_allowed) {
|
|
return 0;
|
|
}
|
|
if (!ast_sockaddr_isnull(&rtpdebugaddr)) {
|
|
if (rtpdebugport) {
|
|
return (ast_sockaddr_cmp(&rtpdebugaddr, addr) == 0); /* look for RTP packets from IP+Port */
|
|
} else {
|
|
return (ast_sockaddr_cmp_addr(&rtpdebugaddr, addr) == 0); /* only look for RTP packets from IP */
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline int rtcp_debug_test_addr(struct ast_sockaddr *addr)
|
|
{
|
|
if (!ast_debug_rtcp_packet_is_allowed) {
|
|
return 0;
|
|
}
|
|
if (!ast_sockaddr_isnull(&rtcpdebugaddr)) {
|
|
if (rtcpdebugport) {
|
|
return (ast_sockaddr_cmp(&rtcpdebugaddr, addr) == 0); /* look for RTCP packets from IP+Port */
|
|
} else {
|
|
return (ast_sockaddr_cmp_addr(&rtcpdebugaddr, addr) == 0); /* only look for RTCP packets from IP */
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
/*! \pre instance is locked */
|
|
static int dtls_srtp_handle_timeout(struct ast_rtp_instance *instance, int rtcp)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
|
|
struct timeval dtls_timeout;
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d\n", instance, rtcp);
|
|
DTLSv1_handle_timeout(dtls->ssl);
|
|
|
|
/* If a timeout can't be retrieved then this recurring scheduled item must stop */
|
|
if (!DTLSv1_get_timeout(dtls->ssl, &dtls_timeout)) {
|
|
dtls->timeout_timer = -1;
|
|
return 0;
|
|
}
|
|
|
|
return dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
|
|
}
|
|
|
|
/* Scheduler callback */
|
|
static int dtls_srtp_handle_rtp_timeout(const void *data)
|
|
{
|
|
struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
|
|
int reschedule;
|
|
|
|
ao2_lock(instance);
|
|
reschedule = dtls_srtp_handle_timeout(instance, 0);
|
|
ao2_unlock(instance);
|
|
if (!reschedule) {
|
|
ao2_ref(instance, -1);
|
|
}
|
|
|
|
return reschedule;
|
|
}
|
|
|
|
/* Scheduler callback */
|
|
static int dtls_srtp_handle_rtcp_timeout(const void *data)
|
|
{
|
|
struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
|
|
int reschedule;
|
|
|
|
ao2_lock(instance);
|
|
reschedule = dtls_srtp_handle_timeout(instance, 1);
|
|
ao2_unlock(instance);
|
|
if (!reschedule) {
|
|
ao2_ref(instance, -1);
|
|
}
|
|
|
|
return reschedule;
|
|
}
|
|
|
|
static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
|
|
{
|
|
struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
|
|
struct timeval dtls_timeout;
|
|
|
|
if (DTLSv1_get_timeout(dtls->ssl, &dtls_timeout)) {
|
|
int timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
|
|
|
|
ast_assert(dtls->timeout_timer == -1);
|
|
|
|
ao2_ref(instance, +1);
|
|
if ((dtls->timeout_timer = ast_sched_add(rtp->sched, timeout,
|
|
!rtcp ? dtls_srtp_handle_rtp_timeout : dtls_srtp_handle_rtcp_timeout, instance)) < 0) {
|
|
ao2_ref(instance, -1);
|
|
ast_log(LOG_WARNING, "Scheduling '%s' DTLS retransmission for RTP instance [%p] failed.\n",
|
|
!rtcp ? "RTP" : "RTCP", instance);
|
|
} else {
|
|
ast_debug_dtls(3, "(%p) DTLS srtp - scheduled timeout timer for '%d'\n", instance, timeout);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*! \pre Must not be called with the instance locked. */
|
|
static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
|
|
{
|
|
struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
|
|
|
|
AST_SCHED_DEL_UNREF(rtp->sched, dtls->timeout_timer, ao2_ref(instance, -1));
|
|
ast_debug_dtls(3, "(%p) DTLS srtp - stopped timeout timer'\n", instance);
|
|
}
|
|
|
|
/* Scheduler callback */
|
|
static int dtls_srtp_renegotiate(const void *data)
|
|
{
|
|
struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ao2_lock(instance);
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS srtp - renegotiate'\n", instance);
|
|
SSL_renegotiate(rtp->dtls.ssl);
|
|
SSL_do_handshake(rtp->dtls.ssl);
|
|
|
|
if (rtp->rtcp && rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
|
|
SSL_renegotiate(rtp->rtcp->dtls.ssl);
|
|
SSL_do_handshake(rtp->rtcp->dtls.ssl);
|
|
}
|
|
|
|
rtp->rekeyid = -1;
|
|
|
|
ao2_unlock(instance);
|
|
ao2_ref(instance, -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dtls_srtp_add_local_ssrc(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp, unsigned int ssrc, int set_remote_policy)
|
|
{
|
|
unsigned char material[SRTP_MASTER_LEN * 2];
|
|
unsigned char *local_key, *local_salt, *remote_key, *remote_salt;
|
|
struct ast_srtp_policy *local_policy, *remote_policy = NULL;
|
|
int res = -1;
|
|
struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS srtp - add local ssrc - rtcp=%d, set_remote_policy=%d'\n",
|
|
instance, rtcp, set_remote_policy);
|
|
|
|
/* Produce key information and set up SRTP */
|
|
if (!SSL_export_keying_material(dtls->ssl, material, SRTP_MASTER_LEN * 2, "EXTRACTOR-dtls_srtp", 19, NULL, 0, 0)) {
|
|
ast_log(LOG_WARNING, "Unable to extract SRTP keying material from DTLS-SRTP negotiation on RTP instance '%p'\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
|
|
/* Whether we are acting as a server or client determines where the keys/salts are */
|
|
if (rtp->dtls.dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
|
|
local_key = material;
|
|
remote_key = local_key + SRTP_MASTER_KEY_LEN;
|
|
local_salt = remote_key + SRTP_MASTER_KEY_LEN;
|
|
remote_salt = local_salt + SRTP_MASTER_SALT_LEN;
|
|
} else {
|
|
remote_key = material;
|
|
local_key = remote_key + SRTP_MASTER_KEY_LEN;
|
|
remote_salt = local_key + SRTP_MASTER_KEY_LEN;
|
|
local_salt = remote_salt + SRTP_MASTER_SALT_LEN;
|
|
}
|
|
|
|
if (!(local_policy = res_srtp_policy->alloc())) {
|
|
return -1;
|
|
}
|
|
|
|
if (res_srtp_policy->set_master_key(local_policy, local_key, SRTP_MASTER_KEY_LEN, local_salt, SRTP_MASTER_SALT_LEN) < 0) {
|
|
ast_log(LOG_WARNING, "Could not set key/salt information on local policy of '%p' when setting up DTLS-SRTP\n", rtp);
|
|
goto error;
|
|
}
|
|
|
|
if (res_srtp_policy->set_suite(local_policy, rtp->suite)) {
|
|
ast_log(LOG_WARNING, "Could not set suite to '%u' on local policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
|
|
goto error;
|
|
}
|
|
|
|
res_srtp_policy->set_ssrc(local_policy, ssrc, 0);
|
|
|
|
if (set_remote_policy) {
|
|
if (!(remote_policy = res_srtp_policy->alloc())) {
|
|
goto error;
|
|
}
|
|
|
|
if (res_srtp_policy->set_master_key(remote_policy, remote_key, SRTP_MASTER_KEY_LEN, remote_salt, SRTP_MASTER_SALT_LEN) < 0) {
|
|
ast_log(LOG_WARNING, "Could not set key/salt information on remote policy of '%p' when setting up DTLS-SRTP\n", rtp);
|
|
goto error;
|
|
}
|
|
|
|
if (res_srtp_policy->set_suite(remote_policy, rtp->suite)) {
|
|
ast_log(LOG_WARNING, "Could not set suite to '%u' on remote policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
|
|
goto error;
|
|
}
|
|
|
|
res_srtp_policy->set_ssrc(remote_policy, 0, 1);
|
|
}
|
|
|
|
if (ast_rtp_instance_add_srtp_policy(instance, remote_policy, local_policy, rtcp)) {
|
|
ast_log(LOG_WARNING, "Could not set policies when setting up DTLS-SRTP on '%p'\n", rtp);
|
|
goto error;
|
|
}
|
|
|
|
res = 0;
|
|
|
|
error:
|
|
/* policy->destroy() called even on success to release local reference to these resources */
|
|
res_srtp_policy->destroy(local_policy);
|
|
|
|
if (remote_policy) {
|
|
res_srtp_policy->destroy(remote_policy);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int dtls_srtp_setup(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp)
|
|
{
|
|
struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
|
|
int index;
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS setup SRTP rtp=%p'\n", instance, rtp);
|
|
|
|
/* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
|
|
if (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) {
|
|
X509 *certificate;
|
|
|
|
if (!(certificate = SSL_get_peer_certificate(dtls->ssl))) {
|
|
ast_log(LOG_WARNING, "No certificate was provided by the peer on RTP instance '%p'\n", instance);
|
|
return -1;
|
|
}
|
|
|
|
/* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
|
|
if (rtp->remote_fingerprint[0]) {
|
|
const EVP_MD *type;
|
|
unsigned char fingerprint[EVP_MAX_MD_SIZE];
|
|
unsigned int size;
|
|
|
|
if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA1) {
|
|
type = EVP_sha1();
|
|
} else if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA256) {
|
|
type = EVP_sha256();
|
|
} else {
|
|
ast_log(LOG_WARNING, "Unsupported fingerprint hash type on RTP instance '%p'\n", instance);
|
|
return -1;
|
|
}
|
|
|
|
if (!X509_digest(certificate, type, fingerprint, &size) ||
|
|
!size ||
|
|
memcmp(fingerprint, rtp->remote_fingerprint, size)) {
|
|
X509_free(certificate);
|
|
ast_log(LOG_WARNING, "Fingerprint provided by remote party does not match that of peer certificate on RTP instance '%p'\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
X509_free(certificate);
|
|
}
|
|
|
|
if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(instance), 1)) {
|
|
ast_log(LOG_ERROR, "Failed to add local source '%p'\n", rtp);
|
|
return -1;
|
|
}
|
|
|
|
for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
|
|
struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
|
|
|
|
if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(mapping->instance), 0)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (rtp->rekey) {
|
|
ao2_ref(instance, +1);
|
|
if ((rtp->rekeyid = ast_sched_add(rtp->sched, rtp->rekey * 1000, dtls_srtp_renegotiate, instance)) < 0) {
|
|
ao2_ref(instance, -1);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*! \brief Helper function to compare an elem in a vector by value */
|
|
static int compare_by_value(int elem, int value)
|
|
{
|
|
return elem - value;
|
|
}
|
|
|
|
/*! \brief Helper function to find an elem in a vector by value */
|
|
static int find_by_value(int elem, int value)
|
|
{
|
|
return elem == value;
|
|
}
|
|
|
|
static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
|
|
{
|
|
uint8_t version;
|
|
uint8_t pt;
|
|
uint8_t m;
|
|
|
|
if (!rtp->rtcp || rtp->rtcp->type != AST_RTP_INSTANCE_RTCP_MUX) {
|
|
return 0;
|
|
}
|
|
|
|
version = (packet[0] & 0XC0) >> 6;
|
|
if (version == 0) {
|
|
/* version 0 indicates this is a STUN packet and shouldn't
|
|
* be interpreted as a possible RTCP packet
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* The second octet of a packet will be one of the following:
|
|
* For RTP: The marker bit (1 bit) and the RTP payload type (7 bits)
|
|
* For RTCP: The payload type (8)
|
|
*
|
|
* RTP has a forbidden range of payload types (64-95) since these
|
|
* will conflict with RTCP payload numbers if the marker bit is set.
|
|
*/
|
|
m = packet[1] & 0x80;
|
|
pt = packet[1] & 0x7F;
|
|
if (m && pt >= 64 && pt <= 95) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
|
|
{
|
|
int len;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
char *in = buf;
|
|
#endif
|
|
#ifdef HAVE_PJPROJECT
|
|
struct ast_sockaddr *loop = rtcp ? &rtp->rtcp_loop : &rtp->rtp_loop;
|
|
#endif
|
|
#ifdef TEST_FRAMEWORK
|
|
struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
|
|
#endif
|
|
|
|
if ((len = ast_recvfrom(rtcp ? rtp->rtcp->s : rtp->s, buf, size, flags, sa)) < 0) {
|
|
return len;
|
|
}
|
|
|
|
#ifdef TEST_FRAMEWORK
|
|
if (test && test->packets_to_drop > 0) {
|
|
test->packets_to_drop--;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
/* If this is an SSL packet pass it to OpenSSL for processing. RFC section for first byte value:
|
|
* https://tools.ietf.org/html/rfc5764#section-5.1.2 */
|
|
if ((*in >= 20) && (*in <= 63)) {
|
|
struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
|
|
int res = 0;
|
|
|
|
/* If no SSL session actually exists terminate things */
|
|
if (!dtls->ssl) {
|
|
ast_log(LOG_ERROR, "Received SSL traffic on RTP instance '%p' without an SSL session\n",
|
|
instance);
|
|
return -1;
|
|
}
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - Got SSL packet '%d'\n", instance, rtp, *in);
|
|
|
|
/*
|
|
* A race condition is prevented between dtls_perform_handshake()
|
|
* and this function because both functions have to get the
|
|
* instance lock before they can do anything. The
|
|
* dtls_perform_handshake() function needs to start the timer
|
|
* before we stop it below.
|
|
*/
|
|
|
|
/* Before we feed data into OpenSSL ensure that the timeout timer is either stopped or completed */
|
|
ao2_unlock(instance);
|
|
dtls_srtp_stop_timeout_timer(instance, rtp, rtcp);
|
|
ao2_lock(instance);
|
|
|
|
/* If we don't yet know if we are active or passive and we receive a packet... we are obviously passive */
|
|
if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
|
|
dtls->dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
|
|
SSL_set_accept_state(dtls->ssl);
|
|
}
|
|
|
|
BIO_write(dtls->read_bio, buf, len);
|
|
|
|
len = SSL_read(dtls->ssl, buf, len);
|
|
|
|
if ((len < 0) && (SSL_get_error(dtls->ssl, len) == SSL_ERROR_SSL)) {
|
|
unsigned long error = ERR_get_error();
|
|
ast_log(LOG_ERROR, "DTLS failure occurred on RTP instance '%p' due to reason '%s', terminating\n",
|
|
instance, ERR_reason_error_string(error));
|
|
return -1;
|
|
}
|
|
|
|
if (SSL_is_init_finished(dtls->ssl)) {
|
|
/* Any further connections will be existing since this is now established */
|
|
dtls->connection = AST_RTP_DTLS_CONNECTION_EXISTING;
|
|
/* Use the keying material to set up key/salt information */
|
|
if ((res = dtls_srtp_setup(rtp, instance, rtcp))) {
|
|
return res;
|
|
}
|
|
/* Notify that dtls has been established */
|
|
res = RTP_DTLS_ESTABLISHED;
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - established'\n", instance, rtp);
|
|
} else {
|
|
/* Since we've sent additional traffic start the timeout timer for retransmission */
|
|
dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
if (!ast_sockaddr_isnull(loop) && !ast_sockaddr_cmp(loop, sa)) {
|
|
/* ICE traffic will have been handled in the TURN callback, so skip it but update the address
|
|
* so it reflects the actual source and not the loopback
|
|
*/
|
|
if (rtcp) {
|
|
ast_sockaddr_copy(sa, &rtp->rtcp->them);
|
|
} else {
|
|
ast_rtp_instance_get_remote_address(instance, sa);
|
|
}
|
|
} else if (rtp->ice) {
|
|
pj_str_t combined = pj_str(ast_sockaddr_stringify(sa));
|
|
pj_sockaddr address;
|
|
pj_status_t status;
|
|
struct ice_wrap *ice;
|
|
|
|
pj_thread_register_check();
|
|
|
|
pj_sockaddr_parse(pj_AF_UNSPEC(), 0, &combined, &address);
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ice = rtp->ice;
|
|
ao2_ref(ice, +1);
|
|
ao2_unlock(instance);
|
|
status = pj_ice_sess_on_rx_pkt(ice->real_ice,
|
|
rtcp ? AST_RTP_ICE_COMPONENT_RTCP : AST_RTP_ICE_COMPONENT_RTP,
|
|
rtcp ? TRANSPORT_SOCKET_RTCP : TRANSPORT_SOCKET_RTP, buf, len, &address,
|
|
pj_sockaddr_get_len(&address));
|
|
ao2_ref(ice, -1);
|
|
ao2_lock(instance);
|
|
if (status != PJ_SUCCESS) {
|
|
char err_buf[100];
|
|
|
|
pj_strerror(status, err_buf, sizeof(err_buf));
|
|
ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
|
|
(int)status, err_buf);
|
|
return -1;
|
|
}
|
|
if (!rtp->passthrough) {
|
|
/* If a unidirectional ICE negotiation occurs then lock on to the source of the
|
|
* ICE traffic and use it as the target. This will occur if the remote side only
|
|
* wants to receive media but never send to us.
|
|
*/
|
|
if (!rtp->ice_active_remote_candidates && !rtp->ice_proposed_remote_candidates) {
|
|
if (rtcp) {
|
|
ast_sockaddr_copy(&rtp->rtcp->them, sa);
|
|
} else {
|
|
ast_rtp_instance_set_remote_address(instance, sa);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
rtp->passthrough = 0;
|
|
}
|
|
#endif
|
|
|
|
return len;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
|
|
{
|
|
return __rtp_recvfrom(instance, buf, size, flags, sa, 1);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
|
|
{
|
|
return __rtp_recvfrom(instance, buf, size, flags, sa, 0);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
|
|
{
|
|
int len = size;
|
|
void *temp = buf;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
|
|
struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
|
|
struct ast_srtp *srtp = ast_rtp_instance_get_srtp(transport, rtcp);
|
|
int res;
|
|
|
|
*via_ice = 0;
|
|
|
|
if (use_srtp && res_srtp && srtp && res_srtp->protect(srtp, &temp, &len, rtcp) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
if (transport_rtp->ice) {
|
|
enum ast_rtp_ice_component_type component = rtcp ? AST_RTP_ICE_COMPONENT_RTCP : AST_RTP_ICE_COMPONENT_RTP;
|
|
pj_status_t status;
|
|
struct ice_wrap *ice;
|
|
|
|
/* If RTCP is sharing the same socket then use the same component */
|
|
if (rtcp && rtp->rtcp->s == rtp->s) {
|
|
component = AST_RTP_ICE_COMPONENT_RTP;
|
|
}
|
|
|
|
pj_thread_register_check();
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ice = transport_rtp->ice;
|
|
ao2_ref(ice, +1);
|
|
if (instance == transport) {
|
|
ao2_unlock(instance);
|
|
}
|
|
status = pj_ice_sess_send_data(ice->real_ice, component, temp, len);
|
|
ao2_ref(ice, -1);
|
|
if (instance == transport) {
|
|
ao2_lock(instance);
|
|
}
|
|
if (status == PJ_SUCCESS) {
|
|
*via_ice = 1;
|
|
return len;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
res = ast_sendto(rtcp ? transport_rtp->rtcp->s : transport_rtp->s, temp, len, flags, sa);
|
|
if (res > 0) {
|
|
ast_rtp_instance_set_last_tx(instance, time(NULL));
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
|
|
{
|
|
return __rtp_sendto(instance, buf, size, flags, sa, 1, ice, 1);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int hdrlen = 12;
|
|
int res;
|
|
|
|
if ((res = __rtp_sendto(instance, buf, size, flags, sa, 0, ice, 1)) > 0) {
|
|
rtp->txcount++;
|
|
rtp->txoctetcount += (res - hdrlen);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
|
|
{
|
|
unsigned int interval;
|
|
/*! \todo XXX Do a more reasonable calculation on this one
|
|
* Look in RFC 3550 Section A.7 for an example*/
|
|
interval = rtcpinterval;
|
|
return interval;
|
|
}
|
|
|
|
static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
|
|
{
|
|
double delta1;
|
|
double delta2;
|
|
|
|
/* First convert the standard deviation back into a sum of squares. */
|
|
double last_sum_of_squares = (*std_dev) * (*std_dev) * (*count ?: 1);
|
|
|
|
if (++(*count) == 0) {
|
|
/* Avoid potential divide by zero on an overflow */
|
|
*count = 1;
|
|
}
|
|
|
|
/*
|
|
* Below is an implementation of Welford's online algorithm [1] for calculating
|
|
* mean and variance in a single pass.
|
|
*
|
|
* [1] https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
|
*/
|
|
|
|
delta1 = new_sample - *mean;
|
|
*mean += (delta1 / *count);
|
|
delta2 = new_sample - *mean;
|
|
|
|
/* Now calculate the new variance, and subsequent standard deviation */
|
|
*std_dev = sqrt((last_sum_of_squares + (delta1 * delta2)) / *count);
|
|
}
|
|
|
|
static int create_new_socket(const char *type, int af)
|
|
{
|
|
int sock = ast_socket_nonblock(af, SOCK_DGRAM, 0);
|
|
|
|
if (sock < 0) {
|
|
ast_log(LOG_WARNING, "Unable to allocate %s socket: %s\n", type, strerror(errno));
|
|
return sock;
|
|
}
|
|
|
|
#ifdef SO_NO_CHECK
|
|
if (nochecksums) {
|
|
setsockopt(sock, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
|
|
}
|
|
#endif
|
|
|
|
return sock;
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Initializes sequence values and probation for learning mode.
|
|
* \note This is an adaptation of pjmedia's pjmedia_rtp_seq_init function.
|
|
*
|
|
* \param info The learning information to track
|
|
* \param seq sequence number read from the rtp header to initialize the information with
|
|
*/
|
|
static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
|
|
{
|
|
info->max_seq = seq;
|
|
info->packets = learning_min_sequential;
|
|
memset(&info->received, 0, sizeof(info->received));
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Updates sequence information for learning mode and determines if probation/learning mode should remain in effect.
|
|
* \note This function was adapted from pjmedia's pjmedia_rtp_seq_update function.
|
|
*
|
|
* \param info Structure tracking the learning progress of some address
|
|
* \param seq sequence number read from the rtp header
|
|
* \retval 0 if probation mode should exit for this address
|
|
* \retval non-zero if probation mode should continue
|
|
*/
|
|
static int rtp_learning_rtp_seq_update(struct rtp_learning_info *info, uint16_t seq)
|
|
{
|
|
if (seq == (uint16_t) (info->max_seq + 1)) {
|
|
/* packet is in sequence */
|
|
info->packets--;
|
|
} else {
|
|
/* Sequence discontinuity; reset */
|
|
info->packets = learning_min_sequential - 1;
|
|
info->received = ast_tvnow();
|
|
}
|
|
|
|
/* Only check time if strictrtp is set to yes. Otherwise, we only needed to check seqno */
|
|
if (strictrtp == STRICT_RTP_YES) {
|
|
switch (info->stream_type) {
|
|
case AST_MEDIA_TYPE_UNKNOWN:
|
|
case AST_MEDIA_TYPE_AUDIO:
|
|
/*
|
|
* Protect against packet floods by checking that we
|
|
* received the packet sequence in at least the minimum
|
|
* allowed time.
|
|
*/
|
|
if (ast_tvzero(info->received)) {
|
|
info->received = ast_tvnow();
|
|
} else if (!info->packets
|
|
&& ast_tvdiff_ms(ast_tvnow(), info->received) < learning_min_duration) {
|
|
/* Packet flood; reset */
|
|
info->packets = learning_min_sequential - 1;
|
|
info->received = ast_tvnow();
|
|
}
|
|
break;
|
|
case AST_MEDIA_TYPE_VIDEO:
|
|
case AST_MEDIA_TYPE_IMAGE:
|
|
case AST_MEDIA_TYPE_TEXT:
|
|
case AST_MEDIA_TYPE_END:
|
|
break;
|
|
}
|
|
}
|
|
|
|
info->max_seq = seq;
|
|
|
|
return info->packets;
|
|
}
|
|
|
|
/*!
|
|
* \brief Start the strictrtp learning mode.
|
|
*
|
|
* \param rtp RTP session description
|
|
*/
|
|
static void rtp_learning_start(struct ast_rtp *rtp)
|
|
{
|
|
rtp->strict_rtp_state = STRICT_RTP_LEARN;
|
|
memset(&rtp->rtp_source_learn.proposed_address, 0,
|
|
sizeof(rtp->rtp_source_learn.proposed_address));
|
|
rtp->rtp_source_learn.start = ast_tvnow();
|
|
rtp_learning_seq_init(&rtp->rtp_source_learn, (uint16_t) rtp->lastrxseqno);
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message);
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Resets and ACL to empty state.
|
|
*/
|
|
static void rtp_unload_acl(ast_rwlock_t *lock, struct ast_acl_list **acl)
|
|
{
|
|
ast_rwlock_wrlock(lock);
|
|
*acl = ast_free_acl_list(*acl);
|
|
ast_rwlock_unlock(lock);
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Checks an address against the ICE blacklist
|
|
* \note If there is no ice_blacklist list, always returns 0
|
|
*
|
|
* \param address The address to consider
|
|
* \retval 0 if address is not ICE blacklisted
|
|
* \retval 1 if address is ICE blacklisted
|
|
*/
|
|
static int rtp_address_is_ice_blacklisted(const struct ast_sockaddr *address)
|
|
{
|
|
int result = 0;
|
|
|
|
ast_rwlock_rdlock(&ice_acl_lock);
|
|
result |= ast_apply_acl_nolog(ice_acl, address) == AST_SENSE_DENY;
|
|
ast_rwlock_unlock(&ice_acl_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Checks an address against the STUN blacklist
|
|
* \since 13.16.0
|
|
*
|
|
* \note If there is no stun_blacklist list, always returns 0
|
|
*
|
|
* \param addr The address to consider
|
|
*
|
|
* \retval 0 if address is not STUN blacklisted
|
|
* \retval 1 if address is STUN blacklisted
|
|
*/
|
|
static int stun_address_is_blacklisted(const struct ast_sockaddr *addr)
|
|
{
|
|
int result = 0;
|
|
|
|
ast_rwlock_rdlock(&stun_acl_lock);
|
|
result |= ast_apply_acl_nolog(stun_acl, addr) == AST_SENSE_DENY;
|
|
ast_rwlock_unlock(&stun_acl_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void rtp_add_candidates_to_ice(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *addr, int port, int component,
|
|
int transport)
|
|
{
|
|
unsigned int count = 0;
|
|
struct ifaddrs *ifa, *ia;
|
|
struct ast_sockaddr tmp;
|
|
pj_sockaddr pjtmp;
|
|
struct ast_ice_host_candidate *candidate;
|
|
int af_inet_ok = 0, af_inet6_ok = 0;
|
|
struct sockaddr_in stunaddr_copy;
|
|
|
|
if (ast_sockaddr_is_ipv4(addr)) {
|
|
af_inet_ok = 1;
|
|
} else if (ast_sockaddr_is_any(addr)) {
|
|
af_inet_ok = af_inet6_ok = 1;
|
|
} else {
|
|
af_inet6_ok = 1;
|
|
}
|
|
|
|
if (getifaddrs(&ifa) < 0) {
|
|
/* If we can't get addresses, we can't load ICE candidates */
|
|
ast_log(LOG_ERROR, "(%p) ICE Error obtaining list of local addresses: %s\n",
|
|
instance, strerror(errno));
|
|
} else {
|
|
ast_debug_ice(2, "(%p) ICE add system candidates\n", instance);
|
|
/* Iterate through the list of addresses obtained from the system,
|
|
* until we've iterated through all of them, or accepted
|
|
* PJ_ICE_MAX_CAND candidates */
|
|
for (ia = ifa; ia && count < PJ_ICE_MAX_CAND; ia = ia->ifa_next) {
|
|
/* Interface is either not UP or doesn't have an address assigned,
|
|
* eg, a ppp that just completed LCP but no IPCP yet */
|
|
if (!ia->ifa_addr || (ia->ifa_flags & IFF_UP) == 0) {
|
|
continue;
|
|
}
|
|
|
|
/* Filter out non-IPvX addresses, eg, link-layer */
|
|
if (ia->ifa_addr->sa_family != AF_INET && ia->ifa_addr->sa_family != AF_INET6) {
|
|
continue;
|
|
}
|
|
|
|
ast_sockaddr_from_sockaddr(&tmp, ia->ifa_addr);
|
|
|
|
if (ia->ifa_addr->sa_family == AF_INET) {
|
|
const struct sockaddr_in *sa_in = (struct sockaddr_in*)ia->ifa_addr;
|
|
if (!af_inet_ok) {
|
|
continue;
|
|
}
|
|
|
|
/* Skip 127.0.0.0/8 (loopback) */
|
|
/* Don't use IFF_LOOPBACK check since one could assign usable
|
|
* publics to the loopback */
|
|
if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == htonl(0x7F000000)) {
|
|
continue;
|
|
}
|
|
|
|
/* Skip 0.0.0.0/8 based on RFC1122, and from pjproject */
|
|
if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == 0) {
|
|
continue;
|
|
}
|
|
} else { /* ia->ifa_addr->sa_family == AF_INET6 */
|
|
if (!af_inet6_ok) {
|
|
continue;
|
|
}
|
|
|
|
/* Filter ::1 */
|
|
if (!ast_sockaddr_cmp_addr(&lo6, &tmp)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Pull in the host candidates from [ice_host_candidates] */
|
|
AST_RWLIST_RDLOCK(&host_candidates);
|
|
AST_LIST_TRAVERSE(&host_candidates, candidate, next) {
|
|
if (!ast_sockaddr_cmp(&candidate->local, &tmp)) {
|
|
/* candidate->local matches actual assigned, so check if
|
|
* advertised is blacklisted, if not, add it to the
|
|
* advertised list. Not that it would make sense to remap
|
|
* a local address to a blacklisted address, but honour it
|
|
* anyway. */
|
|
if (!rtp_address_is_ice_blacklisted(&candidate->advertised)) {
|
|
ast_sockaddr_to_pj_sockaddr(&candidate->advertised, &pjtmp);
|
|
pj_sockaddr_set_port(&pjtmp, port);
|
|
ast_rtp_ice_add_cand(instance, rtp, component, transport,
|
|
PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
|
|
pj_sockaddr_get_len(&pjtmp));
|
|
++count;
|
|
}
|
|
|
|
if (!candidate->include_local) {
|
|
/* We don't want to advertise the actual address */
|
|
ast_sockaddr_setnull(&tmp);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
AST_RWLIST_UNLOCK(&host_candidates);
|
|
|
|
/* we had an entry in [ice_host_candidates] that matched, and
|
|
* didn't have include_local_address set. Alternatively, adding
|
|
* that match resulted in us going to PJ_ICE_MAX_CAND */
|
|
if (ast_sockaddr_isnull(&tmp) || count == PJ_ICE_MAX_CAND) {
|
|
continue;
|
|
}
|
|
|
|
if (rtp_address_is_ice_blacklisted(&tmp)) {
|
|
continue;
|
|
}
|
|
|
|
ast_sockaddr_to_pj_sockaddr(&tmp, &pjtmp);
|
|
pj_sockaddr_set_port(&pjtmp, port);
|
|
ast_rtp_ice_add_cand(instance, rtp, component, transport,
|
|
PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
|
|
pj_sockaddr_get_len(&pjtmp));
|
|
++count;
|
|
}
|
|
freeifaddrs(ifa);
|
|
}
|
|
|
|
ast_rwlock_rdlock(&stunaddr_lock);
|
|
memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
|
|
ast_rwlock_unlock(&stunaddr_lock);
|
|
|
|
/* If configured to use a STUN server to get our external mapped address do so */
|
|
if (stunaddr_copy.sin_addr.s_addr && !stun_address_is_blacklisted(addr) &&
|
|
(ast_sockaddr_is_ipv4(addr) || ast_sockaddr_is_any(addr)) &&
|
|
count < PJ_ICE_MAX_CAND) {
|
|
struct sockaddr_in answer;
|
|
int rsp;
|
|
|
|
ast_debug_category(3, AST_DEBUG_CATEGORY_ICE | AST_DEBUG_CATEGORY_STUN,
|
|
"(%p) ICE request STUN %s %s candidate\n", instance,
|
|
transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
|
|
component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
|
|
|
|
/*
|
|
* The instance should not be locked because we can block
|
|
* waiting for a STUN respone.
|
|
*/
|
|
ao2_unlock(instance);
|
|
rsp = ast_stun_request(component == AST_RTP_ICE_COMPONENT_RTCP
|
|
? rtp->rtcp->s : rtp->s, &stunaddr_copy, NULL, &answer);
|
|
ao2_lock(instance);
|
|
if (!rsp) {
|
|
struct ast_rtp_engine_ice_candidate *candidate;
|
|
pj_sockaddr ext, base;
|
|
pj_str_t mapped = pj_str(ast_strdupa(ast_inet_ntoa(answer.sin_addr)));
|
|
int srflx = 1, baseset = 0;
|
|
struct ao2_iterator i;
|
|
|
|
pj_sockaddr_init(pj_AF_INET(), &ext, &mapped, ntohs(answer.sin_port));
|
|
|
|
/*
|
|
* If the returned address is the same as one of our host
|
|
* candidates, don't send the srflx. At the same time,
|
|
* we need to set the base address (raddr).
|
|
*/
|
|
i = ao2_iterator_init(rtp->ice_local_candidates, 0);
|
|
while (srflx && (candidate = ao2_iterator_next(&i))) {
|
|
if (!baseset && ast_sockaddr_is_ipv4(&candidate->address)) {
|
|
baseset = 1;
|
|
ast_sockaddr_to_pj_sockaddr(&candidate->address, &base);
|
|
}
|
|
|
|
if (!pj_sockaddr_cmp(&candidate->address, &ext)) {
|
|
srflx = 0;
|
|
}
|
|
|
|
ao2_ref(candidate, -1);
|
|
}
|
|
ao2_iterator_destroy(&i);
|
|
|
|
if (srflx && baseset) {
|
|
pj_sockaddr_set_port(&base, port);
|
|
ast_rtp_ice_add_cand(instance, rtp, component, transport,
|
|
PJ_ICE_CAND_TYPE_SRFLX, 65535, &ext, &base, &base,
|
|
pj_sockaddr_get_len(&ext));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If configured to use a TURN relay create a session and allocate */
|
|
if (pj_strlen(&turnaddr)) {
|
|
ast_rtp_ice_turn_request(instance, component, AST_TRANSPORT_TCP, pj_strbuf(&turnaddr), turnport,
|
|
pj_strbuf(&turnusername), pj_strbuf(&turnpassword));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Calculates the elapsed time from issue of the first tx packet in an
|
|
* rtp session and a specified time
|
|
*
|
|
* \param rtp pointer to the rtp struct with the transmitted rtp packet
|
|
* \param delivery time of delivery - if NULL or zero value, will be ast_tvnow()
|
|
*
|
|
* \return time elapsed in milliseconds
|
|
*/
|
|
static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
|
|
{
|
|
struct timeval t;
|
|
long ms;
|
|
|
|
if (ast_tvzero(rtp->txcore)) {
|
|
rtp->txcore = ast_tvnow();
|
|
rtp->txcore.tv_usec -= rtp->txcore.tv_usec % 20000;
|
|
}
|
|
|
|
t = (delivery && !ast_tvzero(*delivery)) ? *delivery : ast_tvnow();
|
|
if ((ms = ast_tvdiff_ms(t, rtp->txcore)) < 0) {
|
|
ms = 0;
|
|
}
|
|
rtp->txcore = t;
|
|
|
|
return (unsigned int) ms;
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
/*!
|
|
* \internal
|
|
* \brief Creates an ICE session. Can be used to replace a destroyed ICE session.
|
|
*
|
|
* \param instance RTP instance for which the ICE session is being replaced
|
|
* \param addr ast_sockaddr to use for adding RTP candidates to the ICE session
|
|
* \param port port to use for adding RTP candidates to the ICE session
|
|
* \param replace 0 when creating a new session, 1 when replacing a destroyed session
|
|
*
|
|
* \pre instance is locked
|
|
*
|
|
* \retval 0 on success
|
|
* \retval -1 on failure
|
|
*/
|
|
static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
|
|
int port, int replace)
|
|
{
|
|
pj_stun_config stun_config;
|
|
pj_str_t ufrag, passwd;
|
|
pj_status_t status;
|
|
struct ice_wrap *ice_old;
|
|
struct ice_wrap *ice;
|
|
pj_ice_sess *real_ice = NULL;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ao2_cleanup(rtp->ice_local_candidates);
|
|
rtp->ice_local_candidates = NULL;
|
|
|
|
ast_debug_ice(2, "(%p) ICE create%s\n", instance, replace ? " and replace" : "");
|
|
|
|
ice = ao2_alloc_options(sizeof(*ice), ice_wrap_dtor, AO2_ALLOC_OPT_LOCK_NOLOCK);
|
|
if (!ice) {
|
|
ast_rtp_ice_stop(instance);
|
|
return -1;
|
|
}
|
|
|
|
pj_thread_register_check();
|
|
|
|
pj_stun_config_init(&stun_config, &cachingpool.factory, 0, NULL, timer_heap);
|
|
if (!stun_software_attribute) {
|
|
stun_config.software_name = pj_str(NULL);
|
|
}
|
|
|
|
ufrag = pj_str(rtp->local_ufrag);
|
|
passwd = pj_str(rtp->local_passwd);
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
/* Create an ICE session for ICE negotiation */
|
|
status = pj_ice_sess_create(&stun_config, NULL, PJ_ICE_SESS_ROLE_UNKNOWN,
|
|
rtp->ice_num_components, &ast_rtp_ice_sess_cb, &ufrag, &passwd, NULL, &real_ice);
|
|
ao2_lock(instance);
|
|
if (status == PJ_SUCCESS) {
|
|
/* Safely complete linking the ICE session into the instance */
|
|
real_ice->user_data = instance;
|
|
ice->real_ice = real_ice;
|
|
ice_old = rtp->ice;
|
|
rtp->ice = ice;
|
|
if (ice_old) {
|
|
ao2_unlock(instance);
|
|
ao2_ref(ice_old, -1);
|
|
ao2_lock(instance);
|
|
}
|
|
|
|
/* Add all of the available candidates to the ICE session */
|
|
rtp_add_candidates_to_ice(instance, rtp, addr, port, AST_RTP_ICE_COMPONENT_RTP,
|
|
TRANSPORT_SOCKET_RTP);
|
|
|
|
/* Only add the RTCP candidates to ICE when replacing the session and if
|
|
* the ICE session contains more than just an RTP component. New sessions
|
|
* handle this in a separate part of the setup phase */
|
|
if (replace && rtp->rtcp && rtp->ice_num_components > 1) {
|
|
rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us,
|
|
ast_sockaddr_port(&rtp->rtcp->us), AST_RTP_ICE_COMPONENT_RTCP,
|
|
TRANSPORT_SOCKET_RTCP);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It is safe to unref this while instance is locked here.
|
|
* It was not initialized with a real_ice pointer.
|
|
*/
|
|
ao2_ref(ice, -1);
|
|
|
|
ast_rtp_ice_stop(instance);
|
|
return -1;
|
|
|
|
}
|
|
#endif
|
|
|
|
static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
|
|
{
|
|
int x, startplace, i, maxloops;
|
|
|
|
rtp->strict_rtp_state = (strictrtp ? STRICT_RTP_CLOSED : STRICT_RTP_OPEN);
|
|
|
|
/* Create a new socket for us to listen on and use */
|
|
if ((rtp->s =
|
|
create_new_socket("RTP",
|
|
ast_sockaddr_is_ipv4(&rtp->bind_address) ? AF_INET :
|
|
ast_sockaddr_is_ipv6(&rtp->bind_address) ? AF_INET6 : -1)) < 0) {
|
|
ast_log(LOG_WARNING, "Failed to create a new socket for RTP instance '%p'\n", instance);
|
|
return -1;
|
|
}
|
|
|
|
/* Now actually find a free RTP port to use */
|
|
x = (ast_random() % (rtpend - rtpstart)) + rtpstart;
|
|
x = x & ~1;
|
|
startplace = x;
|
|
|
|
/* Protection against infinite loops in the case there is a potential case where the loop is not broken such as an odd
|
|
start port sneaking in (even though this condition is checked at load.) */
|
|
maxloops = rtpend - rtpstart;
|
|
for (i = 0; i <= maxloops; i++) {
|
|
ast_sockaddr_set_port(&rtp->bind_address, x);
|
|
/* Try to bind, this will tell us whether the port is available or not */
|
|
if (!ast_bind(rtp->s, &rtp->bind_address)) {
|
|
ast_debug_rtp(1, "(%p) RTP allocated port %d\n", instance, x);
|
|
ast_rtp_instance_set_local_address(instance, &rtp->bind_address);
|
|
ast_test_suite_event_notify("RTP_PORT_ALLOCATED", "Port: %d", x);
|
|
break;
|
|
}
|
|
|
|
x += 2;
|
|
if (x > rtpend) {
|
|
x = (rtpstart + 1) & ~1;
|
|
}
|
|
|
|
/* See if we ran out of ports or if the bind actually failed because of something other than the address being in use */
|
|
if (x == startplace || (errno != EADDRINUSE && errno != EACCES)) {
|
|
ast_log(LOG_ERROR, "Oh dear... we couldn't allocate a port for RTP instance '%p'\n", instance);
|
|
close(rtp->s);
|
|
rtp->s = -1;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
/* Initialize synchronization aspects */
|
|
ast_cond_init(&rtp->cond, NULL);
|
|
|
|
generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
|
|
generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
|
|
|
|
/* Create an ICE session for ICE negotiation */
|
|
if (icesupport) {
|
|
rtp->ice_num_components = 2;
|
|
ast_debug_ice(2, "(%p) ICE creating session %s (%d)\n", instance,
|
|
ast_sockaddr_stringify(&rtp->bind_address), x);
|
|
if (ice_create(instance, &rtp->bind_address, x, 0)) {
|
|
ast_log(LOG_NOTICE, "(%p) ICE failed to create session\n", instance);
|
|
} else {
|
|
rtp->ice_port = x;
|
|
ast_sockaddr_copy(&rtp->ice_original_rtp_addr, &rtp->bind_address);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
rtp->rekeyid = -1;
|
|
rtp->dtls.timeout_timer = -1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
|
|
{
|
|
int saved_rtp_s = rtp->s;
|
|
#ifdef HAVE_PJPROJECT
|
|
struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
|
|
struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
ast_rtp_dtls_stop(instance);
|
|
#endif
|
|
|
|
/* Close our own socket so we no longer get packets */
|
|
if (rtp->s > -1) {
|
|
close(rtp->s);
|
|
rtp->s = -1;
|
|
}
|
|
|
|
/* Destroy RTCP if it was being used */
|
|
if (rtp->rtcp && rtp->rtcp->s > -1) {
|
|
if (saved_rtp_s != rtp->rtcp->s) {
|
|
close(rtp->rtcp->s);
|
|
}
|
|
rtp->rtcp->s = -1;
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
pj_thread_register_check();
|
|
|
|
/*
|
|
* The instance lock is already held.
|
|
*
|
|
* Destroy the RTP TURN relay if being used
|
|
*/
|
|
if (rtp->turn_rtp) {
|
|
rtp->turn_state = PJ_TURN_STATE_NULL;
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
pj_turn_sock_destroy(rtp->turn_rtp);
|
|
ao2_lock(instance);
|
|
while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
|
|
ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
|
|
}
|
|
rtp->turn_rtp = NULL;
|
|
}
|
|
|
|
/* Destroy the RTCP TURN relay if being used */
|
|
if (rtp->turn_rtcp) {
|
|
rtp->turn_state = PJ_TURN_STATE_NULL;
|
|
|
|
/* Release the instance lock to avoid deadlock with PJPROJECT group lock */
|
|
ao2_unlock(instance);
|
|
pj_turn_sock_destroy(rtp->turn_rtcp);
|
|
ao2_lock(instance);
|
|
while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
|
|
ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
|
|
}
|
|
rtp->turn_rtcp = NULL;
|
|
}
|
|
|
|
ast_debug_ice(2, "(%p) ICE RTP transport deallocating\n", instance);
|
|
/* Destroy any ICE session */
|
|
ast_rtp_ice_stop(instance);
|
|
|
|
/* Destroy any candidates */
|
|
if (rtp->ice_local_candidates) {
|
|
ao2_ref(rtp->ice_local_candidates, -1);
|
|
rtp->ice_local_candidates = NULL;
|
|
}
|
|
|
|
if (rtp->ice_active_remote_candidates) {
|
|
ao2_ref(rtp->ice_active_remote_candidates, -1);
|
|
rtp->ice_active_remote_candidates = NULL;
|
|
}
|
|
|
|
if (rtp->ice_proposed_remote_candidates) {
|
|
ao2_ref(rtp->ice_proposed_remote_candidates, -1);
|
|
rtp->ice_proposed_remote_candidates = NULL;
|
|
}
|
|
|
|
if (rtp->ioqueue) {
|
|
/*
|
|
* We cannot hold the instance lock because we could wait
|
|
* for the ioqueue thread to die and we might deadlock as
|
|
* a result.
|
|
*/
|
|
ao2_unlock(instance);
|
|
rtp_ioqueue_thread_remove(rtp->ioqueue);
|
|
ao2_lock(instance);
|
|
rtp->ioqueue = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_new(struct ast_rtp_instance *instance,
|
|
struct ast_sched_context *sched, struct ast_sockaddr *addr,
|
|
void *data)
|
|
{
|
|
struct ast_rtp *rtp = NULL;
|
|
|
|
/* Create a new RTP structure to hold all of our data */
|
|
if (!(rtp = ast_calloc(1, sizeof(*rtp)))) {
|
|
return -1;
|
|
}
|
|
|
|
/* Set default parameters on the newly created RTP structure */
|
|
rtp->ssrc = ast_random();
|
|
ast_uuid_generate_str(rtp->cname, sizeof(rtp->cname));
|
|
rtp->seqno = ast_random() & 0x7fff;
|
|
rtp->expectedrxseqno = -1;
|
|
rtp->expectedseqno = -1;
|
|
rtp->sched = sched;
|
|
ast_sockaddr_copy(&rtp->bind_address, addr);
|
|
|
|
/* Transport creation operations can grab the RTP data from the instance, so set it */
|
|
ast_rtp_instance_set_data(instance, rtp);
|
|
|
|
if (rtp_allocate_transport(instance, rtp)) {
|
|
return -1;
|
|
}
|
|
|
|
if (AST_VECTOR_INIT(&rtp->ssrc_mapping, 1)) {
|
|
return -1;
|
|
}
|
|
|
|
if (AST_VECTOR_INIT(&rtp->transport_wide_cc.packet_statistics, 0)) {
|
|
return -1;
|
|
}
|
|
rtp->transport_wide_cc.schedid = -1;
|
|
|
|
rtp->f.subclass.format = ao2_bump(ast_format_none);
|
|
rtp->lastrxformat = ao2_bump(ast_format_none);
|
|
rtp->lasttxformat = ao2_bump(ast_format_none);
|
|
rtp->stream_num = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*!
|
|
* \brief SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
|
|
*
|
|
* \param elem Element to compare against
|
|
* \param value Value to compare with the vector element.
|
|
*
|
|
* \retval 0 if element does not match.
|
|
* \retval Non-zero if element matches.
|
|
*/
|
|
#define SSRC_MAPPING_ELEM_CMP(elem, value) ((elem).instance == (value))
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_destroy(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp->bundled) {
|
|
struct ast_rtp *bundled_rtp;
|
|
|
|
/* We can't hold our instance lock while removing ourselves from the parent */
|
|
ao2_unlock(instance);
|
|
|
|
ao2_lock(rtp->bundled);
|
|
bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
|
|
AST_VECTOR_REMOVE_CMP_UNORDERED(&bundled_rtp->ssrc_mapping, instance, SSRC_MAPPING_ELEM_CMP, AST_VECTOR_ELEM_CLEANUP_NOOP);
|
|
ao2_unlock(rtp->bundled);
|
|
|
|
ao2_lock(instance);
|
|
ao2_ref(rtp->bundled, -1);
|
|
}
|
|
|
|
rtp_deallocate_transport(instance, rtp);
|
|
|
|
/* Destroy the smoother that was smoothing out audio if present */
|
|
if (rtp->smoother) {
|
|
ast_smoother_free(rtp->smoother);
|
|
}
|
|
|
|
/* Destroy RTCP if it was being used */
|
|
if (rtp->rtcp) {
|
|
/*
|
|
* It is not possible for there to be an active RTCP scheduler
|
|
* entry at this point since it holds a reference to the
|
|
* RTP instance while it's active.
|
|
*/
|
|
ast_free(rtp->rtcp->local_addr_str);
|
|
ast_free(rtp->rtcp);
|
|
}
|
|
|
|
/* Destroy RED if it was being used */
|
|
if (rtp->red) {
|
|
ao2_unlock(instance);
|
|
AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
|
|
ao2_lock(instance);
|
|
ast_free(rtp->red);
|
|
rtp->red = NULL;
|
|
}
|
|
|
|
/* Destroy the send buffer if it was being used */
|
|
if (rtp->send_buffer) {
|
|
ast_data_buffer_free(rtp->send_buffer);
|
|
}
|
|
|
|
/* Destroy the recv buffer if it was being used */
|
|
if (rtp->recv_buffer) {
|
|
ast_data_buffer_free(rtp->recv_buffer);
|
|
}
|
|
|
|
AST_VECTOR_FREE(&rtp->transport_wide_cc.packet_statistics);
|
|
|
|
ao2_cleanup(rtp->lasttxformat);
|
|
ao2_cleanup(rtp->lastrxformat);
|
|
ao2_cleanup(rtp->f.subclass.format);
|
|
AST_VECTOR_FREE(&rtp->ssrc_mapping);
|
|
AST_VECTOR_FREE(&rtp->missing_seqno);
|
|
|
|
/* Finally destroy ourselves */
|
|
ast_free(rtp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
rtp->dtmfmode = dtmf_mode;
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
return rtp->dtmfmode;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int hdrlen = 12, res = 0, i = 0, payload = 101;
|
|
char data[256];
|
|
unsigned int *rtpheader = (unsigned int*)data;
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/* If we have no remote address information bail out now */
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
return -1;
|
|
}
|
|
|
|
/* Convert given digit into what we want to transmit */
|
|
if ((digit <= '9') && (digit >= '0')) {
|
|
digit -= '0';
|
|
} else if (digit == '*') {
|
|
digit = 10;
|
|
} else if (digit == '#') {
|
|
digit = 11;
|
|
} else if ((digit >= 'A') && (digit <= 'D')) {
|
|
digit = digit - 'A' + 12;
|
|
} else if ((digit >= 'a') && (digit <= 'd')) {
|
|
digit = digit - 'a' + 12;
|
|
} else {
|
|
ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
|
|
return -1;
|
|
}
|
|
|
|
/* Grab the payload that they expect the RFC2833 packet to be received in */
|
|
payload = ast_rtp_codecs_payload_code_tx(ast_rtp_instance_get_codecs(instance), 0, NULL, AST_RTP_DTMF);
|
|
|
|
rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
|
|
rtp->send_duration = 160;
|
|
rtp->lastts += calc_txstamp(rtp, NULL) * DTMF_SAMPLE_RATE_MS;
|
|
rtp->lastdigitts = rtp->lastts + rtp->send_duration;
|
|
|
|
/* Create the actual packet that we will be sending */
|
|
rtpheader[0] = htonl((2 << 30) | (1 << 23) | (payload << 16) | (rtp->seqno));
|
|
rtpheader[1] = htonl(rtp->lastdigitts);
|
|
rtpheader[2] = htonl(rtp->ssrc);
|
|
|
|
/* Actually send the packet */
|
|
for (i = 0; i < 2; i++) {
|
|
int ice;
|
|
|
|
rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
|
|
res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
strerror(errno));
|
|
}
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "",
|
|
payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
|
|
}
|
|
rtp->seqno++;
|
|
rtp->send_duration += 160;
|
|
rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
|
|
}
|
|
|
|
/* Record that we are in the process of sending a digit and information needed to continue doing so */
|
|
rtp->sending_digit = 1;
|
|
rtp->send_digit = digit;
|
|
rtp->send_payload = payload;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtmf_continuation(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int hdrlen = 12, res = 0;
|
|
char data[256];
|
|
unsigned int *rtpheader = (unsigned int*)data;
|
|
int ice;
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/* Make sure we know where the other side is so we can send them the packet */
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
return -1;
|
|
}
|
|
|
|
/* Actually create the packet we will be sending */
|
|
rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
|
|
rtpheader[1] = htonl(rtp->lastdigitts);
|
|
rtpheader[2] = htonl(rtp->ssrc);
|
|
rtpheader[3] = htonl((rtp->send_digit << 24) | (0xa << 16) | (rtp->send_duration));
|
|
|
|
/* Boom, send it on out */
|
|
res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
strerror(errno));
|
|
}
|
|
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "",
|
|
rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
|
|
}
|
|
|
|
/* And now we increment some values for the next time we swing by */
|
|
rtp->seqno++;
|
|
rtp->send_duration += 160;
|
|
rtp->lastts += calc_txstamp(rtp, NULL) * DTMF_SAMPLE_RATE_MS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int hdrlen = 12, res = -1, i = 0;
|
|
char data[256];
|
|
unsigned int *rtpheader = (unsigned int*)data;
|
|
unsigned int measured_samples;
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/* Make sure we know where the remote side is so we can send them the packet we construct */
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Convert the given digit to the one we are going to send */
|
|
if ((digit <= '9') && (digit >= '0')) {
|
|
digit -= '0';
|
|
} else if (digit == '*') {
|
|
digit = 10;
|
|
} else if (digit == '#') {
|
|
digit = 11;
|
|
} else if ((digit >= 'A') && (digit <= 'D')) {
|
|
digit = digit - 'A' + 12;
|
|
} else if ((digit >= 'a') && (digit <= 'd')) {
|
|
digit = digit - 'a' + 12;
|
|
} else {
|
|
ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
|
|
goto cleanup;
|
|
}
|
|
|
|
rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
|
|
|
|
if (duration > 0 && (measured_samples = duration * ast_rtp_get_rate(rtp->f.subclass.format) / 1000) > rtp->send_duration) {
|
|
ast_debug_rtp(2, "(%p) RTP adjusting final end duration from %d to %u\n",
|
|
instance, rtp->send_duration, measured_samples);
|
|
rtp->send_duration = measured_samples;
|
|
}
|
|
|
|
/* Construct the packet we are going to send */
|
|
rtpheader[1] = htonl(rtp->lastdigitts);
|
|
rtpheader[2] = htonl(rtp->ssrc);
|
|
rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
|
|
rtpheader[3] |= htonl((1 << 23));
|
|
|
|
/* Send it 3 times, that's the magical number */
|
|
for (i = 0; i < 3; i++) {
|
|
int ice;
|
|
|
|
rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
|
|
|
|
res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
|
|
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
strerror(errno));
|
|
}
|
|
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "",
|
|
rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
|
|
}
|
|
|
|
rtp->seqno++;
|
|
}
|
|
res = 0;
|
|
|
|
/* Oh and we can't forget to turn off the stuff that says we are sending DTMF */
|
|
rtp->lastts += calc_txstamp(rtp, NULL) * DTMF_SAMPLE_RATE_MS;
|
|
|
|
/* Reset the smoother as the delivery time stored in it is now out of date */
|
|
if (rtp->smoother) {
|
|
ast_smoother_free(rtp->smoother);
|
|
rtp->smoother = NULL;
|
|
}
|
|
cleanup:
|
|
rtp->sending_digit = 0;
|
|
rtp->send_digit = 0;
|
|
|
|
/* Re-Learn expected seqno */
|
|
rtp->expectedseqno = -1;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
|
|
{
|
|
return ast_rtp_dtmf_end_with_duration(instance, digit, 0);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_update_source(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
/* We simply set this bit so that the next packet sent will have the marker bit turned on */
|
|
ast_set_flag(rtp, FLAG_NEED_MARKER_BIT);
|
|
ast_debug_rtp(3, "(%p) RTP setting the marker bit due to a source update\n", instance);
|
|
|
|
return;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_change_source(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 0);
|
|
struct ast_srtp *rtcp_srtp = ast_rtp_instance_get_srtp(instance, 1);
|
|
unsigned int ssrc = ast_random();
|
|
|
|
if (rtp->lastts) {
|
|
/* We simply set this bit so that the next packet sent will have the marker bit turned on */
|
|
ast_set_flag(rtp, FLAG_NEED_MARKER_BIT);
|
|
}
|
|
|
|
ast_debug_rtp(3, "(%p) RTP changing ssrc from %u to %u due to a source change\n",
|
|
instance, rtp->ssrc, ssrc);
|
|
|
|
if (srtp) {
|
|
ast_debug_rtp(3, "(%p) RTP changing ssrc for SRTP from %u to %u\n",
|
|
instance, rtp->ssrc, ssrc);
|
|
res_srtp->change_source(srtp, rtp->ssrc, ssrc);
|
|
if (rtcp_srtp != srtp) {
|
|
res_srtp->change_source(rtcp_srtp, rtp->ssrc, ssrc);
|
|
}
|
|
}
|
|
|
|
rtp->ssrc = ssrc;
|
|
|
|
/* Since the source is changing, we don't know what sequence number to expect next */
|
|
rtp->expectedrxseqno = -1;
|
|
|
|
return;
|
|
}
|
|
|
|
static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
|
|
{
|
|
unsigned int sec, usec, frac;
|
|
sec = tv.tv_sec + 2208988800u; /* Sec between 1900 and 1970 */
|
|
usec = tv.tv_usec;
|
|
/*
|
|
* Convert usec to 0.32 bit fixed point without overflow.
|
|
*
|
|
* = usec * 2^32 / 10^6
|
|
* = usec * 2^32 / (2^6 * 5^6)
|
|
* = usec * 2^26 / 5^6
|
|
*
|
|
* The usec value needs 20 bits to represent 999999 usec. So
|
|
* splitting the 2^26 to get the most precision using 32 bit
|
|
* values gives:
|
|
*
|
|
* = ((usec * 2^12) / 5^6) * 2^14
|
|
*
|
|
* Splitting the division into two stages preserves all the
|
|
* available significant bits of usec over doing the division
|
|
* all at once.
|
|
*
|
|
* = ((((usec * 2^12) / 5^3) * 2^7) / 5^3) * 2^7
|
|
*/
|
|
frac = ((((usec << 12) / 125) << 7) / 125) << 7;
|
|
*msw = sec;
|
|
*lsw = frac;
|
|
}
|
|
|
|
static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
|
|
{
|
|
tv->tv_sec = msw - 2208988800u;
|
|
/* Reverse the sequence in timeval2ntp() */
|
|
tv->tv_usec = ((((lsw >> 7) * 125) >> 7) * 125) >> 12;
|
|
}
|
|
|
|
static void calculate_lost_packet_statistics(struct ast_rtp *rtp,
|
|
unsigned int *lost_packets,
|
|
int *fraction_lost)
|
|
{
|
|
unsigned int extended_seq_no;
|
|
unsigned int expected_packets;
|
|
unsigned int expected_interval;
|
|
unsigned int received_interval;
|
|
int lost_interval;
|
|
|
|
/* Compute statistics */
|
|
extended_seq_no = rtp->cycles + rtp->lastrxseqno;
|
|
expected_packets = extended_seq_no - rtp->seedrxseqno + 1;
|
|
if (rtp->rxcount > expected_packets) {
|
|
expected_packets += rtp->rxcount - expected_packets;
|
|
}
|
|
*lost_packets = expected_packets - rtp->rxcount;
|
|
expected_interval = expected_packets - rtp->rtcp->expected_prior;
|
|
received_interval = rtp->rxcount - rtp->rtcp->received_prior;
|
|
if (received_interval > expected_interval) {
|
|
/* If we receive some late packets it is possible for the packets
|
|
* we received in this interval to exceed the number we expected.
|
|
* We update the expected so that the packet loss calculations
|
|
* show that no packets are lost.
|
|
*/
|
|
expected_interval = received_interval;
|
|
}
|
|
lost_interval = expected_interval - received_interval;
|
|
if (expected_interval == 0 || lost_interval <= 0) {
|
|
*fraction_lost = 0;
|
|
} else {
|
|
*fraction_lost = (lost_interval << 8) / expected_interval;
|
|
}
|
|
|
|
/* Update RTCP statistics */
|
|
rtp->rtcp->received_prior = rtp->rxcount;
|
|
rtp->rtcp->expected_prior = expected_packets;
|
|
|
|
/*
|
|
* While rxlost represents the number of packets lost since the last report was sent, for
|
|
* the calculations below it should be thought of as a single sample. Thus min/max are the
|
|
* lowest/highest sample value seen, and the mean is the average number of packets lost
|
|
* between each report. As such rxlost_count only needs to be incremented per report.
|
|
*/
|
|
if (lost_interval <= 0) {
|
|
rtp->rtcp->rxlost = 0;
|
|
} else {
|
|
rtp->rtcp->rxlost = lost_interval;
|
|
}
|
|
if (rtp->rtcp->rxlost_count == 0) {
|
|
rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
|
|
}
|
|
if (lost_interval && lost_interval < rtp->rtcp->minrxlost) {
|
|
rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
|
|
}
|
|
if (lost_interval > rtp->rtcp->maxrxlost) {
|
|
rtp->rtcp->maxrxlost = rtp->rtcp->rxlost;
|
|
}
|
|
|
|
calc_mean_and_standard_deviation(rtp->rtcp->rxlost, &rtp->rtcp->normdev_rxlost,
|
|
&rtp->rtcp->stdev_rxlost, &rtp->rtcp->rxlost_count);
|
|
}
|
|
|
|
static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
|
|
struct ast_rtp_rtcp_report *rtcp_report, int *sr)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int len = 0;
|
|
struct timeval now;
|
|
unsigned int now_lsw;
|
|
unsigned int now_msw;
|
|
unsigned int lost_packets;
|
|
int fraction_lost;
|
|
struct timeval dlsr = { 0, };
|
|
struct ast_rtp_rtcp_report_block *report_block = NULL;
|
|
|
|
if (!rtp || !rtp->rtcp) {
|
|
return 0;
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&rtp->rtcp->them)) { /* This'll stop rtcp for this rtp session */
|
|
/* RTCP was stopped. */
|
|
return 0;
|
|
}
|
|
|
|
if (!rtcp_report) {
|
|
return 1;
|
|
}
|
|
|
|
*sr = rtp->txcount > rtp->rtcp->lastsrtxcount ? 1 : 0;
|
|
|
|
/* Compute statistics */
|
|
calculate_lost_packet_statistics(rtp, &lost_packets, &fraction_lost);
|
|
|
|
gettimeofday(&now, NULL);
|
|
rtcp_report->reception_report_count = rtp->themssrc_valid ? 1 : 0;
|
|
rtcp_report->ssrc = rtp->ssrc;
|
|
rtcp_report->type = *sr ? RTCP_PT_SR : RTCP_PT_RR;
|
|
if (*sr) {
|
|
rtcp_report->sender_information.ntp_timestamp = now;
|
|
rtcp_report->sender_information.rtp_timestamp = rtp->lastts;
|
|
rtcp_report->sender_information.packet_count = rtp->txcount;
|
|
rtcp_report->sender_information.octet_count = rtp->txoctetcount;
|
|
}
|
|
|
|
if (rtp->themssrc_valid) {
|
|
report_block = ast_calloc(1, sizeof(*report_block));
|
|
if (!report_block) {
|
|
return 1;
|
|
}
|
|
|
|
rtcp_report->report_block[0] = report_block;
|
|
report_block->source_ssrc = rtp->themssrc;
|
|
report_block->lost_count.fraction = (fraction_lost & 0xff);
|
|
report_block->lost_count.packets = (lost_packets & 0xffffff);
|
|
report_block->highest_seq_no = (rtp->cycles | (rtp->lastrxseqno & 0xffff));
|
|
report_block->ia_jitter = (unsigned int)(rtp->rxjitter * ast_rtp_get_rate(rtp->f.subclass.format));
|
|
report_block->lsr = rtp->rtcp->themrxlsr;
|
|
/* If we haven't received an SR report, DLSR should be 0 */
|
|
if (!ast_tvzero(rtp->rtcp->rxlsr)) {
|
|
timersub(&now, &rtp->rtcp->rxlsr, &dlsr);
|
|
report_block->dlsr = (((dlsr.tv_sec * 1000) + (dlsr.tv_usec / 1000)) * 65536) / 1000;
|
|
}
|
|
}
|
|
timeval2ntp(rtcp_report->sender_information.ntp_timestamp, &now_msw, &now_lsw);
|
|
put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc)); /* Our SSRC */
|
|
len += 8;
|
|
if (*sr) {
|
|
put_unaligned_uint32(rtcpheader + len, htonl(now_msw)); /* now, MSW. gettimeofday() + SEC_BETWEEN_1900_AND_1970 */
|
|
put_unaligned_uint32(rtcpheader + len + 4, htonl(now_lsw)); /* now, LSW */
|
|
put_unaligned_uint32(rtcpheader + len + 8, htonl(rtcp_report->sender_information.rtp_timestamp));
|
|
put_unaligned_uint32(rtcpheader + len + 12, htonl(rtcp_report->sender_information.packet_count));
|
|
put_unaligned_uint32(rtcpheader + len + 16, htonl(rtcp_report->sender_information.octet_count));
|
|
len += 20;
|
|
}
|
|
if (report_block) {
|
|
put_unaligned_uint32(rtcpheader + len, htonl(report_block->source_ssrc)); /* Their SSRC */
|
|
put_unaligned_uint32(rtcpheader + len + 4, htonl((report_block->lost_count.fraction << 24) | report_block->lost_count.packets));
|
|
put_unaligned_uint32(rtcpheader + len + 8, htonl(report_block->highest_seq_no));
|
|
put_unaligned_uint32(rtcpheader + len + 12, htonl(report_block->ia_jitter));
|
|
put_unaligned_uint32(rtcpheader + len + 16, htonl(report_block->lsr));
|
|
put_unaligned_uint32(rtcpheader + len + 20, htonl(report_block->dlsr));
|
|
len += 24;
|
|
}
|
|
|
|
put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (rtcp_report->reception_report_count << 24)
|
|
| ((*sr ? RTCP_PT_SR : RTCP_PT_RR) << 16) | ((len/4)-1)));
|
|
|
|
return len;
|
|
}
|
|
|
|
static int ast_rtcp_calculate_sr_rr_statistics(struct ast_rtp_instance *instance,
|
|
struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_rtp_rtcp_report_block *report_block = NULL;
|
|
RAII_VAR(struct ast_json *, message_blob, NULL, ast_json_unref);
|
|
|
|
if (!rtp || !rtp->rtcp) {
|
|
return 0;
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!rtcp_report) {
|
|
return -1;
|
|
}
|
|
|
|
report_block = rtcp_report->report_block[0];
|
|
|
|
if (sr) {
|
|
rtp->rtcp->txlsr = rtcp_report->sender_information.ntp_timestamp;
|
|
rtp->rtcp->sr_count++;
|
|
rtp->rtcp->lastsrtxcount = rtp->txcount;
|
|
} else {
|
|
rtp->rtcp->rr_count++;
|
|
}
|
|
|
|
if (rtcp_debug_test_addr(&rtp->rtcp->them)) {
|
|
ast_verbose("* Sent RTCP %s to %s%s\n", sr ? "SR" : "RR",
|
|
ast_sockaddr_stringify(&remote_address), ice ? " (via ICE)" : "");
|
|
ast_verbose(" Our SSRC: %u\n", rtcp_report->ssrc);
|
|
if (sr) {
|
|
ast_verbose(" Sent(NTP): %u.%06u\n",
|
|
(unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
|
|
(unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
|
|
ast_verbose(" Sent(RTP): %u\n", rtcp_report->sender_information.rtp_timestamp);
|
|
ast_verbose(" Sent packets: %u\n", rtcp_report->sender_information.packet_count);
|
|
ast_verbose(" Sent octets: %u\n", rtcp_report->sender_information.octet_count);
|
|
}
|
|
if (report_block) {
|
|
ast_verbose(" Report block:\n");
|
|
ast_verbose(" Their SSRC: %u\n", report_block->source_ssrc);
|
|
ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
|
|
ast_verbose(" Cumulative loss: %u\n", report_block->lost_count.packets);
|
|
ast_verbose(" Highest seq no: %u\n", report_block->highest_seq_no);
|
|
ast_verbose(" IA jitter: %.4f\n", (double)report_block->ia_jitter / ast_rtp_get_rate(rtp->f.subclass.format));
|
|
ast_verbose(" Their last SR: %u\n", report_block->lsr);
|
|
ast_verbose(" DLSR: %4.4f (sec)\n\n", (double)(report_block->dlsr / 65536.0));
|
|
}
|
|
}
|
|
|
|
message_blob = ast_json_pack("{s: s, s: s}",
|
|
"to", ast_sockaddr_stringify(&remote_address),
|
|
"from", rtp->rtcp->local_addr_str);
|
|
ast_rtp_publish_rtcp_message(instance, ast_rtp_rtcp_sent_type(),
|
|
rtcp_report, message_blob);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
|
|
struct ast_rtp_rtcp_report *rtcp_report)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int len = 0;
|
|
uint16_t sdes_packet_len_bytes;
|
|
uint16_t sdes_packet_len_rounded;
|
|
|
|
if (!rtp || !rtp->rtcp) {
|
|
return 0;
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!rtcp_report) {
|
|
return -1;
|
|
}
|
|
|
|
sdes_packet_len_bytes =
|
|
4 + /* RTCP Header */
|
|
4 + /* SSRC */
|
|
1 + /* Type (CNAME) */
|
|
1 + /* Text Length */
|
|
AST_UUID_STR_LEN /* Text and NULL terminator */
|
|
;
|
|
|
|
/* Round to 32 bit boundary */
|
|
sdes_packet_len_rounded = (sdes_packet_len_bytes + 3) & ~0x3;
|
|
|
|
put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (1 << 24) | (RTCP_PT_SDES << 16) | ((sdes_packet_len_rounded / 4) - 1)));
|
|
put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc));
|
|
rtcpheader[8] = 0x01; /* CNAME */
|
|
rtcpheader[9] = AST_UUID_STR_LEN - 1; /* Number of bytes of text */
|
|
memcpy(rtcpheader + 10, rtp->cname, AST_UUID_STR_LEN);
|
|
len += 10 + AST_UUID_STR_LEN;
|
|
|
|
/* Padding - Note that we don't set the padded bit on the packet. From
|
|
* RFC 3550 Section 6.5:
|
|
*
|
|
* No length octet follows the null item type octet, but additional null
|
|
* octets MUST be included if needd to pad until the next 32-bit
|
|
* boundary. Note that this padding is separate from that indicated by
|
|
* the P bit in the RTCP header.
|
|
*
|
|
* These bytes will already be zeroed out during array initialization.
|
|
*/
|
|
len += (sdes_packet_len_rounded - sdes_packet_len_bytes);
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Lock instance before calling this if it isn't already
|
|
*
|
|
* If successful, the overall packet length is returned
|
|
* If not, then 0 is returned
|
|
*/
|
|
static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
|
|
struct ast_rtp_rtcp_report *report, int *sr)
|
|
{
|
|
int packet_len = 0;
|
|
int res;
|
|
|
|
/* Every RTCP packet needs to be sent out with a SR/RR and SDES prefixing it.
|
|
* At the end of this function, rtcpheader should contain both of those packets,
|
|
* and will return the length of the overall packet. This can be used to determine
|
|
* where further packets can be inserted in the compound packet.
|
|
*/
|
|
res = ast_rtcp_generate_report(instance, rtcpheader, report, sr);
|
|
|
|
if (res == 0 || res == 1) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to generate %s report!\n", instance, sr ? "SR" : "RR");
|
|
return 0;
|
|
}
|
|
|
|
packet_len += res;
|
|
|
|
res = ast_rtcp_generate_sdes(instance, rtcpheader + packet_len, report);
|
|
|
|
if (res == 0 || res == 1) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to generate SDES!\n", instance);
|
|
return 0;
|
|
}
|
|
|
|
return packet_len + res;
|
|
}
|
|
|
|
static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int packet_len;
|
|
int blp_index = -1;
|
|
int current_seqno;
|
|
unsigned int fci = 0;
|
|
size_t remaining_missing_seqno;
|
|
|
|
if (!rtp || !rtp->rtcp) {
|
|
return 0;
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
|
|
return 0;
|
|
}
|
|
|
|
current_seqno = rtp->expectedrxseqno;
|
|
remaining_missing_seqno = AST_VECTOR_SIZE(&rtp->missing_seqno);
|
|
packet_len = 12; /* The header length is 12 (version line, packet source SSRC, media source SSRC) */
|
|
|
|
/* If there are no missing sequence numbers then don't bother sending a NACK needlessly */
|
|
if (!remaining_missing_seqno) {
|
|
return 0;
|
|
}
|
|
|
|
/* This iterates through the possible forward sequence numbers seeing which ones we
|
|
* have no packet for, adding it to the NACK until we are out of missing packets.
|
|
*/
|
|
while (remaining_missing_seqno) {
|
|
int *missing_seqno;
|
|
|
|
/* On the first entry to this loop blp_index will be -1, so this will become 0
|
|
* and the sequence number will be placed into the packet as the PID.
|
|
*/
|
|
blp_index++;
|
|
|
|
missing_seqno = AST_VECTOR_GET_CMP(&rtp->missing_seqno, current_seqno,
|
|
find_by_value);
|
|
if (missing_seqno) {
|
|
/* We hit the max blp size, reset */
|
|
if (blp_index >= 17) {
|
|
put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
|
|
fci = 0;
|
|
blp_index = 0;
|
|
packet_len += 4;
|
|
}
|
|
|
|
if (blp_index == 0) {
|
|
fci |= (current_seqno << 16);
|
|
} else {
|
|
fci |= (1 << (blp_index - 1));
|
|
}
|
|
|
|
/* Since we've used a missing sequence number, we're down one */
|
|
remaining_missing_seqno--;
|
|
}
|
|
|
|
/* Handle cycling of the sequence number */
|
|
current_seqno++;
|
|
if (current_seqno == SEQNO_CYCLE_OVER) {
|
|
current_seqno = 0;
|
|
}
|
|
}
|
|
|
|
put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
|
|
packet_len += 4;
|
|
|
|
/* Length MUST be 2+n, where n is the number of NACKs. Same as length in words minus 1 */
|
|
put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_NACK << 24)
|
|
| (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
|
|
put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
|
|
put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
|
|
|
|
return packet_len;
|
|
}
|
|
|
|
/*!
|
|
* \brief Write a RTCP packet to the far end
|
|
*
|
|
* \note Decide if we are going to send an SR (with Reception Block) or RR
|
|
* RR is sent if we have not sent any rtp packets in the previous interval
|
|
*
|
|
* Scheduler callback
|
|
*/
|
|
static int ast_rtcp_write(const void *data)
|
|
{
|
|
struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int res;
|
|
int sr = 0;
|
|
int packet_len = 0;
|
|
int ice;
|
|
struct ast_sockaddr remote_address = { { 0, } };
|
|
unsigned char *rtcpheader;
|
|
unsigned char bdata[AST_UUID_STR_LEN + 128] = ""; /* More than enough */
|
|
RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
|
|
ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0),
|
|
ao2_cleanup);
|
|
|
|
if (!rtp || !rtp->rtcp || rtp->rtcp->schedid == -1) {
|
|
ao2_ref(instance, -1);
|
|
return 0;
|
|
}
|
|
|
|
ao2_lock(instance);
|
|
rtcpheader = bdata;
|
|
|
|
res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
|
|
|
|
if (res == 0 || res == 1) {
|
|
goto cleanup;
|
|
}
|
|
|
|
packet_len += res;
|
|
|
|
if (rtp->bundled) {
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
} else {
|
|
ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
|
|
}
|
|
|
|
res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTCP %s transmission error to %s, rtcp halted %s\n",
|
|
sr ? "SR" : "RR",
|
|
ast_sockaddr_stringify(&rtp->rtcp->them),
|
|
strerror(errno));
|
|
res = 0;
|
|
} else {
|
|
ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
|
|
}
|
|
|
|
cleanup:
|
|
ao2_unlock(instance);
|
|
|
|
if (!res) {
|
|
/*
|
|
* Not being rescheduled.
|
|
*/
|
|
rtp->rtcp->schedid = -1;
|
|
ao2_ref(instance, -1);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
|
|
{
|
|
unsigned char *cp = p;
|
|
uint32_t datum;
|
|
|
|
/* Convert the time to 6.18 format */
|
|
datum = (time_msw << 18) & 0x00fc0000;
|
|
datum |= (time_lsw >> 14) & 0x0003ffff;
|
|
|
|
cp[0] = datum >> 16;
|
|
cp[1] = datum >> 8;
|
|
cp[2] = datum;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int pred, mark = 0;
|
|
unsigned int ms = calc_txstamp(rtp, &frame->delivery);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int rate = ast_rtp_get_rate(frame->subclass.format) / 1000;
|
|
unsigned int seqno;
|
|
#ifdef TEST_FRAMEWORK
|
|
struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
|
|
#endif
|
|
|
|
if (ast_format_cmp(frame->subclass.format, ast_format_g722) == AST_FORMAT_CMP_EQUAL) {
|
|
frame->samples /= 2;
|
|
}
|
|
|
|
if (rtp->sending_digit) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef TEST_FRAMEWORK
|
|
if (test && test->send_report) {
|
|
test->send_report = 0;
|
|
ast_rtcp_write(instance);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
if (frame->frametype == AST_FRAME_VOICE) {
|
|
pred = rtp->lastts + frame->samples;
|
|
|
|
/* Re-calculate last TS */
|
|
rtp->lastts = rtp->lastts + ms * rate;
|
|
if (ast_tvzero(frame->delivery)) {
|
|
/* If this isn't an absolute delivery time, Check if it is close to our prediction,
|
|
and if so, go with our prediction */
|
|
if (abs((int)rtp->lastts - pred) < MAX_TIMESTAMP_SKEW) {
|
|
rtp->lastts = pred;
|
|
} else {
|
|
ast_debug_rtp(3, "(%p) RTP audio difference is %d, ms is %u\n",
|
|
instance, abs((int)rtp->lastts - pred), ms);
|
|
mark = 1;
|
|
}
|
|
}
|
|
} else if (frame->frametype == AST_FRAME_VIDEO) {
|
|
mark = frame->subclass.frame_ending;
|
|
pred = rtp->lastovidtimestamp + frame->samples;
|
|
/* Re-calculate last TS */
|
|
rtp->lastts = rtp->lastts + ms * 90;
|
|
/* If it's close to our prediction, go for it */
|
|
if (ast_tvzero(frame->delivery)) {
|
|
if (abs((int)rtp->lastts - pred) < 7200) {
|
|
rtp->lastts = pred;
|
|
rtp->lastovidtimestamp += frame->samples;
|
|
} else {
|
|
ast_debug_rtp(3, "(%p) RTP video difference is %d, ms is %u (%u), pred/ts/samples %u/%d/%d\n",
|
|
instance, abs((int)rtp->lastts - pred), ms, ms * 90, rtp->lastts, pred, frame->samples);
|
|
rtp->lastovidtimestamp = rtp->lastts;
|
|
}
|
|
}
|
|
} else {
|
|
pred = rtp->lastotexttimestamp + frame->samples;
|
|
/* Re-calculate last TS */
|
|
rtp->lastts = rtp->lastts + ms;
|
|
/* If it's close to our prediction, go for it */
|
|
if (ast_tvzero(frame->delivery)) {
|
|
if (abs((int)rtp->lastts - pred) < 7200) {
|
|
rtp->lastts = pred;
|
|
rtp->lastotexttimestamp += frame->samples;
|
|
} else {
|
|
ast_debug_rtp(3, "(%p) RTP other difference is %d, ms is %u, pred/ts/samples %u/%d/%d\n",
|
|
instance, abs((int)rtp->lastts - pred), ms, rtp->lastts, pred, frame->samples);
|
|
rtp->lastotexttimestamp = rtp->lastts;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we have been explicitly told to set the marker bit then do so */
|
|
if (ast_test_flag(rtp, FLAG_NEED_MARKER_BIT)) {
|
|
mark = 1;
|
|
ast_clear_flag(rtp, FLAG_NEED_MARKER_BIT);
|
|
}
|
|
|
|
/* If the timestamp for non-digt packets has moved beyond the timestamp for digits, update the digit timestamp */
|
|
if (rtp->lastts > rtp->lastdigitts) {
|
|
rtp->lastdigitts = rtp->lastts;
|
|
}
|
|
|
|
/* Assume that the sequence number we expect to use is what will be used until proven otherwise */
|
|
seqno = rtp->seqno;
|
|
|
|
/* If the frame contains sequence number information use it to influence our sequence number */
|
|
if (ast_test_flag(frame, AST_FRFLAG_HAS_SEQUENCE_NUMBER)) {
|
|
if (rtp->expectedseqno != -1) {
|
|
/* Determine where the frame from the core is in relation to where we expected */
|
|
int difference = frame->seqno - rtp->expectedseqno;
|
|
|
|
/* If there is a substantial difference then we've either got packets really out
|
|
* of order, or the source is RTP and it has cycled. If this happens we resync
|
|
* the sequence number adjustments to this frame. If we also have packet loss
|
|
* things won't be reflected correctly but it will sort itself out after a bit.
|
|
*/
|
|
if (abs(difference) > 100) {
|
|
difference = 0;
|
|
}
|
|
|
|
/* Adjust the sequence number being used for this packet accordingly */
|
|
seqno += difference;
|
|
|
|
if (difference >= 0) {
|
|
/* This frame is on time or in the future */
|
|
rtp->expectedseqno = frame->seqno + 1;
|
|
rtp->seqno += difference;
|
|
}
|
|
} else {
|
|
/* This is the first frame with sequence number we've seen, so start keeping track */
|
|
rtp->expectedseqno = frame->seqno + 1;
|
|
}
|
|
} else {
|
|
rtp->expectedseqno = -1;
|
|
}
|
|
|
|
if (ast_test_flag(frame, AST_FRFLAG_HAS_TIMING_INFO)) {
|
|
rtp->lastts = frame->ts * rate;
|
|
}
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/* If we know the remote address construct a packet and send it out */
|
|
if (!ast_sockaddr_isnull(&remote_address)) {
|
|
int hdrlen = 12;
|
|
int res;
|
|
int ice;
|
|
int ext = 0;
|
|
int abs_send_time_id;
|
|
int packet_len;
|
|
unsigned char *rtpheader;
|
|
|
|
/* If the abs-send-time extension has been negotiated determine how much space we need */
|
|
abs_send_time_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_ABS_SEND_TIME);
|
|
if (abs_send_time_id != -1) {
|
|
/* 4 bytes for the shared information, 1 byte for identifier, 3 bytes for abs-send-time */
|
|
hdrlen += 8;
|
|
ext = 1;
|
|
}
|
|
|
|
packet_len = frame->datalen + hdrlen;
|
|
rtpheader = (unsigned char *)(frame->data.ptr - hdrlen);
|
|
|
|
put_unaligned_uint32(rtpheader, htonl((2 << 30) | (ext << 28) | (codec << 16) | (seqno) | (mark << 23)));
|
|
put_unaligned_uint32(rtpheader + 4, htonl(rtp->lastts));
|
|
put_unaligned_uint32(rtpheader + 8, htonl(rtp->ssrc));
|
|
|
|
/* We assume right now that we will only ever have the abs-send-time extension in the packet
|
|
* which simplifies things a bit.
|
|
*/
|
|
if (abs_send_time_id != -1) {
|
|
unsigned int now_msw;
|
|
unsigned int now_lsw;
|
|
|
|
/* This happens before being placed into the retransmission buffer so that when we
|
|
* retransmit we only have to update the timestamp, not everything else.
|
|
*/
|
|
put_unaligned_uint32(rtpheader + 12, htonl((0xBEDE << 16) | 1));
|
|
rtpheader[16] = (abs_send_time_id << 4) | 2;
|
|
|
|
timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
|
|
put_unaligned_time24(rtpheader + 17, now_msw, now_lsw);
|
|
}
|
|
|
|
/* If retransmissions are enabled, we need to store this packet for future use */
|
|
if (rtp->send_buffer) {
|
|
struct ast_rtp_rtcp_nack_payload *payload;
|
|
|
|
payload = ast_malloc(sizeof(*payload) + packet_len);
|
|
if (payload) {
|
|
payload->size = packet_len;
|
|
memcpy(payload->buf, rtpheader, packet_len);
|
|
if (ast_data_buffer_put(rtp->send_buffer, rtp->seqno, payload) == -1) {
|
|
ast_free(payload);
|
|
}
|
|
}
|
|
}
|
|
|
|
res = rtp_sendto(instance, (void *)rtpheader, packet_len, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
if (!ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT) || (ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT) && (ast_test_flag(rtp, FLAG_NAT_ACTIVE) == FLAG_NAT_ACTIVE))) {
|
|
ast_debug_rtp(1, "(%p) RTP transmission error of packet %d to %s: %s\n",
|
|
instance, rtp->seqno,
|
|
ast_sockaddr_stringify(&remote_address),
|
|
strerror(errno));
|
|
} else if (((ast_test_flag(rtp, FLAG_NAT_ACTIVE) == FLAG_NAT_INACTIVE) || ast_debug_rtp_packet_is_allowed) && !ast_test_flag(rtp, FLAG_NAT_INACTIVE_NOWARN)) {
|
|
/* Only give this error message once if we are not RTP debugging */
|
|
if (ast_debug_rtp_packet_is_allowed)
|
|
ast_debug(0, "(%p) RTP NAT: Can't write RTP to private address %s, waiting for other end to send audio...\n",
|
|
instance, ast_sockaddr_stringify(&remote_address));
|
|
ast_set_flag(rtp, FLAG_NAT_INACTIVE_NOWARN);
|
|
}
|
|
} else {
|
|
if (rtp->rtcp && rtp->rtcp->schedid < 0) {
|
|
ast_debug_rtcp(1, "(%p) RTCP starting transmission\n", instance);
|
|
ao2_ref(instance, +1);
|
|
rtp->rtcp->schedid = ast_sched_add(rtp->sched, ast_rtcp_calc_interval(rtp), ast_rtcp_write, instance);
|
|
if (rtp->rtcp->schedid < 0) {
|
|
ao2_ref(instance, -1);
|
|
ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Sent RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "",
|
|
codec, rtp->seqno, rtp->lastts, res - hdrlen);
|
|
}
|
|
}
|
|
|
|
/* If the sequence number that has been used doesn't match what we expected then this is an out of
|
|
* order late packet, so we don't need to increment as we haven't yet gotten the expected frame from
|
|
* the core.
|
|
*/
|
|
if (seqno == rtp->seqno) {
|
|
rtp->seqno++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct ast_frame *red_t140_to_red(struct rtp_red *red)
|
|
{
|
|
unsigned char *data = red->t140red.data.ptr;
|
|
int len = 0;
|
|
int i;
|
|
|
|
/* replace most aged generation */
|
|
if (red->len[0]) {
|
|
for (i = 1; i < red->num_gen+1; i++)
|
|
len += red->len[i];
|
|
|
|
memmove(&data[red->hdrlen], &data[red->hdrlen+red->len[0]], len);
|
|
}
|
|
|
|
/* Store length of each generation and primary data length*/
|
|
for (i = 0; i < red->num_gen; i++)
|
|
red->len[i] = red->len[i+1];
|
|
red->len[i] = red->t140.datalen;
|
|
|
|
/* write each generation length in red header */
|
|
len = red->hdrlen;
|
|
for (i = 0; i < red->num_gen; i++) {
|
|
len += data[i*4+3] = red->len[i];
|
|
}
|
|
|
|
/* add primary data to buffer */
|
|
memcpy(&data[len], red->t140.data.ptr, red->t140.datalen);
|
|
red->t140red.datalen = len + red->t140.datalen;
|
|
|
|
/* no primary data and no generations to send */
|
|
if (len == red->hdrlen && !red->t140.datalen) {
|
|
return NULL;
|
|
}
|
|
|
|
/* reset t.140 buffer */
|
|
red->t140.datalen = 0;
|
|
|
|
return &red->t140red;
|
|
}
|
|
|
|
static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
|
|
{
|
|
unsigned char *rtcpheader;
|
|
unsigned char bdata[1024];
|
|
int packet_len = 0;
|
|
int fir_len = 20;
|
|
int ice;
|
|
int res;
|
|
int sr;
|
|
RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
|
|
ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0),
|
|
ao2_cleanup);
|
|
|
|
if (!rtp || !rtp->rtcp) {
|
|
return;
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
|
|
/*
|
|
* RTCP was stopped.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (!rtp->themssrc_valid) {
|
|
/* We don't know their SSRC value so we don't know who to update. */
|
|
return;
|
|
}
|
|
|
|
/* Prepare RTCP FIR (PT=206, FMT=4) */
|
|
rtp->rtcp->firseq++;
|
|
if(rtp->rtcp->firseq == 256) {
|
|
rtp->rtcp->firseq = 0;
|
|
}
|
|
|
|
rtcpheader = bdata;
|
|
|
|
ao2_lock(instance);
|
|
res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
|
|
|
|
if (res == 0 || res == 1) {
|
|
ao2_unlock(instance);
|
|
return;
|
|
}
|
|
|
|
packet_len += res;
|
|
|
|
put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (4 << 24) | (RTCP_PT_PSFB << 16) | ((fir_len/4)-1)));
|
|
put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
|
|
put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(rtp->themssrc));
|
|
put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(rtp->themssrc)); /* FCI: SSRC */
|
|
put_unaligned_uint32(rtcpheader + packet_len + 16, htonl(rtp->rtcp->firseq << 24)); /* FCI: Sequence number */
|
|
res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + fir_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTCP FIR transmission error: %s\n", strerror(errno));
|
|
} else {
|
|
ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
|
|
}
|
|
|
|
ao2_unlock(instance);
|
|
}
|
|
|
|
static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
|
|
{
|
|
struct ast_rtp_rtcp_feedback *feedback = frame->data.ptr;
|
|
unsigned char *rtcpheader;
|
|
unsigned char bdata[1024];
|
|
int remb_len = 24;
|
|
int ice;
|
|
int res;
|
|
int sr = 0;
|
|
int packet_len = 0;
|
|
RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
|
|
ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0),
|
|
ao2_cleanup);
|
|
|
|
if (feedback->fmt != AST_RTP_RTCP_FMT_REMB) {
|
|
ast_debug_rtcp(1, "(%p) RTCP provided feedback frame of format %d to write, but only REMB is supported\n",
|
|
instance, feedback->fmt);
|
|
return;
|
|
}
|
|
|
|
if (!rtp || !rtp->rtcp) {
|
|
return;
|
|
}
|
|
|
|
/* If REMB support is not enabled don't send this RTCP packet */
|
|
if (!ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_REMB)) {
|
|
ast_debug_rtcp(1, "(%p) RTCP provided feedback REMB report to write, but REMB support not enabled\n",
|
|
instance);
|
|
return;
|
|
}
|
|
|
|
if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
|
|
/*
|
|
* RTCP was stopped.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
rtcpheader = bdata;
|
|
|
|
ao2_lock(instance);
|
|
res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
|
|
|
|
if (res == 0 || res == 1) {
|
|
ao2_unlock(instance);
|
|
return;
|
|
}
|
|
|
|
packet_len += res;
|
|
|
|
put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (AST_RTP_RTCP_FMT_REMB << 24) | (RTCP_PT_PSFB << 16) | ((remb_len/4)-1)));
|
|
put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
|
|
put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(0)); /* Per the draft, this should always be 0 */
|
|
put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(('R' << 24) | ('E' << 16) | ('M' << 8) | ('B'))); /* Unique identifier 'R' 'E' 'M' 'B' */
|
|
put_unaligned_uint32(rtcpheader + packet_len + 16, htonl((1 << 24) | (feedback->remb.br_exp << 18) | (feedback->remb.br_mantissa))); /* Number of SSRCs / BR Exp / BR Mantissa */
|
|
put_unaligned_uint32(rtcpheader + packet_len + 20, htonl(rtp->ssrc)); /* The SSRC this feedback message applies to */
|
|
res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + remb_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTCP PSFB transmission error: %s\n", strerror(errno));
|
|
} else {
|
|
ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
|
|
}
|
|
|
|
ao2_unlock(instance);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
struct ast_format *format;
|
|
int codec;
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/* If we don't actually know the remote address don't even bother doing anything */
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
ast_debug_rtp(1, "(%p) RTP no remote address on instance, so dropping frame\n", instance);
|
|
return 0;
|
|
}
|
|
|
|
/* VP8: is this a request to send a RTCP FIR? */
|
|
if (frame->frametype == AST_FRAME_CONTROL && frame->subclass.integer == AST_CONTROL_VIDUPDATE) {
|
|
rtp_write_rtcp_fir(instance, rtp, &remote_address);
|
|
return 0;
|
|
} else if (frame->frametype == AST_FRAME_RTCP) {
|
|
if (frame->subclass.integer == AST_RTP_RTCP_PSFB) {
|
|
rtp_write_rtcp_psfb(instance, rtp, frame, &remote_address);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* If there is no data length we can't very well send the packet */
|
|
if (!frame->datalen) {
|
|
ast_debug_rtp(1, "(%p) RTP received frame with no data for instance, so dropping frame\n", instance);
|
|
return 0;
|
|
}
|
|
|
|
/* If the packet is not one our RTP stack supports bail out */
|
|
if (frame->frametype != AST_FRAME_VOICE && frame->frametype != AST_FRAME_VIDEO && frame->frametype != AST_FRAME_TEXT) {
|
|
ast_log(LOG_WARNING, "RTP can only send voice, video, and text\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rtp->red) {
|
|
/* return 0; */
|
|
/* no primary data or generations to send */
|
|
if ((frame = red_t140_to_red(rtp->red)) == NULL)
|
|
return 0;
|
|
}
|
|
|
|
/* Grab the subclass and look up the payload we are going to use */
|
|
codec = ast_rtp_codecs_payload_code_tx(ast_rtp_instance_get_codecs(instance),
|
|
1, frame->subclass.format, 0);
|
|
if (codec < 0) {
|
|
ast_log(LOG_WARNING, "Don't know how to send format %s packets with RTP\n",
|
|
ast_format_get_name(frame->subclass.format));
|
|
return -1;
|
|
}
|
|
|
|
/* Note that we do not increase the ref count here as this pointer
|
|
* will not be held by any thing explicitly. The format variable is
|
|
* merely a convenience reference to frame->subclass.format */
|
|
format = frame->subclass.format;
|
|
if (ast_format_cmp(rtp->lasttxformat, format) == AST_FORMAT_CMP_NOT_EQUAL) {
|
|
/* Oh dear, if the format changed we will have to set up a new smoother */
|
|
ast_debug_rtp(1, "(%p) RTP ooh, format changed from %s to %s\n",
|
|
instance, ast_format_get_name(rtp->lasttxformat),
|
|
ast_format_get_name(frame->subclass.format));
|
|
ao2_replace(rtp->lasttxformat, format);
|
|
if (rtp->smoother) {
|
|
ast_smoother_free(rtp->smoother);
|
|
rtp->smoother = NULL;
|
|
}
|
|
}
|
|
|
|
/* If no smoother is present see if we have to set one up */
|
|
if (!rtp->smoother && ast_format_can_be_smoothed(format)) {
|
|
unsigned int smoother_flags = ast_format_get_smoother_flags(format);
|
|
unsigned int framing_ms = ast_rtp_codecs_get_framing(ast_rtp_instance_get_codecs(instance));
|
|
|
|
if (!framing_ms && (smoother_flags & AST_SMOOTHER_FLAG_FORCED)) {
|
|
framing_ms = ast_format_get_default_ms(format);
|
|
}
|
|
|
|
if (framing_ms) {
|
|
rtp->smoother = ast_smoother_new((framing_ms * ast_format_get_minimum_bytes(format)) / ast_format_get_minimum_ms(format));
|
|
if (!rtp->smoother) {
|
|
ast_log(LOG_WARNING, "Unable to create smoother: format %s ms: %u len: %u\n",
|
|
ast_format_get_name(format), framing_ms, ast_format_get_minimum_bytes(format));
|
|
return -1;
|
|
}
|
|
ast_smoother_set_flags(rtp->smoother, smoother_flags);
|
|
}
|
|
}
|
|
|
|
/* Feed audio frames into the actual function that will create a frame and send it */
|
|
if (rtp->smoother) {
|
|
struct ast_frame *f;
|
|
|
|
if (ast_smoother_test_flag(rtp->smoother, AST_SMOOTHER_FLAG_BE)) {
|
|
ast_smoother_feed_be(rtp->smoother, frame);
|
|
} else {
|
|
ast_smoother_feed(rtp->smoother, frame);
|
|
}
|
|
|
|
while ((f = ast_smoother_read(rtp->smoother)) && (f->data.ptr)) {
|
|
rtp_raw_write(instance, f, codec);
|
|
}
|
|
} else {
|
|
int hdrlen = 12;
|
|
struct ast_frame *f = NULL;
|
|
|
|
if (frame->offset < hdrlen) {
|
|
f = ast_frdup(frame);
|
|
} else {
|
|
f = frame;
|
|
}
|
|
if (f->data.ptr) {
|
|
rtp_raw_write(instance, f, codec);
|
|
}
|
|
if (f != frame) {
|
|
ast_frfree(f);
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void calc_rxstamp(struct timeval *tv, struct ast_rtp *rtp, unsigned int timestamp, int mark)
|
|
{
|
|
struct timeval now;
|
|
struct timeval tmp;
|
|
double transit;
|
|
double current_time;
|
|
double d;
|
|
double dtv;
|
|
double prog;
|
|
int rate = ast_rtp_get_rate(rtp->f.subclass.format);
|
|
|
|
if ((!rtp->rxcore.tv_sec && !rtp->rxcore.tv_usec) || mark) {
|
|
gettimeofday(&rtp->rxcore, NULL);
|
|
rtp->drxcore = (double) rtp->rxcore.tv_sec + (double) rtp->rxcore.tv_usec / 1000000;
|
|
/* map timestamp to a real time */
|
|
rtp->seedrxts = timestamp; /* Their RTP timestamp started with this */
|
|
tmp = ast_samp2tv(timestamp, rate);
|
|
rtp->rxcore = ast_tvsub(rtp->rxcore, tmp);
|
|
/* Round to 0.1ms for nice, pretty timestamps */
|
|
rtp->rxcore.tv_usec -= rtp->rxcore.tv_usec % 100;
|
|
}
|
|
|
|
gettimeofday(&now,NULL);
|
|
/* rxcore is the mapping between the RTP timestamp and _our_ real time from gettimeofday() */
|
|
tmp = ast_samp2tv(timestamp, rate);
|
|
*tv = ast_tvadd(rtp->rxcore, tmp);
|
|
|
|
prog = (double)((timestamp-rtp->seedrxts)/(float)(rate));
|
|
dtv = (double)rtp->drxcore + (double)(prog);
|
|
current_time = (double)now.tv_sec + (double)now.tv_usec/1000000;
|
|
transit = current_time - dtv;
|
|
d = transit - rtp->rxtransit;
|
|
rtp->rxtransit = transit;
|
|
if (d<0) {
|
|
d=-d;
|
|
}
|
|
rtp->rxjitter += (1./16.) * (d - rtp->rxjitter);
|
|
if (rtp->rtcp) {
|
|
if (rtp->rxjitter > rtp->rtcp->maxrxjitter)
|
|
rtp->rtcp->maxrxjitter = rtp->rxjitter;
|
|
if (rtp->rtcp->rxjitter_count == 1)
|
|
rtp->rtcp->minrxjitter = rtp->rxjitter;
|
|
if (rtp->rtcp && rtp->rxjitter < rtp->rtcp->minrxjitter)
|
|
rtp->rtcp->minrxjitter = rtp->rxjitter;
|
|
|
|
calc_mean_and_standard_deviation(rtp->rxjitter, &rtp->rtcp->normdev_rxjitter,
|
|
&rtp->rtcp->stdev_rxjitter, &rtp->rtcp->rxjitter_count);
|
|
}
|
|
}
|
|
|
|
static struct ast_frame *create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
if (((compensate && type == AST_FRAME_DTMF_END) || (type == AST_FRAME_DTMF_BEGIN)) && ast_tvcmp(ast_tvnow(), rtp->dtmfmute) < 0) {
|
|
ast_debug_rtp(1, "(%p) RTP ignore potential DTMF echo from '%s'\n",
|
|
instance, ast_sockaddr_stringify(&remote_address));
|
|
rtp->resp = 0;
|
|
rtp->dtmfsamples = 0;
|
|
return &ast_null_frame;
|
|
} else if (type == AST_FRAME_DTMF_BEGIN && rtp->resp == 'X') {
|
|
ast_debug_rtp(1, "(%p) RTP ignore flash begin from '%s'\n",
|
|
instance, ast_sockaddr_stringify(&remote_address));
|
|
rtp->resp = 0;
|
|
rtp->dtmfsamples = 0;
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
if (rtp->resp == 'X') {
|
|
ast_debug_rtp(1, "(%p) RTP creating flash Frame at %s\n",
|
|
instance, ast_sockaddr_stringify(&remote_address));
|
|
rtp->f.frametype = AST_FRAME_CONTROL;
|
|
rtp->f.subclass.integer = AST_CONTROL_FLASH;
|
|
} else {
|
|
ast_debug_rtp(1, "(%p) RTP creating %s DTMF Frame: %d (%c), at %s\n",
|
|
instance, type == AST_FRAME_DTMF_END ? "END" : "BEGIN",
|
|
rtp->resp, rtp->resp,
|
|
ast_sockaddr_stringify(&remote_address));
|
|
rtp->f.frametype = type;
|
|
rtp->f.subclass.integer = rtp->resp;
|
|
}
|
|
rtp->f.datalen = 0;
|
|
rtp->f.samples = 0;
|
|
rtp->f.mallocd = 0;
|
|
rtp->f.src = "RTP";
|
|
AST_LIST_NEXT(&rtp->f, frame_list) = NULL;
|
|
|
|
return &rtp->f;
|
|
}
|
|
|
|
static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
unsigned int event, event_end, samples;
|
|
char resp = 0;
|
|
struct ast_frame *f = NULL;
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/* Figure out event, event end, and samples */
|
|
event = ntohl(*((unsigned int *)(data)));
|
|
event >>= 24;
|
|
event_end = ntohl(*((unsigned int *)(data)));
|
|
event_end <<= 8;
|
|
event_end >>= 24;
|
|
samples = ntohl(*((unsigned int *)(data)));
|
|
samples &= 0xFFFF;
|
|
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Got RTP RFC2833 from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d, mark %d, event %08x, end %d, duration %-5.5u) \n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
payloadtype, seqno, timestamp, len, (mark?1:0), event, ((event_end & 0x80)?1:0), samples);
|
|
}
|
|
|
|
/* Print out debug if turned on */
|
|
if (ast_debug_rtp_packet_is_allowed)
|
|
ast_debug(0, "- RTP 2833 Event: %08x (len = %d)\n", event, len);
|
|
|
|
/* Figure out what digit was pressed */
|
|
if (event < 10) {
|
|
resp = '0' + event;
|
|
} else if (event < 11) {
|
|
resp = '*';
|
|
} else if (event < 12) {
|
|
resp = '#';
|
|
} else if (event < 16) {
|
|
resp = 'A' + (event - 12);
|
|
} else if (event < 17) { /* Event 16: Hook flash */
|
|
resp = 'X';
|
|
} else {
|
|
/* Not a supported event */
|
|
ast_debug_rtp(1, "(%p) RTP ignoring RTP 2833 Event: %08x. Not a DTMF Digit.\n", instance, event);
|
|
return;
|
|
}
|
|
|
|
if (ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_DTMF_COMPENSATE)) {
|
|
if (!rtp->last_end_timestamp.is_set || rtp->last_end_timestamp.ts != timestamp || (rtp->resp && rtp->resp != resp)) {
|
|
rtp->resp = resp;
|
|
rtp->dtmf_timeout = 0;
|
|
f = ast_frdup(create_dtmf_frame(instance, AST_FRAME_DTMF_END, ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_DTMF_COMPENSATE)));
|
|
f->len = 0;
|
|
rtp->last_end_timestamp.ts = timestamp;
|
|
rtp->last_end_timestamp.is_set = 1;
|
|
AST_LIST_INSERT_TAIL(frames, f, frame_list);
|
|
}
|
|
} else {
|
|
/* The duration parameter measures the complete
|
|
duration of the event (from the beginning) - RFC2833.
|
|
Account for the fact that duration is only 16 bits long
|
|
(about 8 seconds at 8000 Hz) and can wrap is digit
|
|
is hold for too long. */
|
|
unsigned int new_duration = rtp->dtmf_duration;
|
|
unsigned int last_duration = new_duration & 0xFFFF;
|
|
|
|
if (last_duration > 64000 && samples < last_duration) {
|
|
new_duration += 0xFFFF + 1;
|
|
}
|
|
new_duration = (new_duration & ~0xFFFF) | samples;
|
|
|
|
if (event_end & 0x80) {
|
|
/* End event */
|
|
if (rtp->last_seqno != seqno && (!rtp->last_end_timestamp.is_set || timestamp > rtp->last_end_timestamp.ts)) {
|
|
rtp->last_end_timestamp.ts = timestamp;
|
|
rtp->last_end_timestamp.is_set = 1;
|
|
rtp->dtmf_duration = new_duration;
|
|
rtp->resp = resp;
|
|
f = ast_frdup(create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0));
|
|
f->len = ast_tvdiff_ms(ast_samp2tv(rtp->dtmf_duration, ast_rtp_get_rate(f->subclass.format)), ast_tv(0, 0));
|
|
rtp->resp = 0;
|
|
rtp->dtmf_duration = rtp->dtmf_timeout = 0;
|
|
AST_LIST_INSERT_TAIL(frames, f, frame_list);
|
|
} else if (ast_debug_rtp_packet_is_allowed) {
|
|
ast_debug_rtp(1, "(%p) RTP dropping duplicate or out of order DTMF END frame (seqno: %u, ts %u, digit %c)\n",
|
|
instance, seqno, timestamp, resp);
|
|
}
|
|
} else {
|
|
/* Begin/continuation */
|
|
|
|
/* The second portion of the seqno check is to not mistakenly
|
|
* stop accepting DTMF if the seqno rolls over beyond
|
|
* 65535.
|
|
*/
|
|
if ((rtp->last_seqno > seqno && rtp->last_seqno - seqno < 50)
|
|
|| (rtp->last_end_timestamp.is_set
|
|
&& timestamp <= rtp->last_end_timestamp.ts)) {
|
|
/* Out of order frame. Processing this can cause us to
|
|
* improperly duplicate incoming DTMF, so just drop
|
|
* this.
|
|
*/
|
|
if (ast_debug_rtp_packet_is_allowed) {
|
|
ast_debug(0, "Dropping out of order DTMF frame (seqno %u, ts %u, digit %c)\n",
|
|
seqno, timestamp, resp);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (rtp->resp && rtp->resp != resp) {
|
|
/* Another digit already began. End it */
|
|
f = ast_frdup(create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0));
|
|
f->len = ast_tvdiff_ms(ast_samp2tv(rtp->dtmf_duration, ast_rtp_get_rate(f->subclass.format)), ast_tv(0, 0));
|
|
rtp->resp = 0;
|
|
rtp->dtmf_duration = rtp->dtmf_timeout = 0;
|
|
AST_LIST_INSERT_TAIL(frames, f, frame_list);
|
|
}
|
|
|
|
if (rtp->resp) {
|
|
/* Digit continues */
|
|
rtp->dtmf_duration = new_duration;
|
|
} else {
|
|
/* New digit began */
|
|
rtp->resp = resp;
|
|
f = ast_frdup(create_dtmf_frame(instance, AST_FRAME_DTMF_BEGIN, 0));
|
|
rtp->dtmf_duration = samples;
|
|
AST_LIST_INSERT_TAIL(frames, f, frame_list);
|
|
}
|
|
|
|
rtp->dtmf_timeout = timestamp + rtp->dtmf_duration + dtmftimeout;
|
|
}
|
|
|
|
rtp->last_seqno = seqno;
|
|
}
|
|
|
|
rtp->dtmfsamples = samples;
|
|
|
|
return;
|
|
}
|
|
|
|
static struct ast_frame *process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
unsigned int event, flags, power;
|
|
char resp = 0;
|
|
unsigned char seq;
|
|
struct ast_frame *f = NULL;
|
|
|
|
if (len < 4) {
|
|
return NULL;
|
|
}
|
|
|
|
/* The format of Cisco RTP DTMF packet looks like next:
|
|
+0 - sequence number of DTMF RTP packet (begins from 1,
|
|
wrapped to 0)
|
|
+1 - set of flags
|
|
+1 (bit 0) - flaps by different DTMF digits delimited by audio
|
|
or repeated digit without audio???
|
|
+2 (+4,+6,...) - power level? (rises from 0 to 32 at begin of tone
|
|
then falls to 0 at its end)
|
|
+3 (+5,+7,...) - detected DTMF digit (0..9,*,#,A-D,...)
|
|
Repeated DTMF information (bytes 4/5, 6/7) is history shifted right
|
|
by each new packet and thus provides some redundancy.
|
|
|
|
Sample of Cisco RTP DTMF packet is (all data in hex):
|
|
19 07 00 02 12 02 20 02
|
|
showing end of DTMF digit '2'.
|
|
|
|
The packets
|
|
27 07 00 02 0A 02 20 02
|
|
28 06 20 02 00 02 0A 02
|
|
shows begin of new digit '2' with very short pause (20 ms) after
|
|
previous digit '2'. Bit +1.0 flips at begin of new digit.
|
|
|
|
Cisco RTP DTMF packets comes as replacement of audio RTP packets
|
|
so its uses the same sequencing and timestamping rules as replaced
|
|
audio packets. Repeat interval of DTMF packets is 20 ms and not rely
|
|
on audio framing parameters. Marker bit isn't used within stream of
|
|
DTMFs nor audio stream coming immediately after DTMF stream. Timestamps
|
|
are not sequential at borders between DTMF and audio streams,
|
|
*/
|
|
|
|
seq = data[0];
|
|
flags = data[1];
|
|
power = data[2];
|
|
event = data[3] & 0x1f;
|
|
|
|
if (ast_debug_rtp_packet_is_allowed)
|
|
ast_debug(0, "Cisco DTMF Digit: %02x (len=%d, seq=%d, flags=%02x, power=%u, history count=%d)\n", event, len, seq, flags, power, (len - 4) / 2);
|
|
if (event < 10) {
|
|
resp = '0' + event;
|
|
} else if (event < 11) {
|
|
resp = '*';
|
|
} else if (event < 12) {
|
|
resp = '#';
|
|
} else if (event < 16) {
|
|
resp = 'A' + (event - 12);
|
|
} else if (event < 17) {
|
|
resp = 'X';
|
|
}
|
|
if ((!rtp->resp && power) || (rtp->resp && (rtp->resp != resp))) {
|
|
rtp->resp = resp;
|
|
/* Why we should care on DTMF compensation at reception? */
|
|
if (ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_DTMF_COMPENSATE)) {
|
|
f = create_dtmf_frame(instance, AST_FRAME_DTMF_BEGIN, 0);
|
|
rtp->dtmfsamples = 0;
|
|
}
|
|
} else if ((rtp->resp == resp) && !power) {
|
|
f = create_dtmf_frame(instance, AST_FRAME_DTMF_END, ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_DTMF_COMPENSATE));
|
|
f->samples = rtp->dtmfsamples * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
|
|
rtp->resp = 0;
|
|
} else if (rtp->resp == resp) {
|
|
rtp->dtmfsamples += 20 * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
|
|
}
|
|
|
|
rtp->dtmf_timeout = 0;
|
|
|
|
return f;
|
|
}
|
|
|
|
static struct ast_frame *process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
/* Convert comfort noise into audio with various codecs. Unfortunately this doesn't
|
|
totally help us out because we don't have an engine to keep it going and we are not
|
|
guaranteed to have it every 20ms or anything */
|
|
if (ast_debug_rtp_packet_is_allowed) {
|
|
ast_debug(0, "- RTP 3389 Comfort noise event: Format %s (len = %d)\n",
|
|
ast_format_get_name(rtp->lastrxformat), len);
|
|
}
|
|
|
|
if (!ast_test_flag(rtp, FLAG_3389_WARNING)) {
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
ast_log(LOG_NOTICE, "Comfort noise support incomplete in Asterisk (RFC 3389). Please turn off on client if possible. Client address: %s\n",
|
|
ast_sockaddr_stringify(&remote_address));
|
|
ast_set_flag(rtp, FLAG_3389_WARNING);
|
|
}
|
|
|
|
/* Must have at least one byte */
|
|
if (!len) {
|
|
return NULL;
|
|
}
|
|
if (len < 24) {
|
|
rtp->f.data.ptr = rtp->rawdata + AST_FRIENDLY_OFFSET;
|
|
rtp->f.datalen = len - 1;
|
|
rtp->f.offset = AST_FRIENDLY_OFFSET;
|
|
memcpy(rtp->f.data.ptr, data + 1, len - 1);
|
|
} else {
|
|
rtp->f.data.ptr = NULL;
|
|
rtp->f.offset = 0;
|
|
rtp->f.datalen = 0;
|
|
}
|
|
rtp->f.frametype = AST_FRAME_CNG;
|
|
rtp->f.subclass.integer = data[0] & 0x7f;
|
|
rtp->f.samples = 0;
|
|
rtp->f.delivery.tv_usec = rtp->f.delivery.tv_sec = 0;
|
|
|
|
return &rtp->f;
|
|
}
|
|
|
|
static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
|
|
{
|
|
struct timeval now;
|
|
struct timeval rtt_tv;
|
|
unsigned int msw;
|
|
unsigned int lsw;
|
|
unsigned int rtt_msw;
|
|
unsigned int rtt_lsw;
|
|
unsigned int lsr_a;
|
|
unsigned int rtt;
|
|
|
|
gettimeofday(&now, NULL);
|
|
timeval2ntp(now, &msw, &lsw);
|
|
|
|
lsr_a = ((msw & 0x0000ffff) << 16) | ((lsw & 0xffff0000) >> 16);
|
|
rtt = lsr_a - lsr - dlsr;
|
|
rtt_msw = (rtt & 0xffff0000) >> 16;
|
|
rtt_lsw = (rtt & 0x0000ffff);
|
|
rtt_tv.tv_sec = rtt_msw;
|
|
/*
|
|
* Convert 16.16 fixed point rtt_lsw to usec without
|
|
* overflow.
|
|
*
|
|
* = rtt_lsw * 10^6 / 2^16
|
|
* = rtt_lsw * (2^6 * 5^6) / 2^16
|
|
* = rtt_lsw * 5^6 / 2^10
|
|
*
|
|
* The rtt_lsw value is in 16.16 fixed point format and 5^6
|
|
* requires 14 bits to represent. We have enough space to
|
|
* directly do the conversion because there is no integer
|
|
* component in rtt_lsw.
|
|
*/
|
|
rtt_tv.tv_usec = (rtt_lsw * 15625) >> 10;
|
|
rtp->rtcp->rtt = (double)rtt_tv.tv_sec + ((double)rtt_tv.tv_usec / 1000000);
|
|
if (lsr_a - dlsr < lsr) {
|
|
return 1;
|
|
}
|
|
|
|
rtp->rtcp->accumulated_transit += rtp->rtcp->rtt;
|
|
if (rtp->rtcp->rtt_count == 0 || rtp->rtcp->minrtt > rtp->rtcp->rtt) {
|
|
rtp->rtcp->minrtt = rtp->rtcp->rtt;
|
|
}
|
|
if (rtp->rtcp->maxrtt < rtp->rtcp->rtt) {
|
|
rtp->rtcp->maxrtt = rtp->rtcp->rtt;
|
|
}
|
|
|
|
calc_mean_and_standard_deviation(rtp->rtcp->rtt, &rtp->rtcp->normdevrtt,
|
|
&rtp->rtcp->stdevrtt, &rtp->rtcp->rtt_count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Update RTCP interarrival jitter stats
|
|
*/
|
|
static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
|
|
{
|
|
double reported_jitter;
|
|
|
|
rtp->rtcp->reported_jitter = ia_jitter;
|
|
reported_jitter = (double) rtp->rtcp->reported_jitter;
|
|
if (rtp->rtcp->reported_jitter_count == 0) {
|
|
rtp->rtcp->reported_minjitter = reported_jitter;
|
|
}
|
|
if (reported_jitter < rtp->rtcp->reported_minjitter) {
|
|
rtp->rtcp->reported_minjitter = reported_jitter;
|
|
}
|
|
if (reported_jitter > rtp->rtcp->reported_maxjitter) {
|
|
rtp->rtcp->reported_maxjitter = reported_jitter;
|
|
}
|
|
|
|
calc_mean_and_standard_deviation(reported_jitter, &rtp->rtcp->reported_normdev_jitter,
|
|
&rtp->rtcp->reported_stdev_jitter, &rtp->rtcp->reported_jitter_count);
|
|
}
|
|
|
|
/*!
|
|
* \internal
|
|
* \brief Update RTCP lost packet stats
|
|
*/
|
|
static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
|
|
{
|
|
double reported_lost;
|
|
|
|
rtp->rtcp->reported_lost = lost_packets;
|
|
reported_lost = (double)rtp->rtcp->reported_lost;
|
|
if (rtp->rtcp->reported_lost_count == 0) {
|
|
rtp->rtcp->reported_minlost = reported_lost;
|
|
}
|
|
if (reported_lost < rtp->rtcp->reported_minlost) {
|
|
rtp->rtcp->reported_minlost = reported_lost;
|
|
}
|
|
if (reported_lost > rtp->rtcp->reported_maxlost) {
|
|
rtp->rtcp->reported_maxlost = reported_lost;
|
|
}
|
|
|
|
calc_mean_and_standard_deviation(reported_lost, &rtp->rtcp->reported_normdev_lost,
|
|
&rtp->rtcp->reported_stdev_lost, &rtp->rtcp->reported_lost_count);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static struct ast_rtp_instance *__rtp_find_instance_by_ssrc(struct ast_rtp_instance *instance,
|
|
struct ast_rtp *rtp, unsigned int ssrc, int source)
|
|
{
|
|
int index;
|
|
|
|
if (!AST_VECTOR_SIZE(&rtp->ssrc_mapping)) {
|
|
/* This instance is not bundled */
|
|
return instance;
|
|
}
|
|
|
|
/* Find the bundled child instance */
|
|
for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
|
|
struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
|
|
unsigned int mapping_ssrc = source ? ast_rtp_get_ssrc(mapping->instance) : mapping->ssrc;
|
|
|
|
if (mapping->ssrc_valid && mapping_ssrc == ssrc) {
|
|
return mapping->instance;
|
|
}
|
|
}
|
|
|
|
/* Does the SSRC match the bundled parent? */
|
|
if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
|
|
return instance;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static struct ast_rtp_instance *rtp_find_instance_by_packet_source_ssrc(struct ast_rtp_instance *instance,
|
|
struct ast_rtp *rtp, unsigned int ssrc)
|
|
{
|
|
return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 0);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static struct ast_rtp_instance *rtp_find_instance_by_media_source_ssrc(struct ast_rtp_instance *instance,
|
|
struct ast_rtp *rtp, unsigned int ssrc)
|
|
{
|
|
return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 1);
|
|
}
|
|
|
|
static const char *rtcp_payload_type2str(unsigned int pt)
|
|
{
|
|
const char *str;
|
|
|
|
switch (pt) {
|
|
case RTCP_PT_SR:
|
|
str = "Sender Report";
|
|
break;
|
|
case RTCP_PT_RR:
|
|
str = "Receiver Report";
|
|
break;
|
|
case RTCP_PT_FUR:
|
|
/* Full INTRA-frame Request / Fast Update Request */
|
|
str = "H.261 FUR";
|
|
break;
|
|
case RTCP_PT_PSFB:
|
|
/* Payload Specific Feed Back */
|
|
str = "PSFB";
|
|
break;
|
|
case RTCP_PT_SDES:
|
|
str = "Source Description";
|
|
break;
|
|
case RTCP_PT_BYE:
|
|
str = "BYE";
|
|
break;
|
|
default:
|
|
str = "Unknown";
|
|
break;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static const char *rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
|
|
{
|
|
switch (pt) {
|
|
case AST_RTP_RTCP_RTPFB:
|
|
if (subtype == AST_RTP_RTCP_FMT_NACK) {
|
|
return "NACK";
|
|
}
|
|
break;
|
|
case RTCP_PT_PSFB:
|
|
if (subtype == AST_RTP_RTCP_FMT_REMB) {
|
|
return "REMB";
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position,
|
|
unsigned int length)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int res = 0;
|
|
int blp_index;
|
|
int packet_index;
|
|
int ice;
|
|
struct ast_rtp_rtcp_nack_payload *payload;
|
|
unsigned int current_word;
|
|
unsigned int pid; /* Packet ID which refers to seqno of lost packet */
|
|
unsigned int blp; /* Bitmask of following lost packets */
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int abs_send_time_id;
|
|
unsigned int now_msw = 0;
|
|
unsigned int now_lsw = 0;
|
|
unsigned int packets_not_found = 0;
|
|
|
|
if (!rtp->send_buffer) {
|
|
ast_debug_rtcp(1, "(%p) RTCP tried to handle NACK request, "
|
|
"but we don't have a RTP packet storage!\n", instance);
|
|
return res;
|
|
}
|
|
|
|
abs_send_time_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_ABS_SEND_TIME);
|
|
if (abs_send_time_id != -1) {
|
|
timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
|
|
}
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
/*
|
|
* We use index 3 because with feedback messages, the FCI (Feedback Control Information)
|
|
* does not begin until after the version, packet SSRC, and media SSRC words.
|
|
*/
|
|
for (packet_index = 3; packet_index < length; packet_index++) {
|
|
current_word = ntohl(nackdata[position + packet_index]);
|
|
pid = current_word >> 16;
|
|
/* We know the remote end is missing this packet. Go ahead and send it if we still have it. */
|
|
payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, pid);
|
|
if (payload) {
|
|
if (abs_send_time_id != -1) {
|
|
/* On retransmission we need to update the timestamp within the packet, as it
|
|
* is supposed to contain when the packet was actually sent.
|
|
*/
|
|
put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
|
|
}
|
|
res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
|
|
} else {
|
|
ast_debug_rtcp(1, "(%p) RTCP received NACK request for RTP packet with seqno %d, "
|
|
"but we don't have it\n", instance, pid);
|
|
packets_not_found++;
|
|
}
|
|
/*
|
|
* The bitmask. Denoting the least significant bit as 1 and its most significant bit
|
|
* as 16, then bit i of the bitmask is set to 1 if the receiver has not received RTP
|
|
* packet (pid+i)(modulo 2^16). Otherwise, it is set to 0. We cannot assume bits set
|
|
* to 0 after a bit set to 1 have actually been received.
|
|
*/
|
|
blp = current_word & 0xffff;
|
|
blp_index = 1;
|
|
while (blp) {
|
|
if (blp & 1) {
|
|
/* Packet (pid + i)(modulo 2^16) is missing too. */
|
|
unsigned int seqno = (pid + blp_index) % 65536;
|
|
payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, seqno);
|
|
if (payload) {
|
|
if (abs_send_time_id != -1) {
|
|
put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
|
|
}
|
|
res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
|
|
} else {
|
|
ast_debug_rtcp(1, "(%p) RTCP remote end also requested RTP packet with seqno %d, "
|
|
"but we don't have it\n", instance, seqno);
|
|
packets_not_found++;
|
|
}
|
|
}
|
|
blp >>= 1;
|
|
blp_index++;
|
|
}
|
|
}
|
|
|
|
if (packets_not_found) {
|
|
/* Grow the send buffer based on how many packets were not found in the buffer, but
|
|
* enforce a maximum.
|
|
*/
|
|
ast_data_buffer_resize(rtp->send_buffer, MIN(MAXIMUM_RTP_SEND_BUFFER_SIZE,
|
|
ast_data_buffer_max(rtp->send_buffer) + packets_not_found));
|
|
ast_debug_rtcp(2, "(%p) RTCP send buffer on RTP instance is now at maximum of %zu\n",
|
|
instance, ast_data_buffer_max(rtp->send_buffer));
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Unshifted RTCP header bit field masks
|
|
*/
|
|
#define RTCP_LENGTH_MASK 0xFFFF
|
|
#define RTCP_PAYLOAD_TYPE_MASK 0xFF
|
|
#define RTCP_REPORT_COUNT_MASK 0x1F
|
|
#define RTCP_PADDING_MASK 0x01
|
|
#define RTCP_VERSION_MASK 0x03
|
|
|
|
/*
|
|
* RTCP header bit field shift offsets
|
|
*/
|
|
#define RTCP_LENGTH_SHIFT 0
|
|
#define RTCP_PAYLOAD_TYPE_SHIFT 16
|
|
#define RTCP_REPORT_COUNT_SHIFT 24
|
|
#define RTCP_PADDING_SHIFT 29
|
|
#define RTCP_VERSION_SHIFT 30
|
|
|
|
#define RTCP_VERSION 2U
|
|
#define RTCP_VERSION_SHIFTED (RTCP_VERSION << RTCP_VERSION_SHIFT)
|
|
#define RTCP_VERSION_MASK_SHIFTED (RTCP_VERSION_MASK << RTCP_VERSION_SHIFT)
|
|
|
|
/*
|
|
* RTCP first packet record validity header mask and value.
|
|
*
|
|
* RFC3550 intentionally defines the encoding of RTCP_PT_SR and RTCP_PT_RR
|
|
* such that they differ in the least significant bit. Either of these two
|
|
* payload types MUST be the first RTCP packet record in a compound packet.
|
|
*
|
|
* RFC3550 checks the padding bit in the algorithm they use to check the
|
|
* RTCP packet for validity. However, we aren't masking the padding bit
|
|
* to check since we don't know if it is a compound RTCP packet or not.
|
|
*/
|
|
#define RTCP_VALID_MASK (RTCP_VERSION_MASK_SHIFTED | (((RTCP_PAYLOAD_TYPE_MASK & ~0x1)) << RTCP_PAYLOAD_TYPE_SHIFT))
|
|
#define RTCP_VALID_VALUE (RTCP_VERSION_SHIFTED | (RTCP_PT_SR << RTCP_PAYLOAD_TYPE_SHIFT))
|
|
|
|
#define RTCP_SR_BLOCK_WORD_LENGTH 5
|
|
#define RTCP_RR_BLOCK_WORD_LENGTH 6
|
|
#define RTCP_HEADER_SSRC_LENGTH 2
|
|
#define RTCP_FB_REMB_BLOCK_WORD_LENGTH 4
|
|
#define RTCP_FB_NACK_BLOCK_WORD_LENGTH 2
|
|
|
|
static struct ast_frame *ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
|
|
const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
|
|
{
|
|
struct ast_rtp_instance *transport = instance;
|
|
struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(instance);
|
|
int len = size;
|
|
unsigned int *rtcpheader = (unsigned int *)(rtcpdata);
|
|
unsigned int packetwords;
|
|
unsigned int position;
|
|
unsigned int first_word;
|
|
/*! True if we have seen an acceptable SSRC to learn the remote RTCP address */
|
|
unsigned int ssrc_seen;
|
|
struct ast_rtp_rtcp_report_block *report_block;
|
|
struct ast_frame *f = &ast_null_frame;
|
|
#ifdef TEST_FRAMEWORK
|
|
struct ast_rtp_engine_test *test_engine;
|
|
#endif
|
|
|
|
/* If this is encrypted then decrypt the payload */
|
|
if ((*rtcpheader & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
|
|
srtp, rtcpheader, &len, 1 | (srtp_replay_protection << 1)) < 0) {
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
packetwords = len / 4;
|
|
|
|
ast_debug_rtcp(1, "(%p) RTCP got report of %d bytes from %s\n",
|
|
instance, len, ast_sockaddr_stringify(addr));
|
|
|
|
/*
|
|
* Validate the RTCP packet according to an adapted and slightly
|
|
* modified RFC3550 validation algorithm.
|
|
*/
|
|
if (packetwords < RTCP_HEADER_SSRC_LENGTH) {
|
|
ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Frame size (%u words) is too short\n",
|
|
instance, transport_rtp, ast_sockaddr_stringify(addr), packetwords);
|
|
return &ast_null_frame;
|
|
}
|
|
position = 0;
|
|
first_word = ntohl(rtcpheader[position]);
|
|
if ((first_word & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
|
|
ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Failed first packet validity check\n",
|
|
instance, transport_rtp, ast_sockaddr_stringify(addr));
|
|
return &ast_null_frame;
|
|
}
|
|
do {
|
|
position += ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
|
|
if (packetwords <= position) {
|
|
break;
|
|
}
|
|
first_word = ntohl(rtcpheader[position]);
|
|
} while ((first_word & RTCP_VERSION_MASK_SHIFTED) == RTCP_VERSION_SHIFTED);
|
|
if (position != packetwords) {
|
|
ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Failed packet version or length check\n",
|
|
instance, transport_rtp, ast_sockaddr_stringify(addr));
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/*
|
|
* Note: RFC3605 points out that true NAT (vs NAPT) can cause RTCP
|
|
* to have a different IP address and port than RTP. Otherwise, when
|
|
* strictrtp is enabled we could reject RTCP packets not coming from
|
|
* the learned RTP IP address if it is available.
|
|
*/
|
|
|
|
/*
|
|
* strictrtp safety needs SSRC to match before we use the
|
|
* sender's address for symmetrical RTP to send our RTCP
|
|
* reports.
|
|
*
|
|
* If strictrtp is not enabled then claim to have already seen
|
|
* a matching SSRC so we'll accept this packet's address for
|
|
* symmetrical RTP.
|
|
*/
|
|
ssrc_seen = transport_rtp->strict_rtp_state == STRICT_RTP_OPEN;
|
|
|
|
position = 0;
|
|
while (position < packetwords) {
|
|
unsigned int i;
|
|
unsigned int pt;
|
|
unsigned int rc;
|
|
unsigned int ssrc;
|
|
/*! True if the ssrc value we have is valid and not garbage because it doesn't exist. */
|
|
unsigned int ssrc_valid;
|
|
unsigned int length;
|
|
unsigned int min_length;
|
|
/*! Always use packet source SSRC to find the rtp instance unless explicitly told not to. */
|
|
unsigned int use_packet_source = 1;
|
|
|
|
struct ast_json *message_blob;
|
|
RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
|
|
struct ast_rtp_instance *child;
|
|
struct ast_rtp *rtp;
|
|
struct ast_rtp_rtcp_feedback *feedback;
|
|
|
|
i = position;
|
|
first_word = ntohl(rtcpheader[i]);
|
|
pt = (first_word >> RTCP_PAYLOAD_TYPE_SHIFT) & RTCP_PAYLOAD_TYPE_MASK;
|
|
rc = (first_word >> RTCP_REPORT_COUNT_SHIFT) & RTCP_REPORT_COUNT_MASK;
|
|
/* RFC3550 says 'length' is the number of words in the packet - 1 */
|
|
length = ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
|
|
|
|
/* Check expected RTCP packet record length */
|
|
min_length = RTCP_HEADER_SSRC_LENGTH;
|
|
switch (pt) {
|
|
case RTCP_PT_SR:
|
|
min_length += RTCP_SR_BLOCK_WORD_LENGTH;
|
|
/* fall through */
|
|
case RTCP_PT_RR:
|
|
min_length += (rc * RTCP_RR_BLOCK_WORD_LENGTH);
|
|
use_packet_source = 0;
|
|
break;
|
|
case RTCP_PT_FUR:
|
|
break;
|
|
case AST_RTP_RTCP_RTPFB:
|
|
switch (rc) {
|
|
case AST_RTP_RTCP_FMT_NACK:
|
|
min_length += RTCP_FB_NACK_BLOCK_WORD_LENGTH;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
use_packet_source = 0;
|
|
break;
|
|
case RTCP_PT_PSFB:
|
|
switch (rc) {
|
|
case AST_RTP_RTCP_FMT_REMB:
|
|
min_length += RTCP_FB_REMB_BLOCK_WORD_LENGTH;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTCP_PT_SDES:
|
|
case RTCP_PT_BYE:
|
|
/*
|
|
* There may not be a SSRC/CSRC present. The packet is
|
|
* useless but still valid if it isn't present.
|
|
*
|
|
* We don't know what min_length should be so disable the check
|
|
*/
|
|
min_length = length;
|
|
break;
|
|
default:
|
|
ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) skipping record\n",
|
|
instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt));
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("\n");
|
|
ast_verbose("RTCP from %s: %u(%s) skipping record\n",
|
|
ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt));
|
|
}
|
|
position += length;
|
|
continue;
|
|
}
|
|
if (length < min_length) {
|
|
ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) length field less than expected minimum. Min:%u Got:%u\n",
|
|
instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt),
|
|
min_length - 1, length - 1);
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* Get the RTCP record SSRC if defined for the record */
|
|
ssrc_valid = 1;
|
|
switch (pt) {
|
|
case RTCP_PT_SR:
|
|
case RTCP_PT_RR:
|
|
rtcp_report = ast_rtp_rtcp_report_alloc(rc);
|
|
if (!rtcp_report) {
|
|
return &ast_null_frame;
|
|
}
|
|
rtcp_report->reception_report_count = rc;
|
|
|
|
ssrc = ntohl(rtcpheader[i + 2]);
|
|
rtcp_report->ssrc = ssrc;
|
|
break;
|
|
case RTCP_PT_FUR:
|
|
case RTCP_PT_PSFB:
|
|
ssrc = ntohl(rtcpheader[i + 1]);
|
|
break;
|
|
case AST_RTP_RTCP_RTPFB:
|
|
ssrc = ntohl(rtcpheader[i + 2]);
|
|
break;
|
|
case RTCP_PT_SDES:
|
|
case RTCP_PT_BYE:
|
|
default:
|
|
ssrc = 0;
|
|
ssrc_valid = 0;
|
|
break;
|
|
}
|
|
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
const char *subtype = rtcp_payload_subtype2str(pt, rc);
|
|
|
|
ast_verbose("\n");
|
|
ast_verbose("RTCP from %s\n", ast_sockaddr_stringify(addr));
|
|
ast_verbose("PT: %u (%s)\n", pt, rtcp_payload_type2str(pt));
|
|
if (subtype) {
|
|
ast_verbose("Packet Subtype: %u (%s)\n", rc, subtype);
|
|
} else {
|
|
ast_verbose("Reception reports: %u\n", rc);
|
|
}
|
|
ast_verbose("SSRC of sender: %u\n", ssrc);
|
|
}
|
|
|
|
/* Determine the appropriate instance for this */
|
|
if (ssrc_valid) {
|
|
/*
|
|
* Depending on the payload type, either the packet source or media source
|
|
* SSRC is used.
|
|
*/
|
|
if (use_packet_source) {
|
|
child = rtp_find_instance_by_packet_source_ssrc(transport, transport_rtp, ssrc);
|
|
} else {
|
|
child = rtp_find_instance_by_media_source_ssrc(transport, transport_rtp, ssrc);
|
|
}
|
|
if (child && child != transport) {
|
|
/*
|
|
* It is safe to hold the child lock while holding the parent lock.
|
|
* We guarantee that the locking order is always parent->child or
|
|
* that the child lock is not held when acquiring the parent lock.
|
|
*/
|
|
ao2_lock(child);
|
|
instance = child;
|
|
rtp = ast_rtp_instance_get_data(instance);
|
|
} else {
|
|
/* The child is the parent! We don't need to unlock it. */
|
|
child = NULL;
|
|
rtp = transport_rtp;
|
|
}
|
|
} else {
|
|
child = NULL;
|
|
rtp = transport_rtp;
|
|
}
|
|
|
|
if (ssrc_valid && rtp->themssrc_valid) {
|
|
/*
|
|
* If the SSRC is 1, we still need to handle RTCP since this could be a
|
|
* special case. For example, if we have a unidirectional video stream, the
|
|
* SSRC may be set to 1 by the browser (in the case of chromium), and requests
|
|
* will still need to be processed so that video can flow as expected. This
|
|
* should only be done for PLI and FUR, since there is not a way to get the
|
|
* appropriate rtp instance when the SSRC is 1.
|
|
*/
|
|
int exception = (ssrc == 1 && !((pt == RTCP_PT_PSFB && rc == AST_RTP_RTCP_FMT_PLI) || pt == RTCP_PT_FUR));
|
|
if ((ssrc != rtp->themssrc && use_packet_source && ssrc != 1)
|
|
|| exception) {
|
|
/*
|
|
* Skip over this RTCP record as it does not contain the
|
|
* correct SSRC. We should not act upon RTCP records
|
|
* for a different stream.
|
|
*/
|
|
position += length;
|
|
ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Skipping record, received SSRC '%u' != expected '%u'\n",
|
|
instance, rtp, ast_sockaddr_stringify(addr), ssrc, rtp->themssrc);
|
|
if (child) {
|
|
ao2_unlock(child);
|
|
}
|
|
continue;
|
|
}
|
|
ssrc_seen = 1;
|
|
}
|
|
|
|
if (ssrc_seen && ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT)) {
|
|
/* Send to whoever sent to us */
|
|
if (ast_sockaddr_cmp(&rtp->rtcp->them, addr)) {
|
|
ast_sockaddr_copy(&rtp->rtcp->them, addr);
|
|
if (ast_debug_rtp_packet_is_allowed) {
|
|
ast_debug(0, "(%p) RTCP NAT: Got RTCP from other end. Now sending to address %s\n",
|
|
instance, ast_sockaddr_stringify(addr));
|
|
}
|
|
}
|
|
}
|
|
|
|
i += RTCP_HEADER_SSRC_LENGTH; /* Advance past header and ssrc */
|
|
switch (pt) {
|
|
case RTCP_PT_SR:
|
|
gettimeofday(&rtp->rtcp->rxlsr, NULL);
|
|
rtp->rtcp->themrxlsr = ((ntohl(rtcpheader[i]) & 0x0000ffff) << 16) | ((ntohl(rtcpheader[i + 1]) & 0xffff0000) >> 16);
|
|
rtp->rtcp->spc = ntohl(rtcpheader[i + 3]);
|
|
rtp->rtcp->soc = ntohl(rtcpheader[i + 4]);
|
|
|
|
rtcp_report->type = RTCP_PT_SR;
|
|
rtcp_report->sender_information.packet_count = rtp->rtcp->spc;
|
|
rtcp_report->sender_information.octet_count = rtp->rtcp->soc;
|
|
ntp2timeval((unsigned int)ntohl(rtcpheader[i]),
|
|
(unsigned int)ntohl(rtcpheader[i + 1]),
|
|
&rtcp_report->sender_information.ntp_timestamp);
|
|
rtcp_report->sender_information.rtp_timestamp = ntohl(rtcpheader[i + 2]);
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("NTP timestamp: %u.%06u\n",
|
|
(unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
|
|
(unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
|
|
ast_verbose("RTP timestamp: %u\n", rtcp_report->sender_information.rtp_timestamp);
|
|
ast_verbose("SPC: %u\tSOC: %u\n",
|
|
rtcp_report->sender_information.packet_count,
|
|
rtcp_report->sender_information.octet_count);
|
|
}
|
|
i += RTCP_SR_BLOCK_WORD_LENGTH;
|
|
/* Intentional fall through */
|
|
case RTCP_PT_RR:
|
|
if (rtcp_report->type != RTCP_PT_SR) {
|
|
rtcp_report->type = RTCP_PT_RR;
|
|
}
|
|
|
|
if (rc > 0) {
|
|
/* Don't handle multiple reception reports (rc > 1) yet */
|
|
report_block = ast_calloc(1, sizeof(*report_block));
|
|
if (!report_block) {
|
|
if (child) {
|
|
ao2_unlock(child);
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
rtcp_report->report_block[0] = report_block;
|
|
report_block->source_ssrc = ntohl(rtcpheader[i]);
|
|
report_block->lost_count.packets = ntohl(rtcpheader[i + 1]) & 0x00ffffff;
|
|
report_block->lost_count.fraction = ((ntohl(rtcpheader[i + 1]) & 0xff000000) >> 24);
|
|
report_block->highest_seq_no = ntohl(rtcpheader[i + 2]);
|
|
report_block->ia_jitter = ntohl(rtcpheader[i + 3]);
|
|
report_block->lsr = ntohl(rtcpheader[i + 4]);
|
|
report_block->dlsr = ntohl(rtcpheader[i + 5]);
|
|
if (report_block->lsr
|
|
&& update_rtt_stats(rtp, report_block->lsr, report_block->dlsr)
|
|
&& rtcp_debug_test_addr(addr)) {
|
|
struct timeval now;
|
|
unsigned int lsr_now, lsw, msw;
|
|
gettimeofday(&now, NULL);
|
|
timeval2ntp(now, &msw, &lsw);
|
|
lsr_now = (((msw & 0xffff) << 16) | ((lsw & 0xffff0000) >> 16));
|
|
ast_verbose("Internal RTCP NTP clock skew detected: "
|
|
"lsr=%u, now=%u, dlsr=%u (%u:%03ums), "
|
|
"diff=%u\n",
|
|
report_block->lsr, lsr_now, report_block->dlsr, report_block->dlsr / 65536,
|
|
(report_block->dlsr % 65536) * 1000 / 65536,
|
|
report_block->dlsr - (lsr_now - report_block->lsr));
|
|
}
|
|
update_jitter_stats(rtp, report_block->ia_jitter);
|
|
update_lost_stats(rtp, report_block->lost_count.packets);
|
|
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
|
|
ast_verbose(" Packets lost so far: %u\n", report_block->lost_count.packets);
|
|
ast_verbose(" Highest sequence number: %u\n", report_block->highest_seq_no & 0x0000ffff);
|
|
ast_verbose(" Sequence number cycles: %u\n", report_block->highest_seq_no >> 16);
|
|
ast_verbose(" Interarrival jitter: %u\n", report_block->ia_jitter);
|
|
ast_verbose(" Last SR(our NTP): %lu.%010lu\n",(unsigned long)(report_block->lsr) >> 16,((unsigned long)(report_block->lsr) << 16) * 4096);
|
|
ast_verbose(" DLSR: %4.4f (sec)\n",(double)report_block->dlsr / 65536.0);
|
|
ast_verbose(" RTT: %4.4f(sec)\n", rtp->rtcp->rtt);
|
|
}
|
|
}
|
|
/* If and when we handle more than one report block, this should occur outside
|
|
* this loop.
|
|
*/
|
|
|
|
message_blob = ast_json_pack("{s: s, s: s, s: f}",
|
|
"from", ast_sockaddr_stringify(addr),
|
|
"to", transport_rtp->rtcp->local_addr_str,
|
|
"rtt", rtp->rtcp->rtt);
|
|
ast_rtp_publish_rtcp_message(instance, ast_rtp_rtcp_received_type(),
|
|
rtcp_report,
|
|
message_blob);
|
|
ast_json_unref(message_blob);
|
|
|
|
/* Return an AST_FRAME_RTCP frame with the ast_rtp_rtcp_report
|
|
* object as a its data */
|
|
transport_rtp->f.frametype = AST_FRAME_RTCP;
|
|
transport_rtp->f.subclass.integer = pt;
|
|
transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
|
|
memcpy(transport_rtp->f.data.ptr, rtcp_report, sizeof(struct ast_rtp_rtcp_report));
|
|
transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_report);
|
|
if (rc > 0) {
|
|
/* There's always a single report block stored, here */
|
|
struct ast_rtp_rtcp_report *rtcp_report2;
|
|
report_block = transport_rtp->f.data.ptr + transport_rtp->f.datalen + sizeof(struct ast_rtp_rtcp_report_block *);
|
|
memcpy(report_block, rtcp_report->report_block[0], sizeof(struct ast_rtp_rtcp_report_block));
|
|
rtcp_report2 = (struct ast_rtp_rtcp_report *)transport_rtp->f.data.ptr;
|
|
rtcp_report2->report_block[0] = report_block;
|
|
transport_rtp->f.datalen += sizeof(struct ast_rtp_rtcp_report_block);
|
|
}
|
|
transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
|
|
transport_rtp->f.samples = 0;
|
|
transport_rtp->f.mallocd = 0;
|
|
transport_rtp->f.delivery.tv_sec = 0;
|
|
transport_rtp->f.delivery.tv_usec = 0;
|
|
transport_rtp->f.src = "RTP";
|
|
transport_rtp->f.stream_num = rtp->stream_num;
|
|
f = &transport_rtp->f;
|
|
break;
|
|
case AST_RTP_RTCP_RTPFB:
|
|
switch (rc) {
|
|
case AST_RTP_RTCP_FMT_NACK:
|
|
/* If retransmissions are not enabled ignore this message */
|
|
if (!rtp->send_buffer) {
|
|
break;
|
|
}
|
|
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("Received generic RTCP NACK message\n");
|
|
}
|
|
|
|
ast_rtp_rtcp_handle_nack(instance, rtcpheader, position, length);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTCP_PT_FUR:
|
|
/* Handle RTCP FUR as FIR by setting the format to 4 */
|
|
rc = AST_RTP_RTCP_FMT_FIR;
|
|
case RTCP_PT_PSFB:
|
|
switch (rc) {
|
|
case AST_RTP_RTCP_FMT_PLI:
|
|
case AST_RTP_RTCP_FMT_FIR:
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("Received an RTCP Fast Update Request\n");
|
|
}
|
|
transport_rtp->f.frametype = AST_FRAME_CONTROL;
|
|
transport_rtp->f.subclass.integer = AST_CONTROL_VIDUPDATE;
|
|
transport_rtp->f.datalen = 0;
|
|
transport_rtp->f.samples = 0;
|
|
transport_rtp->f.mallocd = 0;
|
|
transport_rtp->f.src = "RTP";
|
|
f = &transport_rtp->f;
|
|
break;
|
|
case AST_RTP_RTCP_FMT_REMB:
|
|
/* If REMB support is not enabled ignore this message */
|
|
if (!ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_REMB)) {
|
|
break;
|
|
}
|
|
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("Received REMB report\n");
|
|
}
|
|
transport_rtp->f.frametype = AST_FRAME_RTCP;
|
|
transport_rtp->f.subclass.integer = pt;
|
|
transport_rtp->f.stream_num = rtp->stream_num;
|
|
transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
|
|
feedback = transport_rtp->f.data.ptr;
|
|
feedback->fmt = rc;
|
|
|
|
/* We don't actually care about the SSRC information in the feedback message */
|
|
first_word = ntohl(rtcpheader[i + 2]);
|
|
feedback->remb.br_exp = (first_word >> 18) & ((1 << 6) - 1);
|
|
feedback->remb.br_mantissa = first_word & ((1 << 18) - 1);
|
|
|
|
transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_feedback);
|
|
transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
|
|
transport_rtp->f.samples = 0;
|
|
transport_rtp->f.mallocd = 0;
|
|
transport_rtp->f.delivery.tv_sec = 0;
|
|
transport_rtp->f.delivery.tv_usec = 0;
|
|
transport_rtp->f.src = "RTP";
|
|
f = &transport_rtp->f;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case RTCP_PT_SDES:
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("Received an SDES from %s\n",
|
|
ast_sockaddr_stringify(addr));
|
|
}
|
|
#ifdef TEST_FRAMEWORK
|
|
if ((test_engine = ast_rtp_instance_get_test(instance))) {
|
|
test_engine->sdes_received = 1;
|
|
}
|
|
#endif
|
|
break;
|
|
case RTCP_PT_BYE:
|
|
if (rtcp_debug_test_addr(addr)) {
|
|
ast_verbose("Received a BYE from %s\n",
|
|
ast_sockaddr_stringify(addr));
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
position += length;
|
|
rtp->rtcp->rtcp_info = 1;
|
|
|
|
if (child) {
|
|
ao2_unlock(child);
|
|
}
|
|
}
|
|
|
|
return f;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static struct ast_frame *ast_rtcp_read(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 1);
|
|
struct ast_sockaddr addr;
|
|
unsigned char rtcpdata[8192 + AST_FRIENDLY_OFFSET];
|
|
unsigned char *read_area = rtcpdata + AST_FRIENDLY_OFFSET;
|
|
size_t read_area_size = sizeof(rtcpdata) - AST_FRIENDLY_OFFSET;
|
|
int res;
|
|
|
|
/* Read in RTCP data from the socket */
|
|
if ((res = rtcp_recvfrom(instance, read_area, read_area_size,
|
|
0, &addr)) < 0) {
|
|
if (res == RTP_DTLS_ESTABLISHED) {
|
|
rtp->f.frametype = AST_FRAME_CONTROL;
|
|
rtp->f.subclass.integer = AST_CONTROL_SRCCHANGE;
|
|
return &rtp->f;
|
|
}
|
|
|
|
ast_assert(errno != EBADF);
|
|
if (errno != EAGAIN) {
|
|
ast_log(LOG_WARNING, "RTCP Read error: %s. Hanging up.\n",
|
|
(errno) ? strerror(errno) : "Unspecified");
|
|
return NULL;
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* If this was handled by the ICE session don't do anything further */
|
|
if (!res) {
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
if (!*read_area) {
|
|
struct sockaddr_in addr_tmp;
|
|
struct ast_sockaddr addr_v4;
|
|
|
|
if (ast_sockaddr_is_ipv4(&addr)) {
|
|
ast_sockaddr_to_sin(&addr, &addr_tmp);
|
|
} else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
|
|
ast_debug_stun(2, "(%p) STUN using IPv6 mapped address %s\n",
|
|
instance, ast_sockaddr_stringify(&addr));
|
|
ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
|
|
} else {
|
|
ast_debug_stun(2, "(%p) STUN cannot do for non IPv4 address %s\n",
|
|
instance, ast_sockaddr_stringify(&addr));
|
|
return &ast_null_frame;
|
|
}
|
|
if ((ast_stun_handle_packet(rtp->rtcp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT)) {
|
|
ast_sockaddr_from_sin(&addr, &addr_tmp);
|
|
ast_sockaddr_copy(&rtp->rtcp->them, &addr);
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
return ast_rtcp_interpret(instance, srtp, read_area, res, &addr);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance,
|
|
struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_rtp *bridged;
|
|
int res = 0, payload = 0, bridged_payload = 0, mark;
|
|
RAII_VAR(struct ast_rtp_payload_type *, payload_type, NULL, ao2_cleanup);
|
|
int reconstruct = ntohl(rtpheader[0]);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int ice;
|
|
unsigned int timestamp = ntohl(rtpheader[1]);
|
|
|
|
/* Get fields from packet */
|
|
payload = (reconstruct & 0x7f0000) >> 16;
|
|
mark = (reconstruct & 0x800000) >> 23;
|
|
|
|
/* Check what the payload value should be */
|
|
payload_type = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payload);
|
|
if (!payload_type) {
|
|
return -1;
|
|
}
|
|
|
|
/* Otherwise adjust bridged payload to match */
|
|
bridged_payload = ast_rtp_codecs_payload_code_tx(ast_rtp_instance_get_codecs(instance1),
|
|
payload_type->asterisk_format, payload_type->format, payload_type->rtp_code);
|
|
|
|
/* If no codec could be matched between instance and instance1, then somehow things were made incompatible while we were still bridged. Bail. */
|
|
if (bridged_payload < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* If the payload coming in is not one of the negotiated ones then send it to the core, this will cause formats to change and the bridge to break */
|
|
if (ast_rtp_codecs_find_payload_code(ast_rtp_instance_get_codecs(instance1), bridged_payload) == -1) {
|
|
ast_debug_rtp(1, "(%p, %p) RTP unsupported payload type received\n", instance, instance1);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Even if we are no longer in dtmf, we could still be receiving
|
|
* re-transmissions of the last dtmf end still. Feed those to the
|
|
* core so they can be filtered accordingly.
|
|
*/
|
|
if (rtp->last_end_timestamp.is_set && rtp->last_end_timestamp.ts == timestamp) {
|
|
ast_debug_rtp(1, "(%p, %p) RTP feeding packet with duplicate timestamp to core\n", instance, instance1);
|
|
return -1;
|
|
}
|
|
|
|
if (payload_type->asterisk_format) {
|
|
ao2_replace(rtp->lastrxformat, payload_type->format);
|
|
}
|
|
|
|
/*
|
|
* We have now determined that we need to send the RTP packet
|
|
* out the bridged instance to do local bridging so we must unlock
|
|
* the receiving instance to prevent deadlock with the bridged
|
|
* instance.
|
|
*
|
|
* Technically we should grab a ref to instance1 so it won't go
|
|
* away on us. However, we should be safe because the bridged
|
|
* instance won't change without both channels involved being
|
|
* locked and we currently have the channel lock for the receiving
|
|
* instance.
|
|
*/
|
|
ao2_unlock(instance);
|
|
ao2_lock(instance1);
|
|
|
|
/*
|
|
* Get the peer rtp pointer now to emphasize that using it
|
|
* must happen while instance1 is locked.
|
|
*/
|
|
bridged = ast_rtp_instance_get_data(instance1);
|
|
|
|
|
|
/* If bridged peer is in dtmf, feed all packets to core until it finishes to avoid infinite dtmf */
|
|
if (bridged->sending_digit) {
|
|
ast_debug_rtp(1, "(%p, %p) RTP Feeding packet to core until DTMF finishes\n", instance, instance1);
|
|
ao2_unlock(instance1);
|
|
ao2_lock(instance);
|
|
return -1;
|
|
}
|
|
|
|
if (payload_type->asterisk_format) {
|
|
/*
|
|
* If bridged peer has already received rtp, perform the asymmetric codec check
|
|
* if that feature has been activated
|
|
*/
|
|
if (!bridged->asymmetric_codec
|
|
&& bridged->lastrxformat != ast_format_none
|
|
&& ast_format_cmp(payload_type->format, bridged->lastrxformat) == AST_FORMAT_CMP_NOT_EQUAL) {
|
|
ast_debug_rtp(1, "(%p, %p) RTP asymmetric RTP codecs detected (TX: %s, RX: %s) sending frame to core\n",
|
|
instance, instance1, ast_format_get_name(payload_type->format),
|
|
ast_format_get_name(bridged->lastrxformat));
|
|
ao2_unlock(instance1);
|
|
ao2_lock(instance);
|
|
return -1;
|
|
}
|
|
|
|
ao2_replace(bridged->lasttxformat, payload_type->format);
|
|
}
|
|
|
|
ast_rtp_instance_get_remote_address(instance1, &remote_address);
|
|
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
ast_debug_rtp(5, "(%p, %p) RTP remote address is null, most likely RTP has been stopped\n",
|
|
instance, instance1);
|
|
ao2_unlock(instance1);
|
|
ao2_lock(instance);
|
|
return 0;
|
|
}
|
|
|
|
/* If the marker bit has been explicitly set turn it on */
|
|
if (ast_test_flag(bridged, FLAG_NEED_MARKER_BIT)) {
|
|
mark = 1;
|
|
ast_clear_flag(bridged, FLAG_NEED_MARKER_BIT);
|
|
}
|
|
|
|
/* Set the marker bit for the first local bridged packet which has the first bridged peer's SSRC. */
|
|
if (ast_test_flag(bridged, FLAG_REQ_LOCAL_BRIDGE_BIT)) {
|
|
mark = 1;
|
|
ast_clear_flag(bridged, FLAG_REQ_LOCAL_BRIDGE_BIT);
|
|
}
|
|
|
|
/* Reconstruct part of the packet */
|
|
reconstruct &= 0xFF80FFFF;
|
|
reconstruct |= (bridged_payload << 16);
|
|
reconstruct |= (mark << 23);
|
|
rtpheader[0] = htonl(reconstruct);
|
|
|
|
if (mark) {
|
|
/* make this rtp instance aware of the new ssrc it is sending */
|
|
bridged->ssrc = ntohl(rtpheader[2]);
|
|
}
|
|
|
|
/* Send the packet back out */
|
|
res = rtp_sendto(instance1, (void *)rtpheader, len, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
if (!ast_rtp_instance_get_prop(instance1, AST_RTP_PROPERTY_NAT) || (ast_rtp_instance_get_prop(instance1, AST_RTP_PROPERTY_NAT) && (ast_test_flag(bridged, FLAG_NAT_ACTIVE) == FLAG_NAT_ACTIVE))) {
|
|
ast_log(LOG_WARNING,
|
|
"RTP Transmission error of packet to %s: %s\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
strerror(errno));
|
|
} else if (((ast_test_flag(bridged, FLAG_NAT_ACTIVE) == FLAG_NAT_INACTIVE) || ast_debug_rtp_packet_is_allowed) && !ast_test_flag(bridged, FLAG_NAT_INACTIVE_NOWARN)) {
|
|
if (ast_debug_rtp_packet_is_allowed || DEBUG_ATLEAST(1)) {
|
|
ast_log(LOG_WARNING,
|
|
"RTP NAT: Can't write RTP to private "
|
|
"address %s, waiting for other end to "
|
|
"send audio...\n",
|
|
ast_sockaddr_stringify(&remote_address));
|
|
}
|
|
ast_set_flag(bridged, FLAG_NAT_INACTIVE_NOWARN);
|
|
}
|
|
ao2_unlock(instance1);
|
|
ao2_lock(instance);
|
|
return 0;
|
|
}
|
|
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Sent RTP P2P packet to %s%s (type %-2.2d, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "",
|
|
bridged_payload, len - hdrlen);
|
|
}
|
|
|
|
ao2_unlock(instance1);
|
|
ao2_lock(instance);
|
|
return 0;
|
|
}
|
|
|
|
static void rtp_instance_unlock(struct ast_rtp_instance *instance)
|
|
{
|
|
if (instance) {
|
|
ao2_unlock(instance);
|
|
}
|
|
}
|
|
|
|
static int rtp_transport_wide_cc_packet_statistics_cmp(struct rtp_transport_wide_cc_packet_statistics a,
|
|
struct rtp_transport_wide_cc_packet_statistics b)
|
|
{
|
|
return a.seqno - b.seqno;
|
|
}
|
|
|
|
static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
|
|
uint16_t *status_vector_chunk, int status)
|
|
{
|
|
/* Appending this status will use up 2 bits */
|
|
*status_vector_chunk_bits -= 2;
|
|
|
|
/* We calculate which bits we want to update the status of. Since a status vector
|
|
* is 16 bits we take away 2 (for the header), and then we take away any that have
|
|
* already been used.
|
|
*/
|
|
*status_vector_chunk |= (status << (16 - 2 - (14 - *status_vector_chunk_bits)));
|
|
|
|
/* If there are still bits available we can return early */
|
|
if (*status_vector_chunk_bits) {
|
|
return;
|
|
}
|
|
|
|
/* Otherwise we have to place this chunk into the packet */
|
|
put_unaligned_uint16(rtcpheader + *packet_len, htons(*status_vector_chunk));
|
|
*status_vector_chunk_bits = 14;
|
|
|
|
/* The first bit being 1 indicates that this is a status vector chunk and the second
|
|
* bit being 1 indicates that we are using 2 bits to represent each status for a
|
|
* packet.
|
|
*/
|
|
*status_vector_chunk = (1 << 15) | (1 << 14);
|
|
*packet_len += 2;
|
|
}
|
|
|
|
static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
|
|
uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
|
|
{
|
|
if (*run_length_chunk_status != status) {
|
|
while (*run_length_chunk_count > 0 && *run_length_chunk_count < 8) {
|
|
/* Realistically it only makes sense to use a run length chunk if there were 8 or more
|
|
* consecutive packets of the same type, otherwise we could end up making the packet larger
|
|
* if we have lots of small blocks of the same type. To help with this we backfill the status
|
|
* vector (since it always represents 7 packets). Best case we end up with only that single
|
|
* status vector and the rest are run length chunks.
|
|
*/
|
|
rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
|
|
status_vector_chunk, *run_length_chunk_status);
|
|
*run_length_chunk_count -= 1;
|
|
}
|
|
|
|
if (*run_length_chunk_count) {
|
|
/* There is a run length chunk which needs to be written out */
|
|
put_unaligned_uint16(rtcpheader + *packet_len, htons((0 << 15) | (*run_length_chunk_status << 13) | *run_length_chunk_count));
|
|
*packet_len += 2;
|
|
}
|
|
|
|
/* In all cases the run length chunk has to be reset */
|
|
*run_length_chunk_count = 0;
|
|
*run_length_chunk_status = -1;
|
|
|
|
if (*status_vector_chunk_bits == 14) {
|
|
/* We aren't in the middle of a status vector so we can try for a run length chunk */
|
|
*run_length_chunk_status = status;
|
|
*run_length_chunk_count = 1;
|
|
} else {
|
|
/* We're doing a status vector so populate it accordingly */
|
|
rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
|
|
status_vector_chunk, status);
|
|
}
|
|
} else {
|
|
/* This is easy, the run length chunk count can just get bumped up */
|
|
*run_length_chunk_count += 1;
|
|
}
|
|
}
|
|
|
|
static int rtp_transport_wide_cc_feedback_produce(const void *data)
|
|
{
|
|
struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
unsigned char *rtcpheader;
|
|
char bdata[1024];
|
|
struct rtp_transport_wide_cc_packet_statistics *first_packet;
|
|
struct rtp_transport_wide_cc_packet_statistics *previous_packet;
|
|
int i;
|
|
int status_vector_chunk_bits = 14;
|
|
uint16_t status_vector_chunk = (1 << 15) | (1 << 14);
|
|
int run_length_chunk_count = 0;
|
|
int run_length_chunk_status = -1;
|
|
int packet_len = 20;
|
|
int delta_len = 0;
|
|
int packet_count = 0;
|
|
unsigned int received_msw;
|
|
unsigned int received_lsw;
|
|
struct ast_sockaddr remote_address = { { 0, } };
|
|
int res;
|
|
int ice;
|
|
unsigned int large_delta_count = 0;
|
|
unsigned int small_delta_count = 0;
|
|
unsigned int lost_count = 0;
|
|
|
|
if (!rtp || !rtp->rtcp || rtp->transport_wide_cc.schedid == -1) {
|
|
ao2_ref(instance, -1);
|
|
return 0;
|
|
}
|
|
|
|
ao2_lock(instance);
|
|
|
|
/* If no packets have been received then do nothing */
|
|
if (!AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics)) {
|
|
ao2_unlock(instance);
|
|
return 1000;
|
|
}
|
|
|
|
rtcpheader = (unsigned char *)bdata;
|
|
|
|
/* The first packet in the vector acts as our base sequence number and reference time */
|
|
first_packet = AST_VECTOR_GET_ADDR(&rtp->transport_wide_cc.packet_statistics, 0);
|
|
previous_packet = first_packet;
|
|
|
|
/* We go through each packet that we have statistics for, adding it either to a status
|
|
* vector chunk or a run length chunk. The code tries to be as efficient as possible to
|
|
* reduce packet size and will favor run length chunks when it makes sense.
|
|
*/
|
|
for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
|
|
struct rtp_transport_wide_cc_packet_statistics *statistics;
|
|
int lost = 0;
|
|
int res = 0;
|
|
|
|
statistics = AST_VECTOR_GET_ADDR(&rtp->transport_wide_cc.packet_statistics, i);
|
|
|
|
packet_count++;
|
|
|
|
if (first_packet != statistics) {
|
|
/* The vector stores statistics in a sorted fashion based on the sequence
|
|
* number. This ensures we can detect any packets that have been lost/not
|
|
* received by comparing the sequence numbers.
|
|
*/
|
|
lost = statistics->seqno - (previous_packet->seqno + 1);
|
|
lost_count += lost;
|
|
}
|
|
|
|
while (lost) {
|
|
/* We append a not received status until all the lost packets have been accounted for */
|
|
rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
|
|
&status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 0);
|
|
packet_count++;
|
|
|
|
/* If there is no more room left for storing packets stop now, we leave 20
|
|
* extra bits at the end just in case.
|
|
*/
|
|
if (packet_len + delta_len + 20 > sizeof(bdata)) {
|
|
res = -1;
|
|
break;
|
|
}
|
|
|
|
lost--;
|
|
}
|
|
|
|
/* If the lost packet appending bailed out because we have no more space, then exit here too */
|
|
if (res) {
|
|
break;
|
|
}
|
|
|
|
/* Per the spec the delta is in increments of 250 */
|
|
statistics->delta = ast_tvdiff_us(statistics->received, previous_packet->received) / 250;
|
|
|
|
/* Based on the delta determine the status of this packet */
|
|
if (statistics->delta < 0 || statistics->delta > 127) {
|
|
/* Large or negative delta */
|
|
rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
|
|
&status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 2);
|
|
delta_len += 2;
|
|
large_delta_count++;
|
|
} else {
|
|
/* Small delta */
|
|
rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
|
|
&status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 1);
|
|
delta_len += 1;
|
|
small_delta_count++;
|
|
}
|
|
|
|
previous_packet = statistics;
|
|
|
|
/* If there is no more room left in the packet stop handling of any subsequent packets */
|
|
if (packet_len + delta_len + 20 > sizeof(bdata)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (status_vector_chunk_bits != 14) {
|
|
/* If the status vector chunk has packets in it then place it in the RTCP packet */
|
|
put_unaligned_uint16(rtcpheader + packet_len, htons(status_vector_chunk));
|
|
packet_len += 2;
|
|
} else if (run_length_chunk_count) {
|
|
/* If there is a run length chunk in progress then place it in the RTCP packet */
|
|
put_unaligned_uint16(rtcpheader + packet_len, htons((0 << 15) | (run_length_chunk_status << 13) | run_length_chunk_count));
|
|
packet_len += 2;
|
|
}
|
|
|
|
/* We iterate again to build delta chunks */
|
|
for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
|
|
struct rtp_transport_wide_cc_packet_statistics *statistics;
|
|
|
|
statistics = AST_VECTOR_GET_ADDR(&rtp->transport_wide_cc.packet_statistics, i);
|
|
|
|
if (statistics->delta < 0 || statistics->delta > 127) {
|
|
/* We need 2 bytes to store this delta */
|
|
put_unaligned_uint16(rtcpheader + packet_len, htons(statistics->delta));
|
|
packet_len += 2;
|
|
} else {
|
|
/* We can store this delta in 1 byte */
|
|
rtcpheader[packet_len] = statistics->delta;
|
|
packet_len += 1;
|
|
}
|
|
|
|
/* If this is the last packet handled by the run length chunk or status vector chunk code
|
|
* then we can go no further.
|
|
*/
|
|
if (statistics == previous_packet) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Zero pad the end of the packet */
|
|
while (packet_len % 4) {
|
|
rtcpheader[packet_len++] = 0;
|
|
}
|
|
|
|
/* Add the general RTCP header information */
|
|
put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC << 24)
|
|
| (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
|
|
put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
|
|
put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
|
|
|
|
/* Add the transport-cc specific header information */
|
|
put_unaligned_uint32(rtcpheader + 12, htonl((first_packet->seqno << 16) | packet_count));
|
|
|
|
timeval2ntp(first_packet->received, &received_msw, &received_lsw);
|
|
put_unaligned_time24(rtcpheader + 16, received_msw, received_lsw);
|
|
rtcpheader[19] = rtp->transport_wide_cc.feedback_count;
|
|
|
|
/* The packet is now fully constructed so send it out */
|
|
ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
|
|
|
|
ast_debug_rtcp(2, "(%p) RTCP sending transport-cc feedback packet of size '%d' on '%s' with packet count of %d (small = %d, large = %d, lost = %d)\n",
|
|
instance, packet_len, ast_rtp_instance_get_channel_id(instance), packet_count, small_delta_count, large_delta_count, lost_count);
|
|
|
|
res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTCP transport-cc feedback error to %s due to %s\n",
|
|
ast_sockaddr_stringify(&remote_address), strerror(errno));
|
|
}
|
|
|
|
AST_VECTOR_RESET(&rtp->transport_wide_cc.packet_statistics, AST_VECTOR_ELEM_CLEANUP_NOOP);
|
|
|
|
rtp->transport_wide_cc.feedback_count++;
|
|
|
|
ao2_unlock(instance);
|
|
|
|
return 1000;
|
|
}
|
|
|
|
static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
|
|
unsigned char *data, int len)
|
|
{
|
|
uint16_t *seqno = (uint16_t *)data;
|
|
struct rtp_transport_wide_cc_packet_statistics statistics;
|
|
struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
|
|
struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
|
|
|
|
/* If the sequence number has cycled over then record it as such */
|
|
if (((int)transport_rtp->transport_wide_cc.last_seqno - (int)ntohs(*seqno)) > 100) {
|
|
transport_rtp->transport_wide_cc.cycles += RTP_SEQ_MOD;
|
|
}
|
|
|
|
/* Populate the statistics information for this packet */
|
|
statistics.seqno = transport_rtp->transport_wide_cc.cycles + ntohs(*seqno);
|
|
statistics.received = ast_tvnow();
|
|
|
|
/* We allow at a maximum 1000 packet statistics in play at a time, if we hit the
|
|
* limit we give up and start fresh.
|
|
*/
|
|
if (AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) > 1000) {
|
|
AST_VECTOR_RESET(&rtp->transport_wide_cc.packet_statistics, AST_VECTOR_ELEM_CLEANUP_NOOP);
|
|
}
|
|
|
|
if (!AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) ||
|
|
statistics.seqno > transport_rtp->transport_wide_cc.last_extended_seqno) {
|
|
/* This is the expected path */
|
|
if (AST_VECTOR_APPEND(&transport_rtp->transport_wide_cc.packet_statistics, statistics)) {
|
|
return;
|
|
}
|
|
|
|
transport_rtp->transport_wide_cc.last_extended_seqno = statistics.seqno;
|
|
transport_rtp->transport_wide_cc.last_seqno = ntohs(*seqno);
|
|
} else {
|
|
/* This packet was out of order, so reorder it within the vector accordingly */
|
|
if (AST_VECTOR_ADD_SORTED(&transport_rtp->transport_wide_cc.packet_statistics, statistics,
|
|
rtp_transport_wide_cc_packet_statistics_cmp)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If we have not yet scheduled the periodic sending of feedback for this transport then do so */
|
|
if (transport_rtp->transport_wide_cc.schedid < 0 && transport_rtp->rtcp) {
|
|
ast_debug_rtcp(1, "(%p) RTCP starting transport-cc feedback transmission on RTP instance '%p'\n", instance, transport);
|
|
ao2_ref(transport, +1);
|
|
transport_rtp->transport_wide_cc.schedid = ast_sched_add(rtp->sched, 1000,
|
|
rtp_transport_wide_cc_feedback_produce, transport);
|
|
if (transport_rtp->transport_wide_cc.schedid < 0) {
|
|
ao2_ref(transport, -1);
|
|
ast_log(LOG_WARNING, "Scheduling RTCP transport-cc feedback transmission failed on RTP instance '%p'\n",
|
|
transport);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
|
|
unsigned char *extension, int len)
|
|
{
|
|
int transport_wide_cc_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_TRANSPORT_WIDE_CC);
|
|
int pos = 0;
|
|
|
|
/* We currently only care about the transport-cc extension, so if that's not negotiated then do nothing */
|
|
if (transport_wide_cc_id == -1) {
|
|
return;
|
|
}
|
|
|
|
/* Only while we do not exceed available extension data do we continue */
|
|
while (pos < len) {
|
|
int id = extension[pos] >> 4;
|
|
int extension_len = (extension[pos] & 0xF) + 1;
|
|
|
|
/* We've handled the first byte as it contains the extension id and length, so always
|
|
* skip ahead now
|
|
*/
|
|
pos += 1;
|
|
|
|
if (id == 0) {
|
|
/* From the RFC:
|
|
* In both forms, padding bytes have the value of 0 (zero). They may be
|
|
* placed between extension elements, if desired for alignment, or after
|
|
* the last extension element, if needed for padding. A padding byte
|
|
* does not supply the ID of an element, nor the length field. When a
|
|
* padding byte is found, it is ignored and the parser moves on to
|
|
* interpreting the next byte.
|
|
*/
|
|
continue;
|
|
} else if (id == 15) {
|
|
/* From the RFC:
|
|
* The local identifier value 15 is reserved for future extension and
|
|
* MUST NOT be used as an identifier. If the ID value 15 is
|
|
* encountered, its length field should be ignored, processing of the
|
|
* entire extension should terminate at that point, and only the
|
|
* extension elements present prior to the element with ID 15
|
|
* considered.
|
|
*/
|
|
break;
|
|
} else if ((pos + extension_len) > len) {
|
|
/* The extension is corrupted and is stating that it contains more data than is
|
|
* available in the extensions data.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* If this is transport-cc then we need to parse it further */
|
|
if (id == transport_wide_cc_id) {
|
|
rtp_instance_parse_transport_wide_cc(instance, rtp, extension + pos, extension_len);
|
|
}
|
|
|
|
/* Skip ahead to the next extension */
|
|
pos += extension_len;
|
|
}
|
|
}
|
|
|
|
static struct ast_frame *ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
|
|
const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno,
|
|
unsigned int bundled)
|
|
{
|
|
unsigned int *rtpheader = (unsigned int*)(read_area);
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_rtp_instance *instance1;
|
|
int res = length, hdrlen = 12, ssrc, seqno, payloadtype, padding, mark, ext, cc;
|
|
unsigned int timestamp;
|
|
RAII_VAR(struct ast_rtp_payload_type *, payload, NULL, ao2_cleanup);
|
|
struct frame_list frames;
|
|
|
|
/* If this payload is encrypted then decrypt it using the given SRTP instance */
|
|
if ((*read_area & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
|
|
srtp, read_area, &res, 0 | (srtp_replay_protection << 1)) < 0) {
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* If we are currently sending DTMF to the remote party send a continuation packet */
|
|
if (rtp->sending_digit) {
|
|
ast_rtp_dtmf_continuation(instance);
|
|
}
|
|
|
|
/* Pull out the various other fields we will need */
|
|
ssrc = ntohl(rtpheader[2]);
|
|
seqno = ntohl(rtpheader[0]);
|
|
payloadtype = (seqno & 0x7f0000) >> 16;
|
|
padding = seqno & (1 << 29);
|
|
mark = seqno & (1 << 23);
|
|
ext = seqno & (1 << 28);
|
|
cc = (seqno & 0xF000000) >> 24;
|
|
seqno &= 0xffff;
|
|
timestamp = ntohl(rtpheader[1]);
|
|
|
|
AST_LIST_HEAD_INIT_NOLOCK(&frames);
|
|
|
|
/* Remove any padding bytes that may be present */
|
|
if (padding) {
|
|
res -= read_area[res - 1];
|
|
}
|
|
|
|
/* Skip over any CSRC fields */
|
|
if (cc) {
|
|
hdrlen += cc * 4;
|
|
}
|
|
|
|
/* Look for any RTP extensions, currently we do not support any */
|
|
if (ext) {
|
|
int extensions_size = (ntohl(rtpheader[hdrlen/4]) & 0xffff) << 2;
|
|
unsigned int profile;
|
|
profile = (ntohl(rtpheader[3]) & 0xffff0000) >> 16;
|
|
|
|
if (profile == 0xbede) {
|
|
/* We skip over the first 4 bytes as they are just for the one byte extension header */
|
|
rtp_instance_parse_extmap_extensions(instance, rtp, read_area + hdrlen + 4, extensions_size);
|
|
} else if (DEBUG_ATLEAST(1)) {
|
|
if (profile == 0x505a) {
|
|
ast_log(LOG_DEBUG, "Found Zfone extension in RTP stream - zrtp - not supported.\n");
|
|
} else {
|
|
/* SDP negotiated RTP extensions can not currently be output in logging */
|
|
ast_log(LOG_DEBUG, "Found unknown RTP Extensions %x\n", profile);
|
|
}
|
|
}
|
|
|
|
hdrlen += extensions_size;
|
|
hdrlen += 4;
|
|
}
|
|
|
|
/* Make sure after we potentially mucked with the header length that it is once again valid */
|
|
if (res < hdrlen) {
|
|
ast_log(LOG_WARNING, "RTP Read too short (%d, expecting %d\n", res, hdrlen);
|
|
return AST_LIST_FIRST(&frames) ? AST_LIST_FIRST(&frames) : &ast_null_frame;
|
|
}
|
|
|
|
/* Only non-bundled instances can change/learn the remote's SSRC implicitly. */
|
|
if (!bundled) {
|
|
/* Force a marker bit and change SSRC if the SSRC changes */
|
|
if (rtp->themssrc_valid && rtp->themssrc != ssrc) {
|
|
struct ast_frame *f, srcupdate = {
|
|
AST_FRAME_CONTROL,
|
|
.subclass.integer = AST_CONTROL_SRCCHANGE,
|
|
};
|
|
|
|
if (!mark) {
|
|
if (ast_debug_rtp_packet_is_allowed) {
|
|
ast_debug(0, "(%p) RTP forcing Marker bit, because SSRC has changed\n", instance);
|
|
}
|
|
mark = 1;
|
|
}
|
|
|
|
f = ast_frisolate(&srcupdate);
|
|
AST_LIST_INSERT_TAIL(&frames, f, frame_list);
|
|
|
|
rtp->seedrxseqno = 0;
|
|
rtp->rxcount = 0;
|
|
rtp->rxoctetcount = 0;
|
|
rtp->cycles = 0;
|
|
prev_seqno = 0;
|
|
rtp->last_seqno = 0;
|
|
rtp->last_end_timestamp.ts = 0;
|
|
rtp->last_end_timestamp.is_set = 0;
|
|
if (rtp->rtcp) {
|
|
rtp->rtcp->expected_prior = 0;
|
|
rtp->rtcp->received_prior = 0;
|
|
}
|
|
}
|
|
|
|
rtp->themssrc = ssrc; /* Record their SSRC to put in future RR */
|
|
rtp->themssrc_valid = 1;
|
|
}
|
|
|
|
rtp->rxcount++;
|
|
rtp->rxoctetcount += (res - hdrlen);
|
|
if (rtp->rxcount == 1) {
|
|
rtp->seedrxseqno = seqno;
|
|
}
|
|
|
|
/* Do not schedule RR if RTCP isn't run */
|
|
if (rtp->rtcp && !ast_sockaddr_isnull(&rtp->rtcp->them) && rtp->rtcp->schedid < 0) {
|
|
/* Schedule transmission of Receiver Report */
|
|
ao2_ref(instance, +1);
|
|
rtp->rtcp->schedid = ast_sched_add(rtp->sched, ast_rtcp_calc_interval(rtp), ast_rtcp_write, instance);
|
|
if (rtp->rtcp->schedid < 0) {
|
|
ao2_ref(instance, -1);
|
|
ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
|
|
}
|
|
}
|
|
if ((int)prev_seqno - (int)seqno > 100) /* if so it would indicate that the sender cycled; allow for misordering */
|
|
rtp->cycles += RTP_SEQ_MOD;
|
|
|
|
/* If we are directly bridged to another instance send the audio directly out,
|
|
* but only after updating core information about the received traffic so that
|
|
* outgoing RTCP reflects it.
|
|
*/
|
|
instance1 = ast_rtp_instance_get_bridged(instance);
|
|
if (instance1
|
|
&& !bridge_p2p_rtp_write(instance, instance1, rtpheader, res, hdrlen)) {
|
|
struct timeval rxtime;
|
|
struct ast_frame *f;
|
|
|
|
/* Update statistics for jitter so they are correct in RTCP */
|
|
calc_rxstamp(&rxtime, rtp, timestamp, mark);
|
|
|
|
/* When doing P2P we don't need to raise any frames about SSRC change to the core */
|
|
while ((f = AST_LIST_REMOVE_HEAD(&frames, frame_list)) != NULL) {
|
|
ast_frfree(f);
|
|
}
|
|
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
payload = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payloadtype);
|
|
if (!payload) {
|
|
/* Unknown payload type. */
|
|
return AST_LIST_FIRST(&frames) ? AST_LIST_FIRST(&frames) : &ast_null_frame;
|
|
}
|
|
|
|
/* If the payload is not actually an Asterisk one but a special one pass it off to the respective handler */
|
|
if (!payload->asterisk_format) {
|
|
struct ast_frame *f = NULL;
|
|
if (payload->rtp_code == AST_RTP_DTMF) {
|
|
/* process_dtmf_rfc2833 may need to return multiple frames. We do this
|
|
* by passing the pointer to the frame list to it so that the method
|
|
* can append frames to the list as needed.
|
|
*/
|
|
process_dtmf_rfc2833(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark, &frames);
|
|
} else if (payload->rtp_code == AST_RTP_CISCO_DTMF) {
|
|
f = process_dtmf_cisco(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
|
|
} else if (payload->rtp_code == AST_RTP_CN) {
|
|
f = process_cn_rfc3389(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
|
|
} else {
|
|
ast_log(LOG_NOTICE, "Unknown RTP codec %d received from '%s'\n",
|
|
payloadtype,
|
|
ast_sockaddr_stringify(remote_address));
|
|
}
|
|
|
|
if (f) {
|
|
AST_LIST_INSERT_TAIL(&frames, f, frame_list);
|
|
}
|
|
/* Even if no frame was returned by one of the above methods,
|
|
* we may have a frame to return in our frame list
|
|
*/
|
|
return AST_LIST_FIRST(&frames) ? AST_LIST_FIRST(&frames) : &ast_null_frame;
|
|
}
|
|
|
|
ao2_replace(rtp->lastrxformat, payload->format);
|
|
ao2_replace(rtp->f.subclass.format, payload->format);
|
|
switch (ast_format_get_type(rtp->f.subclass.format)) {
|
|
case AST_MEDIA_TYPE_AUDIO:
|
|
rtp->f.frametype = AST_FRAME_VOICE;
|
|
break;
|
|
case AST_MEDIA_TYPE_VIDEO:
|
|
rtp->f.frametype = AST_FRAME_VIDEO;
|
|
break;
|
|
case AST_MEDIA_TYPE_TEXT:
|
|
rtp->f.frametype = AST_FRAME_TEXT;
|
|
break;
|
|
case AST_MEDIA_TYPE_IMAGE:
|
|
/* Fall through */
|
|
default:
|
|
ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
|
|
ast_codec_media_type2str(ast_format_get_type(rtp->f.subclass.format)));
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
if (rtp->dtmf_timeout && rtp->dtmf_timeout < timestamp) {
|
|
rtp->dtmf_timeout = 0;
|
|
|
|
if (rtp->resp) {
|
|
struct ast_frame *f;
|
|
f = create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0);
|
|
f->len = ast_tvdiff_ms(ast_samp2tv(rtp->dtmf_duration, ast_rtp_get_rate(f->subclass.format)), ast_tv(0, 0));
|
|
rtp->resp = 0;
|
|
rtp->dtmf_timeout = rtp->dtmf_duration = 0;
|
|
AST_LIST_INSERT_TAIL(&frames, f, frame_list);
|
|
return AST_LIST_FIRST(&frames);
|
|
}
|
|
}
|
|
|
|
rtp->f.src = "RTP";
|
|
rtp->f.mallocd = 0;
|
|
rtp->f.datalen = res - hdrlen;
|
|
rtp->f.data.ptr = read_area + hdrlen;
|
|
rtp->f.offset = hdrlen + AST_FRIENDLY_OFFSET;
|
|
ast_set_flag(&rtp->f, AST_FRFLAG_HAS_SEQUENCE_NUMBER);
|
|
rtp->f.seqno = seqno;
|
|
rtp->f.stream_num = rtp->stream_num;
|
|
|
|
if ((ast_format_cmp(rtp->f.subclass.format, ast_format_t140) == AST_FORMAT_CMP_EQUAL)
|
|
&& ((int)seqno - (prev_seqno + 1) > 0)
|
|
&& ((int)seqno - (prev_seqno + 1) < 10)) {
|
|
unsigned char *data = rtp->f.data.ptr;
|
|
|
|
memmove(rtp->f.data.ptr+3, rtp->f.data.ptr, rtp->f.datalen);
|
|
rtp->f.datalen +=3;
|
|
*data++ = 0xEF;
|
|
*data++ = 0xBF;
|
|
*data = 0xBD;
|
|
}
|
|
|
|
if (ast_format_cmp(rtp->f.subclass.format, ast_format_t140_red) == AST_FORMAT_CMP_EQUAL) {
|
|
unsigned char *data = rtp->f.data.ptr;
|
|
unsigned char *header_end;
|
|
int num_generations;
|
|
int header_length;
|
|
int len;
|
|
int diff =(int)seqno - (prev_seqno+1); /* if diff = 0, no drop*/
|
|
int x;
|
|
|
|
ao2_replace(rtp->f.subclass.format, ast_format_t140);
|
|
header_end = memchr(data, ((*data) & 0x7f), rtp->f.datalen);
|
|
if (header_end == NULL) {
|
|
return AST_LIST_FIRST(&frames) ? AST_LIST_FIRST(&frames) : &ast_null_frame;
|
|
}
|
|
header_end++;
|
|
|
|
header_length = header_end - data;
|
|
num_generations = header_length / 4;
|
|
len = header_length;
|
|
|
|
if (!diff) {
|
|
for (x = 0; x < num_generations; x++)
|
|
len += data[x * 4 + 3];
|
|
|
|
if (!(rtp->f.datalen - len))
|
|
return AST_LIST_FIRST(&frames) ? AST_LIST_FIRST(&frames) : &ast_null_frame;
|
|
|
|
rtp->f.data.ptr += len;
|
|
rtp->f.datalen -= len;
|
|
} else if (diff > num_generations && diff < 10) {
|
|
len -= 3;
|
|
rtp->f.data.ptr += len;
|
|
rtp->f.datalen -= len;
|
|
|
|
data = rtp->f.data.ptr;
|
|
*data++ = 0xEF;
|
|
*data++ = 0xBF;
|
|
*data = 0xBD;
|
|
} else {
|
|
for ( x = 0; x < num_generations - diff; x++)
|
|
len += data[x * 4 + 3];
|
|
|
|
rtp->f.data.ptr += len;
|
|
rtp->f.datalen -= len;
|
|
}
|
|
}
|
|
|
|
if (ast_format_get_type(rtp->f.subclass.format) == AST_MEDIA_TYPE_AUDIO) {
|
|
rtp->f.samples = ast_codec_samples_count(&rtp->f);
|
|
if (ast_format_cache_is_slinear(rtp->f.subclass.format)) {
|
|
ast_frame_byteswap_be(&rtp->f);
|
|
}
|
|
calc_rxstamp(&rtp->f.delivery, rtp, timestamp, mark);
|
|
/* Add timing data to let ast_generic_bridge() put the frame into a jitterbuf */
|
|
ast_set_flag(&rtp->f, AST_FRFLAG_HAS_TIMING_INFO);
|
|
rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
|
|
rtp->f.len = rtp->f.samples / ((ast_format_get_sample_rate(rtp->f.subclass.format) / 1000));
|
|
} else if (ast_format_get_type(rtp->f.subclass.format) == AST_MEDIA_TYPE_VIDEO) {
|
|
/* Video -- samples is # of samples vs. 90000 */
|
|
if (!rtp->lastividtimestamp)
|
|
rtp->lastividtimestamp = timestamp;
|
|
calc_rxstamp(&rtp->f.delivery, rtp, timestamp, mark);
|
|
ast_set_flag(&rtp->f, AST_FRFLAG_HAS_TIMING_INFO);
|
|
rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
|
|
rtp->f.samples = timestamp - rtp->lastividtimestamp;
|
|
rtp->lastividtimestamp = timestamp;
|
|
rtp->f.delivery.tv_sec = 0;
|
|
rtp->f.delivery.tv_usec = 0;
|
|
/* Pass the RTP marker bit as bit */
|
|
rtp->f.subclass.frame_ending = mark ? 1 : 0;
|
|
} else if (ast_format_get_type(rtp->f.subclass.format) == AST_MEDIA_TYPE_TEXT) {
|
|
/* TEXT -- samples is # of samples vs. 1000 */
|
|
if (!rtp->lastitexttimestamp)
|
|
rtp->lastitexttimestamp = timestamp;
|
|
rtp->f.samples = timestamp - rtp->lastitexttimestamp;
|
|
rtp->lastitexttimestamp = timestamp;
|
|
rtp->f.delivery.tv_sec = 0;
|
|
rtp->f.delivery.tv_usec = 0;
|
|
} else {
|
|
ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
|
|
ast_codec_media_type2str(ast_format_get_type(rtp->f.subclass.format)));
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
AST_LIST_INSERT_TAIL(&frames, &rtp->f, frame_list);
|
|
return AST_LIST_FIRST(&frames);
|
|
}
|
|
|
|
#ifdef AST_DEVMODE
|
|
|
|
struct rtp_drop_packets_data {
|
|
/* Whether or not to randomize the number of packets to drop. */
|
|
unsigned int use_random_num;
|
|
/* Whether or not to randomize the time interval between packets drops. */
|
|
unsigned int use_random_interval;
|
|
/* The total number of packets to drop. If 'use_random_num' is true then this
|
|
* value becomes the upper bound for a number of random packets to drop. */
|
|
unsigned int num_to_drop;
|
|
/* The current number of packets that have been dropped during an interval. */
|
|
unsigned int num_dropped;
|
|
/* The optional interval to use between packet drops. If 'use_random_interval'
|
|
* is true then this values becomes the upper bound for a random interval used. */
|
|
struct timeval interval;
|
|
/* The next time a packet drop should be triggered. */
|
|
struct timeval next;
|
|
/* An optional IP address from which to drop packets from. */
|
|
struct ast_sockaddr addr;
|
|
/* The optional port from which to drop packets from. */
|
|
unsigned int port;
|
|
};
|
|
|
|
static struct rtp_drop_packets_data drop_packets_data;
|
|
|
|
static void drop_packets_data_update(struct timeval tv)
|
|
{
|
|
/*
|
|
* num_dropped keeps up with the number of packets that have been dropped for a
|
|
* given interval. Once the specified number of packets have been dropped and
|
|
* the next time interval is ready to trigger then set this number to zero (drop
|
|
* the next 'n' packets up to 'num_to_drop'), or if 'use_random_num' is set to
|
|
* true then set to a random number between zero and 'num_to_drop'.
|
|
*/
|
|
drop_packets_data.num_dropped = drop_packets_data.use_random_num ?
|
|
ast_random() % drop_packets_data.num_to_drop : 0;
|
|
|
|
/*
|
|
* A specified number of packets can be dropped at a given interval (e.g every
|
|
* 30 seconds). If 'use_random_interval' is false simply add the interval to
|
|
* the given time to get the next trigger point. If set to true, then get a
|
|
* random time between the given time and up to the specified interval.
|
|
*/
|
|
if (drop_packets_data.use_random_interval) {
|
|
/* Calculate as a percentage of the specified drop packets interval */
|
|
struct timeval interval = ast_time_create_by_unit(ast_time_tv_to_usec(
|
|
&drop_packets_data.interval) * ((double)(ast_random() % 100 + 1) / 100),
|
|
TIME_UNIT_MICROSECOND);
|
|
|
|
drop_packets_data.next = ast_tvadd(tv, interval);
|
|
} else {
|
|
drop_packets_data.next = ast_tvadd(tv, drop_packets_data.interval);
|
|
}
|
|
}
|
|
|
|
static int should_drop_packets(struct ast_sockaddr *addr)
|
|
{
|
|
struct timeval tv;
|
|
|
|
if (!drop_packets_data.num_to_drop) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If an address has been specified then filter on it, and also the port if
|
|
* it too was included.
|
|
*/
|
|
if (!ast_sockaddr_isnull(&drop_packets_data.addr) &&
|
|
(drop_packets_data.port ?
|
|
ast_sockaddr_cmp(&drop_packets_data.addr, addr) :
|
|
ast_sockaddr_cmp_addr(&drop_packets_data.addr, addr)) != 0) {
|
|
/* Address and/or port does not match */
|
|
return 0;
|
|
}
|
|
|
|
/* Keep dropping packets until we've reached the total to drop */
|
|
if (drop_packets_data.num_dropped < drop_packets_data.num_to_drop) {
|
|
++drop_packets_data.num_dropped;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Once the set number of packets has been dropped check to see if it's
|
|
* time to drop more.
|
|
*/
|
|
|
|
if (ast_tvzero(drop_packets_data.interval)) {
|
|
/* If no interval then drop specified number of packets and be done */
|
|
drop_packets_data.num_to_drop = 0;
|
|
return 0;
|
|
}
|
|
|
|
tv = ast_tvnow();
|
|
if (ast_tvcmp(tv, drop_packets_data.next) == -1) {
|
|
/* Still waiting for the next time interval to elapse */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The next time interval has elapsed so update the tracking structure
|
|
* in order to start dropping more packets, and figure out when the next
|
|
* time interval is.
|
|
*/
|
|
drop_packets_data_update(tv);
|
|
return 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*! \pre instance is locked */
|
|
static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_srtp *srtp;
|
|
RAII_VAR(struct ast_rtp_instance *, child, NULL, rtp_instance_unlock);
|
|
struct ast_sockaddr addr;
|
|
int res, hdrlen = 12, version, payloadtype;
|
|
unsigned char *read_area = rtp->rawdata + AST_FRIENDLY_OFFSET;
|
|
size_t read_area_size = sizeof(rtp->rawdata) - AST_FRIENDLY_OFFSET;
|
|
unsigned int *rtpheader = (unsigned int*)(read_area), seqno, ssrc, timestamp, prev_seqno;
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
struct frame_list frames;
|
|
struct ast_frame *frame;
|
|
unsigned int bundled;
|
|
|
|
/* If this is actually RTCP let's hop on over and handle it */
|
|
if (rtcp) {
|
|
if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
return ast_rtcp_read(instance);
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* Actually read in the data from the socket */
|
|
if ((res = rtp_recvfrom(instance, read_area, read_area_size, 0,
|
|
&addr)) < 0) {
|
|
if (res == RTP_DTLS_ESTABLISHED) {
|
|
rtp->f.frametype = AST_FRAME_CONTROL;
|
|
rtp->f.subclass.integer = AST_CONTROL_SRCCHANGE;
|
|
return &rtp->f;
|
|
}
|
|
|
|
ast_assert(errno != EBADF);
|
|
if (errno != EAGAIN) {
|
|
ast_log(LOG_WARNING, "RTP Read error: %s. Hanging up.\n",
|
|
(errno) ? strerror(errno) : "Unspecified");
|
|
return NULL;
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* If this was handled by the ICE session don't do anything */
|
|
if (!res) {
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* This could be a multiplexed RTCP packet. If so, be sure to interpret it correctly */
|
|
if (rtcp_mux(rtp, read_area)) {
|
|
return ast_rtcp_interpret(instance, ast_rtp_instance_get_srtp(instance, 1), read_area, res, &addr);
|
|
}
|
|
|
|
/* Make sure the data that was read in is actually enough to make up an RTP packet */
|
|
if (res < hdrlen) {
|
|
/* If this is a keepalive containing only nulls, don't bother with a warning */
|
|
int i;
|
|
for (i = 0; i < res; ++i) {
|
|
if (read_area[i] != '\0') {
|
|
ast_log(LOG_WARNING, "RTP Read too short\n");
|
|
return &ast_null_frame;
|
|
}
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* Get fields and verify this is an RTP packet */
|
|
seqno = ntohl(rtpheader[0]);
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
if (!(version = (seqno & 0xC0000000) >> 30)) {
|
|
struct sockaddr_in addr_tmp;
|
|
struct ast_sockaddr addr_v4;
|
|
if (ast_sockaddr_is_ipv4(&addr)) {
|
|
ast_sockaddr_to_sin(&addr, &addr_tmp);
|
|
} else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
|
|
ast_debug_stun(1, "(%p) STUN using IPv6 mapped address %s\n",
|
|
instance, ast_sockaddr_stringify(&addr));
|
|
ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
|
|
} else {
|
|
ast_debug_stun(1, "(%p) STUN cannot do for non IPv4 address %s\n",
|
|
instance, ast_sockaddr_stringify(&addr));
|
|
return &ast_null_frame;
|
|
}
|
|
if ((ast_stun_handle_packet(rtp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT) &&
|
|
ast_sockaddr_isnull(&remote_address)) {
|
|
ast_sockaddr_from_sin(&addr, &addr_tmp);
|
|
ast_rtp_instance_set_remote_address(instance, &addr);
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* If the version is not what we expected by this point then just drop the packet */
|
|
if (version != 2) {
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/* We use the SSRC to determine what RTP instance this packet is actually for */
|
|
ssrc = ntohl(rtpheader[2]);
|
|
|
|
/* We use the SRTP data from the provided instance that it came in on, not the child */
|
|
srtp = ast_rtp_instance_get_srtp(instance, 0);
|
|
|
|
/* Determine the appropriate instance for this */
|
|
child = rtp_find_instance_by_packet_source_ssrc(instance, rtp, ssrc);
|
|
if (!child) {
|
|
/* Neither the bundled parent nor any child has this SSRC */
|
|
return &ast_null_frame;
|
|
}
|
|
if (child != instance) {
|
|
/* It is safe to hold the child lock while holding the parent lock, we guarantee that the locking order
|
|
* is always parent->child or that the child lock is not held when acquiring the parent lock.
|
|
*/
|
|
ao2_lock(child);
|
|
instance = child;
|
|
rtp = ast_rtp_instance_get_data(instance);
|
|
} else {
|
|
/* The child is the parent! We don't need to unlock it. */
|
|
child = NULL;
|
|
}
|
|
|
|
/* If strict RTP protection is enabled see if we need to learn the remote address or if we need to drop the packet */
|
|
switch (rtp->strict_rtp_state) {
|
|
case STRICT_RTP_LEARN:
|
|
/*
|
|
* Scenario setup:
|
|
* PartyA -- Ast1 -- Ast2 -- PartyB
|
|
*
|
|
* The learning timeout is necessary for Ast1 to handle the above
|
|
* setup where PartyA calls PartyB and Ast2 initiates direct media
|
|
* between Ast1 and PartyB. Ast1 may lock onto the Ast2 stream and
|
|
* never learn the PartyB stream when it starts. The timeout makes
|
|
* Ast1 stay in the learning state long enough to see and learn the
|
|
* RTP stream from PartyB.
|
|
*
|
|
* To mitigate against attack, the learning state cannot switch
|
|
* streams while there are competing streams. The competing streams
|
|
* interfere with each other's qualification. Once we accept a
|
|
* stream and reach the timeout, an attacker cannot interfere
|
|
* anymore.
|
|
*
|
|
* Here are a few scenarios and each one assumes that the streams
|
|
* are continuous:
|
|
*
|
|
* 1) We already have a known stream source address and the known
|
|
* stream wants to change to a new source address. An attacking
|
|
* stream will block learning the new stream source. After the
|
|
* timeout we re-lock onto the original stream source address which
|
|
* likely went away. The result is one way audio.
|
|
*
|
|
* 2) We already have a known stream source address and the known
|
|
* stream doesn't want to change source addresses. An attacking
|
|
* stream will not be able to replace the known stream. After the
|
|
* timeout we re-lock onto the known stream. The call is not
|
|
* affected.
|
|
*
|
|
* 3) We don't have a known stream source address. This presumably
|
|
* is the start of a call. Competing streams will result in staying
|
|
* in learning mode until a stream becomes the victor and we reach
|
|
* the timeout. We cannot exit learning if we have no known stream
|
|
* to lock onto. The result is one way audio until there is a victor.
|
|
*
|
|
* If we learn a stream source address before the timeout we will be
|
|
* in scenario 1) or 2) when a competing stream starts.
|
|
*/
|
|
if (!ast_sockaddr_isnull(&rtp->strict_rtp_address)
|
|
&& STRICT_RTP_LEARN_TIMEOUT < ast_tvdiff_ms(ast_tvnow(), rtp->rtp_source_learn.start)) {
|
|
ast_verb(4, "%p -- Strict RTP learning complete - Locking on source address %s\n",
|
|
rtp, ast_sockaddr_stringify(&rtp->strict_rtp_address));
|
|
ast_test_suite_event_notify("STRICT_RTP_LEARN", "Source: %s",
|
|
ast_sockaddr_stringify(&rtp->strict_rtp_address));
|
|
rtp->strict_rtp_state = STRICT_RTP_CLOSED;
|
|
} else {
|
|
struct ast_sockaddr target_address;
|
|
|
|
if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
|
|
/*
|
|
* We are open to learning a new address but have received
|
|
* traffic from the current address, accept it and reset
|
|
* the learning counts for a new source. When no more
|
|
* current source packets arrive a new source can take over
|
|
* once sufficient traffic is received.
|
|
*/
|
|
rtp_learning_seq_init(&rtp->rtp_source_learn, seqno);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We give preferential treatment to the requested target address
|
|
* (negotiated SDP address) where we are to send our RTP. However,
|
|
* the other end has no obligation to send from that address even
|
|
* though it is practically a requirement when NAT is involved.
|
|
*/
|
|
ast_rtp_instance_get_requested_target_address(instance, &target_address);
|
|
if (!ast_sockaddr_cmp(&target_address, &addr)) {
|
|
/* Accept the negotiated target RTP stream as the source */
|
|
ast_verb(4, "%p -- Strict RTP switching to RTP target address %s as source\n",
|
|
rtp, ast_sockaddr_stringify(&addr));
|
|
ast_sockaddr_copy(&rtp->strict_rtp_address, &addr);
|
|
rtp_learning_seq_init(&rtp->rtp_source_learn, seqno);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Trying to learn a new address. If we pass a probationary period
|
|
* with it, that means we've stopped getting RTP from the original
|
|
* source and we should switch to it.
|
|
*/
|
|
if (!ast_sockaddr_cmp(&rtp->rtp_source_learn.proposed_address, &addr)) {
|
|
if (rtp->rtp_source_learn.stream_type == AST_MEDIA_TYPE_UNKNOWN) {
|
|
struct ast_rtp_codecs *codecs;
|
|
|
|
codecs = ast_rtp_instance_get_codecs(instance);
|
|
rtp->rtp_source_learn.stream_type =
|
|
ast_rtp_codecs_get_stream_type(codecs);
|
|
ast_verb(4, "%p -- Strict RTP qualifying stream type: %s\n",
|
|
rtp, ast_codec_media_type2str(rtp->rtp_source_learn.stream_type));
|
|
}
|
|
if (!rtp_learning_rtp_seq_update(&rtp->rtp_source_learn, seqno)) {
|
|
/* Accept the new RTP stream */
|
|
ast_verb(4, "%p -- Strict RTP switching source address to %s\n",
|
|
rtp, ast_sockaddr_stringify(&addr));
|
|
ast_sockaddr_copy(&rtp->strict_rtp_address, &addr);
|
|
rtp_learning_seq_init(&rtp->rtp_source_learn, seqno);
|
|
break;
|
|
}
|
|
/* Not ready to accept the RTP stream candidate */
|
|
ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Will switch to it in %d packets.\n",
|
|
instance, rtp, ast_sockaddr_stringify(&addr), rtp->rtp_source_learn.packets);
|
|
} else {
|
|
/*
|
|
* This is either an attacking stream or
|
|
* the start of the expected new stream.
|
|
*/
|
|
ast_sockaddr_copy(&rtp->rtp_source_learn.proposed_address, &addr);
|
|
rtp_learning_seq_init(&rtp->rtp_source_learn, seqno);
|
|
ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Qualifying new stream.\n",
|
|
instance, rtp, ast_sockaddr_stringify(&addr));
|
|
}
|
|
return &ast_null_frame;
|
|
}
|
|
/* Fall through */
|
|
case STRICT_RTP_CLOSED:
|
|
/*
|
|
* We should not allow a stream address change if the SSRC matches
|
|
* once strictrtp learning is closed. Any kind of address change
|
|
* like this should have happened while we were in the learning
|
|
* state. We do not want to allow the possibility of an attacker
|
|
* interfering with the RTP stream after the learning period.
|
|
* An attacker could manage to get an RTCP packet redirected to
|
|
* them which can contain the SSRC value.
|
|
*/
|
|
if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
|
|
break;
|
|
}
|
|
ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection.\n",
|
|
instance, rtp, ast_sockaddr_stringify(&addr));
|
|
#ifdef TEST_FRAMEWORK
|
|
{
|
|
static int strict_rtp_test_event = 1;
|
|
if (strict_rtp_test_event) {
|
|
ast_test_suite_event_notify("STRICT_RTP_CLOSED", "Source: %s",
|
|
ast_sockaddr_stringify(&addr));
|
|
strict_rtp_test_event = 0; /* Only run this event once to prevent possible spam */
|
|
}
|
|
}
|
|
#endif
|
|
return &ast_null_frame;
|
|
case STRICT_RTP_OPEN:
|
|
break;
|
|
}
|
|
|
|
/* If symmetric RTP is enabled see if the remote side is not what we expected and change where we are sending audio */
|
|
if (ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT)) {
|
|
if (ast_sockaddr_cmp(&remote_address, &addr)) {
|
|
/* do not update the originally given address, but only the remote */
|
|
ast_rtp_instance_set_incoming_source_address(instance, &addr);
|
|
ast_sockaddr_copy(&remote_address, &addr);
|
|
if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
ast_sockaddr_copy(&rtp->rtcp->them, &addr);
|
|
ast_sockaddr_set_port(&rtp->rtcp->them, ast_sockaddr_port(&addr) + 1);
|
|
}
|
|
ast_set_flag(rtp, FLAG_NAT_ACTIVE);
|
|
if (ast_debug_rtp_packet_is_allowed)
|
|
ast_debug(0, "(%p) RTP NAT: Got audio from other end. Now sending to address %s\n",
|
|
instance, ast_sockaddr_stringify(&remote_address));
|
|
}
|
|
}
|
|
|
|
/* Pull out the various other fields we will need */
|
|
payloadtype = (seqno & 0x7f0000) >> 16;
|
|
seqno &= 0xffff;
|
|
timestamp = ntohl(rtpheader[1]);
|
|
|
|
#ifdef AST_DEVMODE
|
|
if (should_drop_packets(&addr)) {
|
|
ast_debug(0, "(%p) RTP: drop received packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
|
|
instance, ast_sockaddr_stringify(&addr), payloadtype, seqno, timestamp, res - hdrlen);
|
|
return &ast_null_frame;
|
|
}
|
|
#endif
|
|
|
|
if (rtp_debug_test_addr(&addr)) {
|
|
ast_verbose("Got RTP packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&addr),
|
|
payloadtype, seqno, timestamp, res - hdrlen);
|
|
}
|
|
|
|
AST_LIST_HEAD_INIT_NOLOCK(&frames);
|
|
|
|
bundled = (child || AST_VECTOR_SIZE(&rtp->ssrc_mapping)) ? 1 : 0;
|
|
|
|
prev_seqno = rtp->lastrxseqno;
|
|
rtp->lastrxseqno = seqno;
|
|
|
|
if (!rtp->recv_buffer) {
|
|
/* If there is no receive buffer then we can pass back the frame directly */
|
|
frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
return AST_LIST_FIRST(&frames);
|
|
} else if (rtp->expectedrxseqno == -1 || seqno == rtp->expectedrxseqno) {
|
|
rtp->expectedrxseqno = seqno + 1;
|
|
|
|
/* We've cycled over, so go back to 0 */
|
|
if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
|
|
rtp->expectedrxseqno = 0;
|
|
}
|
|
|
|
/* If there are no buffered packets that will be placed after this frame then we can
|
|
* return it directly without duplicating it.
|
|
*/
|
|
if (!ast_data_buffer_count(rtp->recv_buffer)) {
|
|
frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
return AST_LIST_FIRST(&frames);
|
|
}
|
|
|
|
if (!AST_VECTOR_REMOVE_CMP_ORDERED(&rtp->missing_seqno, seqno, find_by_value,
|
|
AST_VECTOR_ELEM_CLEANUP_NOOP)) {
|
|
ast_debug_rtp(2, "(%p) RTP Packet with sequence number '%d' on instance is no longer missing\n",
|
|
instance, seqno);
|
|
}
|
|
|
|
/* If we don't have the next packet after this we can directly return the frame, as there is no
|
|
* chance it will be overwritten.
|
|
*/
|
|
if (!ast_data_buffer_get(rtp->recv_buffer, rtp->expectedrxseqno)) {
|
|
frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
return AST_LIST_FIRST(&frames);
|
|
}
|
|
|
|
/* Otherwise we need to dupe the frame so that the potential processing of frames placed after
|
|
* it do not overwrite the data. You may be thinking that we could just add the current packet
|
|
* to the head of the frames list and avoid having to duplicate it but this would result in out
|
|
* of order packet processing by libsrtp which we are trying to avoid.
|
|
*/
|
|
frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
|
|
if (frame) {
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
prev_seqno = seqno;
|
|
}
|
|
|
|
/* Add any additional packets that we have buffered and that are available */
|
|
while (ast_data_buffer_count(rtp->recv_buffer)) {
|
|
struct ast_rtp_rtcp_nack_payload *payload;
|
|
|
|
payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, rtp->expectedrxseqno);
|
|
if (!payload) {
|
|
break;
|
|
}
|
|
|
|
frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
|
|
ast_free(payload);
|
|
|
|
if (!frame) {
|
|
/* If this packet can't be interpreted due to being out of memory we return what we have and assume
|
|
* that we will determine it is a missing packet later and NACK for it.
|
|
*/
|
|
return AST_LIST_FIRST(&frames);
|
|
}
|
|
|
|
ast_debug_rtp(2, "(%p) RTP pulled buffered packet with sequence number '%d' to additionally return\n",
|
|
instance, frame->seqno);
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
prev_seqno = rtp->expectedrxseqno;
|
|
rtp->expectedrxseqno++;
|
|
if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
|
|
rtp->expectedrxseqno = 0;
|
|
}
|
|
}
|
|
|
|
return AST_LIST_FIRST(&frames);
|
|
} else if ((((seqno - rtp->expectedrxseqno) > 100) && timestamp > rtp->lastividtimestamp) ||
|
|
ast_data_buffer_count(rtp->recv_buffer) == ast_data_buffer_max(rtp->recv_buffer)) {
|
|
int inserted = 0;
|
|
|
|
/* We have a large number of outstanding buffered packets or we've jumped far ahead in time.
|
|
* To compensate we dump what we have in the buffer and place the current packet in a logical
|
|
* spot. In the case of video we also require a full frame to give the decoding side a fighting
|
|
* chance.
|
|
*/
|
|
|
|
if (rtp->rtp_source_learn.stream_type == AST_MEDIA_TYPE_VIDEO) {
|
|
ast_debug_rtp(2, "(%p) RTP source has wild gap or packet loss, sending FIR\n",
|
|
instance);
|
|
rtp_write_rtcp_fir(instance, rtp, &remote_address);
|
|
}
|
|
|
|
/* This works by going through the progression of the sequence number retrieving buffered packets
|
|
* or inserting the current received packet until we've run out of packets. This ensures that the
|
|
* packets are in the correct sequence number order.
|
|
*/
|
|
while (ast_data_buffer_count(rtp->recv_buffer)) {
|
|
struct ast_rtp_rtcp_nack_payload *payload;
|
|
|
|
/* If the packet we received is the one we are expecting at this point then add it in */
|
|
if (rtp->expectedrxseqno == seqno) {
|
|
frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
|
|
if (frame) {
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
prev_seqno = seqno;
|
|
ast_debug_rtp(2, "(%p) RTP inserted just received packet with sequence number '%d' in correct order\n",
|
|
instance, seqno);
|
|
}
|
|
/* It is possible due to packet retransmission for this packet to also exist in the receive
|
|
* buffer so we explicitly remove it in case this occurs, otherwise the receive buffer will
|
|
* never be empty.
|
|
*/
|
|
payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, seqno);
|
|
if (payload) {
|
|
ast_free(payload);
|
|
}
|
|
rtp->expectedrxseqno++;
|
|
if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
|
|
rtp->expectedrxseqno = 0;
|
|
}
|
|
inserted = 1;
|
|
continue;
|
|
}
|
|
|
|
payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, rtp->expectedrxseqno);
|
|
if (payload) {
|
|
frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
|
|
if (frame) {
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
prev_seqno = rtp->expectedrxseqno;
|
|
ast_debug_rtp(2, "(%p) RTP emptying queue and returning packet with sequence number '%d'\n",
|
|
instance, frame->seqno);
|
|
}
|
|
ast_free(payload);
|
|
}
|
|
|
|
rtp->expectedrxseqno++;
|
|
if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
|
|
rtp->expectedrxseqno = 0;
|
|
}
|
|
}
|
|
|
|
if (!inserted) {
|
|
/* This current packet goes after them, and we assume that packets going forward will follow
|
|
* that new sequence number increment. It is okay for this to not be duplicated as it is guaranteed
|
|
* to be the last packet processed right now and it is also guaranteed that it will always return
|
|
* non-NULL.
|
|
*/
|
|
frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
|
|
AST_LIST_INSERT_TAIL(&frames, frame, frame_list);
|
|
rtp->expectedrxseqno = seqno + 1;
|
|
if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
|
|
rtp->expectedrxseqno = 0;
|
|
}
|
|
|
|
ast_debug_rtp(2, "(%p) RTP adding just received packet with sequence number '%d' to end of dumped queue\n",
|
|
instance, seqno);
|
|
}
|
|
|
|
/* When we flush increase our chance for next time by growing the receive buffer when possible
|
|
* by how many packets we missed, to give ourselves a bit more breathing room.
|
|
*/
|
|
ast_data_buffer_resize(rtp->recv_buffer, MIN(MAXIMUM_RTP_RECV_BUFFER_SIZE,
|
|
ast_data_buffer_max(rtp->recv_buffer) + AST_VECTOR_SIZE(&rtp->missing_seqno)));
|
|
ast_debug_rtp(2, "(%p) RTP receive buffer is now at maximum of %zu\n", instance, ast_data_buffer_max(rtp->recv_buffer));
|
|
|
|
/* As there is such a large gap we don't want to flood the order side with missing packets, so we
|
|
* give up and start anew.
|
|
*/
|
|
AST_VECTOR_RESET(&rtp->missing_seqno, AST_VECTOR_ELEM_CLEANUP_NOOP);
|
|
|
|
return AST_LIST_FIRST(&frames);
|
|
}
|
|
|
|
/* We're finished with the frames list */
|
|
ast_frame_free(AST_LIST_FIRST(&frames), 0);
|
|
|
|
/* Determine if the received packet is from the last OLD_PACKET_COUNT (1000 by default) packets or not.
|
|
* For the case where the received sequence number exceeds that of the expected sequence number we calculate
|
|
* the past sequence number that would be 1000 sequence numbers ago. If the received sequence number
|
|
* exceeds or meets that then it is within OLD_PACKET_COUNT packets ago. For example if the expected
|
|
* sequence number is 100 and we receive 65530, then it would be considered old. This is because
|
|
* 65535 - 1000 + 100 = 64635 which gives us the sequence number at which we would consider the packets
|
|
* old. Since 65530 is above that, it would be considered old.
|
|
* For the case where the received sequence number is less than the expected sequence number we can do
|
|
* a simple subtraction to see if it is 1000 packets ago or not.
|
|
*/
|
|
if ((seqno < rtp->expectedrxseqno && ((rtp->expectedrxseqno - seqno) <= OLD_PACKET_COUNT)) ||
|
|
(seqno > rtp->expectedrxseqno && (seqno >= (65535 - OLD_PACKET_COUNT + rtp->expectedrxseqno)))) {
|
|
/* If this is a packet from the past then we have received a duplicate packet, so just drop it */
|
|
ast_debug_rtp(2, "(%p) RTP received an old packet with sequence number '%d', dropping it\n",
|
|
instance, seqno);
|
|
return &ast_null_frame;
|
|
} else if (ast_data_buffer_get(rtp->recv_buffer, seqno)) {
|
|
/* If this is a packet we already have buffered then it is a duplicate, so just drop it */
|
|
ast_debug_rtp(2, "(%p) RTP received a duplicate transmission of packet with sequence number '%d', dropping it\n",
|
|
instance, seqno);
|
|
return &ast_null_frame;
|
|
} else {
|
|
/* This is an out of order packet from the future */
|
|
struct ast_rtp_rtcp_nack_payload *payload;
|
|
int missing_seqno;
|
|
int remove_failed;
|
|
unsigned int missing_seqnos_added = 0;
|
|
|
|
ast_debug_rtp(2, "(%p) RTP received an out of order packet with sequence number '%d' while expecting '%d' from the future\n",
|
|
instance, seqno, rtp->expectedrxseqno);
|
|
|
|
payload = ast_malloc(sizeof(*payload) + res);
|
|
if (!payload) {
|
|
/* If the payload can't be allocated then we can't defer this packet right now.
|
|
* Instead of dumping what we have we pretend we lost this packet. It will then
|
|
* get NACKed later or the existing buffer will be returned entirely. Well, we may
|
|
* try since we're seemingly out of memory. It's a bad situation all around and
|
|
* packets are likely to get lost anyway.
|
|
*/
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
payload->size = res;
|
|
memcpy(payload->buf, rtpheader, res);
|
|
if (ast_data_buffer_put(rtp->recv_buffer, seqno, payload) == -1) {
|
|
ast_free(payload);
|
|
}
|
|
|
|
/* If this sequence number is removed that means we had a gap and this packet has filled it in
|
|
* some. Since it was part of the gap we will have already added any other missing sequence numbers
|
|
* before it (and possibly after it) to the vector so we don't need to do that again. Note that
|
|
* remove_failed will be set to -1 if the sequence number isn't removed, and 0 if it is.
|
|
*/
|
|
remove_failed = AST_VECTOR_REMOVE_CMP_ORDERED(&rtp->missing_seqno, seqno, find_by_value,
|
|
AST_VECTOR_ELEM_CLEANUP_NOOP);
|
|
if (!remove_failed) {
|
|
ast_debug_rtp(2, "(%p) RTP packet with sequence number '%d' is no longer missing\n",
|
|
instance, seqno);
|
|
}
|
|
|
|
/* The missing sequence number code works by taking the sequence number of the
|
|
* packet we've just received and going backwards until we hit the sequence number
|
|
* of the last packet we've received. While doing so we check to make sure that the
|
|
* sequence number is not already missing and that it is not already buffered.
|
|
*/
|
|
missing_seqno = seqno;
|
|
while (remove_failed) {
|
|
missing_seqno -= 1;
|
|
|
|
/* If we've cycled backwards then start back at the top */
|
|
if (missing_seqno < 0) {
|
|
missing_seqno = 65535;
|
|
}
|
|
|
|
/* We've gone backwards enough such that we've hit the previous sequence number */
|
|
if (missing_seqno == prev_seqno) {
|
|
break;
|
|
}
|
|
|
|
/* We don't want missing sequence number duplicates. If, for some reason,
|
|
* packets are really out of order, we could end up in this scenario:
|
|
*
|
|
* We are expecting sequence number 100
|
|
* We receive sequence number 105
|
|
* Sequence numbers 100 through 104 get added to the vector
|
|
* We receive sequence number 101 (this section is skipped)
|
|
* We receive sequence number 103
|
|
* Sequence number 102 is added to the vector
|
|
*
|
|
* This will prevent the duplicate from being added.
|
|
*/
|
|
if (AST_VECTOR_GET_CMP(&rtp->missing_seqno, missing_seqno,
|
|
find_by_value)) {
|
|
continue;
|
|
}
|
|
|
|
/* If this packet has been buffered already then don't count it amongst the
|
|
* missing.
|
|
*/
|
|
if (ast_data_buffer_get(rtp->recv_buffer, missing_seqno)) {
|
|
continue;
|
|
}
|
|
|
|
ast_debug_rtp(2, "(%p) RTP added missing sequence number '%d'\n",
|
|
instance, missing_seqno);
|
|
AST_VECTOR_ADD_SORTED(&rtp->missing_seqno, missing_seqno,
|
|
compare_by_value);
|
|
missing_seqnos_added++;
|
|
}
|
|
|
|
/* When we add a large number of missing sequence numbers we assume there was a substantial
|
|
* gap in reception so we trigger an immediate NACK. When our data buffer is 1/4 full we
|
|
* assume that the packets aren't just out of order but have actually been lost. At 1/2
|
|
* full we get more aggressive and ask for retransmission when we get a new packet.
|
|
* To get them back we construct and send a NACK causing the sender to retransmit them.
|
|
*/
|
|
if (missing_seqnos_added >= MISSING_SEQNOS_ADDED_TRIGGER ||
|
|
ast_data_buffer_count(rtp->recv_buffer) == ast_data_buffer_max(rtp->recv_buffer) / 4 ||
|
|
ast_data_buffer_count(rtp->recv_buffer) >= ast_data_buffer_max(rtp->recv_buffer) / 2) {
|
|
int packet_len = 0;
|
|
int res = 0;
|
|
int ice;
|
|
int sr;
|
|
size_t data_size = AST_UUID_STR_LEN + 128 + (AST_VECTOR_SIZE(&rtp->missing_seqno) * 4);
|
|
RAII_VAR(unsigned char *, rtcpheader, NULL, ast_free_ptr);
|
|
RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
|
|
ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0),
|
|
ao2_cleanup);
|
|
|
|
/* Sufficient space for RTCP headers and report, SDES with CNAME, NACK header,
|
|
* and worst case 4 bytes per missing sequence number.
|
|
*/
|
|
rtcpheader = ast_malloc(sizeof(*rtcpheader) + data_size);
|
|
if (!rtcpheader) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to allocate memory for NACK\n", instance);
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
memset(rtcpheader, 0, data_size);
|
|
|
|
res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
|
|
|
|
if (res == 0 || res == 1) {
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
packet_len += res;
|
|
|
|
res = ast_rtcp_generate_nack(instance, rtcpheader + packet_len);
|
|
|
|
if (res == 0) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to construct NACK, stopping here\n", instance);
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
packet_len += res;
|
|
|
|
res = rtcp_sendto(instance, rtcpheader, packet_len, 0, &remote_address, &ice);
|
|
if (res < 0) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to send NACK request out\n", instance);
|
|
} else {
|
|
ast_debug_rtcp(2, "(%p) RTCP sending a NACK request to get missing packets\n", instance);
|
|
/* Update RTCP SR/RR statistics */
|
|
ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
|
|
}
|
|
}
|
|
}
|
|
|
|
return &ast_null_frame;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (property == AST_RTP_PROPERTY_RTCP) {
|
|
if (value) {
|
|
struct ast_sockaddr local_addr;
|
|
|
|
if (rtp->rtcp && rtp->rtcp->type == value) {
|
|
ast_debug_rtcp(1, "(%p) RTCP ignoring duplicate property\n", instance);
|
|
return;
|
|
}
|
|
|
|
if (!rtp->rtcp) {
|
|
rtp->rtcp = ast_calloc(1, sizeof(*rtp->rtcp));
|
|
if (!rtp->rtcp) {
|
|
return;
|
|
}
|
|
rtp->rtcp->s = -1;
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
rtp->rtcp->dtls.timeout_timer = -1;
|
|
#endif
|
|
rtp->rtcp->schedid = -1;
|
|
}
|
|
|
|
rtp->rtcp->type = value;
|
|
|
|
/* Grab the IP address and port we are going to use */
|
|
ast_rtp_instance_get_local_address(instance, &rtp->rtcp->us);
|
|
if (value == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
ast_sockaddr_set_port(&rtp->rtcp->us,
|
|
ast_sockaddr_port(&rtp->rtcp->us) + 1);
|
|
}
|
|
|
|
ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
|
|
if (!ast_find_ourip(&local_addr, &rtp->rtcp->us, 0)) {
|
|
ast_sockaddr_set_port(&local_addr, ast_sockaddr_port(&rtp->rtcp->us));
|
|
} else {
|
|
/* Failed to get local address reset to use default. */
|
|
ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
|
|
}
|
|
|
|
ast_free(rtp->rtcp->local_addr_str);
|
|
rtp->rtcp->local_addr_str = ast_strdup(ast_sockaddr_stringify(&local_addr));
|
|
if (!rtp->rtcp->local_addr_str) {
|
|
ast_free(rtp->rtcp);
|
|
rtp->rtcp = NULL;
|
|
return;
|
|
}
|
|
|
|
if (value == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
/* We're either setting up RTCP from scratch or
|
|
* switching from MUX. Either way, we won't have
|
|
* a socket set up, and we need to set it up
|
|
*/
|
|
if ((rtp->rtcp->s =
|
|
create_new_socket("RTCP",
|
|
ast_sockaddr_is_ipv4(&rtp->rtcp->us) ?
|
|
AF_INET :
|
|
ast_sockaddr_is_ipv6(&rtp->rtcp->us) ?
|
|
AF_INET6 : -1)) < 0) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to create a new socket\n", instance);
|
|
ast_free(rtp->rtcp->local_addr_str);
|
|
ast_free(rtp->rtcp);
|
|
rtp->rtcp = NULL;
|
|
return;
|
|
}
|
|
|
|
/* Try to actually bind to the IP address and port we are going to use for RTCP, if this fails we have to bail out */
|
|
if (ast_bind(rtp->rtcp->s, &rtp->rtcp->us)) {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to setup RTP instance\n", instance);
|
|
close(rtp->rtcp->s);
|
|
ast_free(rtp->rtcp->local_addr_str);
|
|
ast_free(rtp->rtcp);
|
|
rtp->rtcp = NULL;
|
|
return;
|
|
}
|
|
#ifdef HAVE_PJPROJECT
|
|
if (rtp->ice) {
|
|
rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us, ast_sockaddr_port(&rtp->rtcp->us), AST_RTP_ICE_COMPONENT_RTCP, TRANSPORT_SOCKET_RTCP);
|
|
}
|
|
#endif
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
dtls_setup_rtcp(instance);
|
|
#endif
|
|
} else {
|
|
struct ast_sockaddr addr;
|
|
/* RTCPMUX uses the same socket as RTP. If we were previously using standard RTCP
|
|
* then close the socket we previously created.
|
|
*
|
|
* It may seem as though there is a possible race condition here where we might try
|
|
* to close the RTCP socket while it is being used to send data. However, this is not
|
|
* a problem in practice since setting and adjusting of RTCP properties happens prior
|
|
* to activating RTP. It is not until RTP is activated that timers start for RTCP
|
|
* transmission
|
|
*/
|
|
if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
|
|
close(rtp->rtcp->s);
|
|
}
|
|
rtp->rtcp->s = rtp->s;
|
|
ast_rtp_instance_get_remote_address(instance, &addr);
|
|
ast_sockaddr_copy(&rtp->rtcp->them, &addr);
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
|
|
SSL_free(rtp->rtcp->dtls.ssl);
|
|
}
|
|
rtp->rtcp->dtls.ssl = rtp->dtls.ssl;
|
|
#endif
|
|
}
|
|
|
|
ast_debug_rtcp(1, "(%p) RTCP setup on RTP instance\n", instance);
|
|
} else {
|
|
if (rtp->rtcp) {
|
|
if (rtp->rtcp->schedid > -1) {
|
|
ao2_unlock(instance);
|
|
if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
|
|
/* Successfully cancelled scheduler entry. */
|
|
ao2_ref(instance, -1);
|
|
} else {
|
|
/* Unable to cancel scheduler entry */
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to tear down RTCP\n", instance);
|
|
ao2_lock(instance);
|
|
return;
|
|
}
|
|
ao2_lock(instance);
|
|
rtp->rtcp->schedid = -1;
|
|
}
|
|
if (rtp->transport_wide_cc.schedid > -1) {
|
|
ao2_unlock(instance);
|
|
if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
|
|
ao2_ref(instance, -1);
|
|
} else {
|
|
ast_debug_rtcp(1, "(%p) RTCP failed to tear down transport-cc feedback\n", instance);
|
|
ao2_lock(instance);
|
|
return;
|
|
}
|
|
ao2_lock(instance);
|
|
rtp->transport_wide_cc.schedid = -1;
|
|
}
|
|
if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
|
|
close(rtp->rtcp->s);
|
|
}
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
ao2_unlock(instance);
|
|
dtls_srtp_stop_timeout_timer(instance, rtp, 1);
|
|
ao2_lock(instance);
|
|
|
|
if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
|
|
SSL_free(rtp->rtcp->dtls.ssl);
|
|
}
|
|
#endif
|
|
ast_free(rtp->rtcp->local_addr_str);
|
|
ast_free(rtp->rtcp);
|
|
rtp->rtcp = NULL;
|
|
}
|
|
}
|
|
} else if (property == AST_RTP_PROPERTY_ASYMMETRIC_CODEC) {
|
|
rtp->asymmetric_codec = value;
|
|
} else if (property == AST_RTP_PROPERTY_RETRANS_SEND) {
|
|
if (value) {
|
|
if (!rtp->send_buffer) {
|
|
rtp->send_buffer = ast_data_buffer_alloc(ast_free_ptr, DEFAULT_RTP_SEND_BUFFER_SIZE);
|
|
}
|
|
} else {
|
|
if (rtp->send_buffer) {
|
|
ast_data_buffer_free(rtp->send_buffer);
|
|
rtp->send_buffer = NULL;
|
|
}
|
|
}
|
|
} else if (property == AST_RTP_PROPERTY_RETRANS_RECV) {
|
|
if (value) {
|
|
if (!rtp->recv_buffer) {
|
|
rtp->recv_buffer = ast_data_buffer_alloc(ast_free_ptr, DEFAULT_RTP_RECV_BUFFER_SIZE);
|
|
AST_VECTOR_INIT(&rtp->missing_seqno, 0);
|
|
}
|
|
} else {
|
|
if (rtp->recv_buffer) {
|
|
ast_data_buffer_free(rtp->recv_buffer);
|
|
rtp->recv_buffer = NULL;
|
|
AST_VECTOR_FREE(&rtp->missing_seqno);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtcp ? (rtp->rtcp ? rtp->rtcp->s : -1) : rtp->s;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr local;
|
|
int index;
|
|
|
|
ast_rtp_instance_get_local_address(instance, &local);
|
|
if (!ast_sockaddr_isnull(addr)) {
|
|
/* Update the local RTP address with what is being used */
|
|
if (ast_ouraddrfor(addr, &local)) {
|
|
/* Failed to update our address so reuse old local address */
|
|
ast_rtp_instance_get_local_address(instance, &local);
|
|
} else {
|
|
ast_rtp_instance_set_local_address(instance, &local);
|
|
}
|
|
}
|
|
|
|
if (rtp->rtcp && !ast_sockaddr_isnull(addr)) {
|
|
ast_debug_rtcp(1, "(%p) RTCP setting address on RTP instance\n", instance);
|
|
ast_sockaddr_copy(&rtp->rtcp->them, addr);
|
|
|
|
if (rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
ast_sockaddr_set_port(&rtp->rtcp->them, ast_sockaddr_port(addr) + 1);
|
|
|
|
/* Update the local RTCP address with what is being used */
|
|
ast_sockaddr_set_port(&local, ast_sockaddr_port(&local) + 1);
|
|
}
|
|
ast_sockaddr_copy(&rtp->rtcp->us, &local);
|
|
|
|
ast_free(rtp->rtcp->local_addr_str);
|
|
rtp->rtcp->local_addr_str = ast_strdup(ast_sockaddr_stringify(&local));
|
|
}
|
|
|
|
/* Update any bundled RTP instances */
|
|
for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
|
|
struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
|
|
|
|
ast_rtp_instance_set_remote_address(mapping->instance, addr);
|
|
}
|
|
|
|
/* Need to reset the DTMF last sequence number and the timestamp of the last END packet */
|
|
rtp->last_seqno = 0;
|
|
rtp->last_end_timestamp.ts = 0;
|
|
rtp->last_end_timestamp.is_set = 0;
|
|
|
|
if (strictrtp && rtp->strict_rtp_state != STRICT_RTP_OPEN
|
|
&& !ast_sockaddr_isnull(addr) && ast_sockaddr_cmp(addr, &rtp->strict_rtp_address)) {
|
|
/* We only need to learn a new strict source address if we've been told the source is
|
|
* changing to something different.
|
|
*/
|
|
ast_verb(4, "%p -- Strict RTP learning after remote address set to: %s\n",
|
|
rtp, ast_sockaddr_stringify(addr));
|
|
rtp_learning_start(rtp);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Write t140 redundancy frame
|
|
*
|
|
* \param data primary data to be buffered
|
|
*
|
|
* Scheduler callback
|
|
*/
|
|
static int red_write(const void *data)
|
|
{
|
|
struct ast_rtp_instance *instance = (struct ast_rtp_instance*) data;
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
ao2_lock(instance);
|
|
if (rtp->red->t140.datalen > 0) {
|
|
ast_rtp_write(instance, &rtp->red->t140);
|
|
}
|
|
ao2_unlock(instance);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
int x;
|
|
|
|
rtp->red = ast_calloc(1, sizeof(*rtp->red));
|
|
if (!rtp->red) {
|
|
return -1;
|
|
}
|
|
|
|
rtp->red->t140.frametype = AST_FRAME_TEXT;
|
|
rtp->red->t140.subclass.format = ast_format_t140_red;
|
|
rtp->red->t140.data.ptr = &rtp->red->buf_data;
|
|
|
|
rtp->red->t140red = rtp->red->t140;
|
|
rtp->red->t140red.data.ptr = &rtp->red->t140red_data;
|
|
|
|
rtp->red->ti = buffer_time;
|
|
rtp->red->num_gen = generations;
|
|
rtp->red->hdrlen = generations * 4 + 1;
|
|
|
|
for (x = 0; x < generations; x++) {
|
|
rtp->red->pt[x] = payloads[x];
|
|
rtp->red->pt[x] |= 1 << 7; /* mark redundant generations pt */
|
|
rtp->red->t140red_data[x*4] = rtp->red->pt[x];
|
|
}
|
|
rtp->red->t140red_data[x*4] = rtp->red->pt[x] = payloads[x]; /* primary pt */
|
|
rtp->red->schedid = ast_sched_add(rtp->sched, generations, red_write, instance);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct rtp_red *red = rtp->red;
|
|
|
|
if (!red) {
|
|
return 0;
|
|
}
|
|
|
|
if (frame->datalen > 0) {
|
|
if (red->t140.datalen > 0) {
|
|
const unsigned char *primary = red->buf_data;
|
|
|
|
/* There is something already in the T.140 buffer */
|
|
if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
|
|
/* Flush the previous T.140 packet if it is a command */
|
|
ast_rtp_write(instance, &rtp->red->t140);
|
|
} else {
|
|
primary = frame->data.ptr;
|
|
if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
|
|
/* Flush the previous T.140 packet if we are buffering a command now */
|
|
ast_rtp_write(instance, &rtp->red->t140);
|
|
}
|
|
}
|
|
}
|
|
|
|
memcpy(&red->buf_data[red->t140.datalen], frame->data.ptr, frame->datalen);
|
|
red->t140.datalen += frame->datalen;
|
|
red->t140.ts = frame->ts;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre Neither instance0 nor instance1 are locked */
|
|
static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance0);
|
|
|
|
ao2_lock(instance0);
|
|
ast_set_flag(rtp, FLAG_NEED_MARKER_BIT | FLAG_REQ_LOCAL_BRIDGE_BIT);
|
|
if (rtp->smoother) {
|
|
ast_smoother_free(rtp->smoother);
|
|
rtp->smoother = NULL;
|
|
}
|
|
|
|
/* We must use a new SSRC when local bridge ends */
|
|
if (!instance1) {
|
|
rtp->ssrc = rtp->ssrc_orig;
|
|
rtp->ssrc_orig = 0;
|
|
rtp->ssrc_saved = 0;
|
|
} else if (!rtp->ssrc_saved) {
|
|
/* In case ast_rtp_local_bridge is called multiple times, only save the ssrc from before local bridge began */
|
|
rtp->ssrc_orig = rtp->ssrc;
|
|
rtp->ssrc_saved = 1;
|
|
}
|
|
|
|
ao2_unlock(instance0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (!rtp->rtcp) {
|
|
return -1;
|
|
}
|
|
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_TXCOUNT, -1, stats->txcount, rtp->txcount);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_RXCOUNT, -1, stats->rxcount, rtp->rxcount);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_TXOCTETCOUNT, -1, stats->txoctetcount, rtp->txoctetcount);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_RXOCTETCOUNT, -1, stats->rxoctetcount, rtp->rxoctetcount);
|
|
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_TXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->txploss, rtp->rtcp->reported_lost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_RXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->rxploss, rtp->rtcp->expected_prior - rtp->rtcp->received_prior);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_MAXRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->remote_maxrxploss, rtp->rtcp->reported_maxlost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_MINRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->remote_minrxploss, rtp->rtcp->reported_minlost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->remote_normdevrxploss, rtp->rtcp->reported_normdev_lost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_STDEVRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->remote_stdevrxploss, rtp->rtcp->reported_stdev_lost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_MAXRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->local_maxrxploss, rtp->rtcp->maxrxlost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_MINRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->local_minrxploss, rtp->rtcp->minrxlost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->local_normdevrxploss, rtp->rtcp->normdev_rxlost);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_STDEVRXPLOSS, AST_RTP_INSTANCE_STAT_COMBINED_LOSS, stats->local_stdevrxploss, rtp->rtcp->stdev_rxlost);
|
|
AST_RTP_STAT_TERMINATOR(AST_RTP_INSTANCE_STAT_COMBINED_LOSS);
|
|
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_TXJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->txjitter, rtp->rxjitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_RXJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->rxjitter, rtp->rtcp->reported_jitter / (unsigned int) 65536.0);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_MAXJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->remote_maxjitter, rtp->rtcp->reported_maxjitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_MINJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->remote_minjitter, rtp->rtcp->reported_minjitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->remote_normdevjitter, rtp->rtcp->reported_normdev_jitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_STDEVJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->remote_stdevjitter, rtp->rtcp->reported_stdev_jitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_MAXJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->local_maxjitter, rtp->rtcp->maxrxjitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_MINJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->local_minjitter, rtp->rtcp->minrxjitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->local_normdevjitter, rtp->rtcp->normdev_rxjitter);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_STDEVJITTER, AST_RTP_INSTANCE_STAT_COMBINED_JITTER, stats->local_stdevjitter, rtp->rtcp->stdev_rxjitter);
|
|
AST_RTP_STAT_TERMINATOR(AST_RTP_INSTANCE_STAT_COMBINED_JITTER);
|
|
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_RTT, AST_RTP_INSTANCE_STAT_COMBINED_RTT, stats->rtt, rtp->rtcp->rtt);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_MAX_RTT, AST_RTP_INSTANCE_STAT_COMBINED_RTT, stats->maxrtt, rtp->rtcp->maxrtt);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_MIN_RTT, AST_RTP_INSTANCE_STAT_COMBINED_RTT, stats->minrtt, rtp->rtcp->minrtt);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_NORMDEVRTT, AST_RTP_INSTANCE_STAT_COMBINED_RTT, stats->normdevrtt, rtp->rtcp->normdevrtt);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_STDEVRTT, AST_RTP_INSTANCE_STAT_COMBINED_RTT, stats->stdevrtt, rtp->rtcp->stdevrtt);
|
|
AST_RTP_STAT_TERMINATOR(AST_RTP_INSTANCE_STAT_COMBINED_RTT);
|
|
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_LOCAL_SSRC, -1, stats->local_ssrc, rtp->ssrc);
|
|
AST_RTP_STAT_SET(AST_RTP_INSTANCE_STAT_REMOTE_SSRC, -1, stats->remote_ssrc, rtp->themssrc);
|
|
AST_RTP_STAT_STRCPY(AST_RTP_INSTANCE_STAT_CHANNEL_UNIQUEID, -1, stats->channel_uniqueid, ast_rtp_instance_get_channel_id(instance));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*! \pre Neither instance0 nor instance1 are locked */
|
|
static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
|
|
{
|
|
/* If both sides are not using the same method of DTMF transmission
|
|
* (ie: one is RFC2833, other is INFO... then we can not do direct media.
|
|
* --------------------------------------------------
|
|
* | DTMF Mode | HAS_DTMF | Accepts Begin Frames |
|
|
* |-----------|------------|-----------------------|
|
|
* | Inband | False | True |
|
|
* | RFC2833 | True | True |
|
|
* | SIP INFO | False | False |
|
|
* --------------------------------------------------
|
|
*/
|
|
return (((ast_rtp_instance_get_prop(instance0, AST_RTP_PROPERTY_DTMF) != ast_rtp_instance_get_prop(instance1, AST_RTP_PROPERTY_DTMF)) ||
|
|
(!ast_channel_tech(chan0)->send_digit_begin != !ast_channel_tech(chan1)->send_digit_begin)) ? 0 : 1);
|
|
}
|
|
|
|
/*! \pre instance is NOT locked */
|
|
static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct sockaddr_in suggestion_tmp;
|
|
|
|
/*
|
|
* The instance should not be locked because we can block
|
|
* waiting for a STUN respone.
|
|
*/
|
|
ast_sockaddr_to_sin(suggestion, &suggestion_tmp);
|
|
ast_stun_request(rtp->s, &suggestion_tmp, username, NULL);
|
|
ast_sockaddr_from_sin(suggestion, &suggestion_tmp);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_stop(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr addr = { {0,} };
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
ao2_unlock(instance);
|
|
AST_SCHED_DEL_UNREF(rtp->sched, rtp->rekeyid, ao2_ref(instance, -1));
|
|
|
|
dtls_srtp_stop_timeout_timer(instance, rtp, 0);
|
|
if (rtp->rtcp) {
|
|
dtls_srtp_stop_timeout_timer(instance, rtp, 1);
|
|
}
|
|
ao2_lock(instance);
|
|
#endif
|
|
|
|
if (rtp->rtcp && rtp->rtcp->schedid > -1) {
|
|
ao2_unlock(instance);
|
|
if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
|
|
/* successfully cancelled scheduler entry. */
|
|
ao2_ref(instance, -1);
|
|
}
|
|
ao2_lock(instance);
|
|
rtp->rtcp->schedid = -1;
|
|
}
|
|
|
|
if (rtp->transport_wide_cc.schedid > -1) {
|
|
ao2_unlock(instance);
|
|
if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
|
|
ao2_ref(instance, -1);
|
|
}
|
|
ao2_lock(instance);
|
|
rtp->transport_wide_cc.schedid = -1;
|
|
}
|
|
|
|
if (rtp->red) {
|
|
ao2_unlock(instance);
|
|
AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
|
|
ao2_lock(instance);
|
|
ast_free(rtp->red);
|
|
rtp->red = NULL;
|
|
}
|
|
|
|
ast_rtp_instance_set_remote_address(instance, &addr);
|
|
|
|
ast_set_flag(rtp, FLAG_NEED_MARKER_BIT);
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return ast_set_qos(rtp->s, tos, cos, desc);
|
|
}
|
|
|
|
/*!
|
|
* \brief generate comfort noice (CNG)
|
|
*
|
|
* \pre instance is locked
|
|
*/
|
|
static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
|
|
{
|
|
unsigned int *rtpheader;
|
|
int hdrlen = 12;
|
|
int res, payload = 0;
|
|
char data[256];
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
struct ast_sockaddr remote_address = { {0,} };
|
|
int ice;
|
|
|
|
ast_rtp_instance_get_remote_address(instance, &remote_address);
|
|
|
|
if (ast_sockaddr_isnull(&remote_address)) {
|
|
return -1;
|
|
}
|
|
|
|
payload = ast_rtp_codecs_payload_code_tx(ast_rtp_instance_get_codecs(instance), 0, NULL, AST_RTP_CN);
|
|
|
|
level = 127 - (level & 0x7f);
|
|
|
|
rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
|
|
|
|
/* Get a pointer to the header */
|
|
rtpheader = (unsigned int *)data;
|
|
rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
|
|
rtpheader[1] = htonl(rtp->lastts);
|
|
rtpheader[2] = htonl(rtp->ssrc);
|
|
data[12] = level;
|
|
|
|
res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 1, 0, &remote_address, &ice);
|
|
|
|
if (res < 0) {
|
|
ast_log(LOG_ERROR, "RTP Comfort Noise Transmission error to %s: %s\n", ast_sockaddr_stringify(&remote_address), strerror(errno));
|
|
return res;
|
|
}
|
|
|
|
if (rtp_debug_test_addr(&remote_address)) {
|
|
ast_verbose("Sent Comfort Noise RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
|
|
ast_sockaddr_stringify(&remote_address),
|
|
ice ? " (via ICE)" : "",
|
|
AST_RTP_CN, rtp->seqno, rtp->lastdigitts, res - hdrlen);
|
|
}
|
|
|
|
rtp->seqno++;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->ssrc;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
return rtp->cname;
|
|
}
|
|
|
|
/*! \pre instance is locked */
|
|
static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
|
|
return;
|
|
}
|
|
|
|
rtp->themssrc = ssrc;
|
|
rtp->themssrc_valid = 1;
|
|
|
|
/* If this is bundled we need to update the SSRC mapping */
|
|
if (rtp->bundled) {
|
|
struct ast_rtp *bundled_rtp;
|
|
int index;
|
|
|
|
ao2_unlock(instance);
|
|
|
|
/* The child lock can't be held while accessing the parent */
|
|
ao2_lock(rtp->bundled);
|
|
bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
|
|
|
|
for (index = 0; index < AST_VECTOR_SIZE(&bundled_rtp->ssrc_mapping); ++index) {
|
|
struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&bundled_rtp->ssrc_mapping, index);
|
|
|
|
if (mapping->instance == instance) {
|
|
mapping->ssrc = ssrc;
|
|
mapping->ssrc_valid = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ao2_unlock(rtp->bundled);
|
|
|
|
ao2_lock(instance);
|
|
}
|
|
}
|
|
|
|
static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
rtp->stream_num = stream_num;
|
|
}
|
|
|
|
static int ast_rtp_extension_enable(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
|
|
{
|
|
switch (extension) {
|
|
case AST_RTP_EXTENSION_ABS_SEND_TIME:
|
|
case AST_RTP_EXTENSION_TRANSPORT_WIDE_CC:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*! \pre child is locked */
|
|
static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
|
|
{
|
|
struct ast_rtp *child_rtp = ast_rtp_instance_get_data(child);
|
|
struct ast_rtp *parent_rtp;
|
|
struct rtp_ssrc_mapping mapping;
|
|
struct ast_sockaddr them = { { 0, } };
|
|
|
|
if (child_rtp->bundled == parent) {
|
|
return 0;
|
|
}
|
|
|
|
/* If this instance was already bundled then remove the SSRC mapping */
|
|
if (child_rtp->bundled) {
|
|
struct ast_rtp *bundled_rtp;
|
|
|
|
ao2_unlock(child);
|
|
|
|
/* The child lock can't be held while accessing the parent */
|
|
ao2_lock(child_rtp->bundled);
|
|
bundled_rtp = ast_rtp_instance_get_data(child_rtp->bundled);
|
|
AST_VECTOR_REMOVE_CMP_UNORDERED(&bundled_rtp->ssrc_mapping, child, SSRC_MAPPING_ELEM_CMP, AST_VECTOR_ELEM_CLEANUP_NOOP);
|
|
ao2_unlock(child_rtp->bundled);
|
|
|
|
ao2_lock(child);
|
|
ao2_ref(child_rtp->bundled, -1);
|
|
child_rtp->bundled = NULL;
|
|
}
|
|
|
|
if (!parent) {
|
|
/* We transitioned away from bundle so we need our own transport resources once again */
|
|
rtp_allocate_transport(child, child_rtp);
|
|
return 0;
|
|
}
|
|
|
|
parent_rtp = ast_rtp_instance_get_data(parent);
|
|
|
|
/* We no longer need any transport related resources as we will use our parent RTP instance instead */
|
|
rtp_deallocate_transport(child, child_rtp);
|
|
|
|
/* Children maintain a reference to the parent to guarantee that the transport doesn't go away on them */
|
|
child_rtp->bundled = ao2_bump(parent);
|
|
|
|
mapping.ssrc = child_rtp->themssrc;
|
|
mapping.ssrc_valid = child_rtp->themssrc_valid;
|
|
mapping.instance = child;
|
|
|
|
ao2_unlock(child);
|
|
|
|
ao2_lock(parent);
|
|
|
|
AST_VECTOR_APPEND(&parent_rtp->ssrc_mapping, mapping);
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
/* If DTLS-SRTP is already in use then add the local SSRC to it, otherwise it will get added once DTLS
|
|
* negotiation has been completed.
|
|
*/
|
|
if (parent_rtp->dtls.connection == AST_RTP_DTLS_CONNECTION_EXISTING) {
|
|
dtls_srtp_add_local_ssrc(parent_rtp, parent, 0, child_rtp->ssrc, 0);
|
|
}
|
|
#endif
|
|
|
|
/* Bundle requires that RTCP-MUX be in use so only the main remote address needs to match */
|
|
ast_rtp_instance_get_remote_address(parent, &them);
|
|
|
|
ao2_unlock(parent);
|
|
|
|
ao2_lock(child);
|
|
|
|
ast_rtp_instance_set_remote_address(child, &them);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
static void stunaddr_resolve_callback(const struct ast_dns_query *query)
|
|
{
|
|
const int lowest_ttl = ast_dns_result_get_lowest_ttl(ast_dns_query_get_result(query));
|
|
const char *stunaddr_name = ast_dns_query_get_name(query);
|
|
const char *stunaddr_resolved_str;
|
|
|
|
if (!store_stunaddr_resolved(query)) {
|
|
ast_log(LOG_WARNING, "Failed to resolve stunaddr '%s'. Cancelling recurring resolution.\n", stunaddr_name);
|
|
return;
|
|
}
|
|
|
|
if (DEBUG_ATLEAST(2)) {
|
|
ast_rwlock_rdlock(&stunaddr_lock);
|
|
stunaddr_resolved_str = ast_inet_ntoa(stunaddr.sin_addr);
|
|
ast_rwlock_unlock(&stunaddr_lock);
|
|
|
|
ast_debug_stun(2, "Resolved stunaddr '%s' to '%s'. Lowest TTL = %d.\n",
|
|
stunaddr_name,
|
|
stunaddr_resolved_str,
|
|
lowest_ttl);
|
|
}
|
|
|
|
if (!lowest_ttl) {
|
|
ast_log(LOG_WARNING, "Resolution for stunaddr '%s' returned TTL = 0. Recurring resolution was cancelled.\n", ast_dns_query_get_name(query));
|
|
}
|
|
}
|
|
|
|
static int store_stunaddr_resolved(const struct ast_dns_query *query)
|
|
{
|
|
const struct ast_dns_result *result = ast_dns_query_get_result(query);
|
|
const struct ast_dns_record *record;
|
|
|
|
for (record = ast_dns_result_get_records(result); record; record = ast_dns_record_get_next(record)) {
|
|
const size_t data_size = ast_dns_record_get_data_size(record);
|
|
const unsigned char *data = (unsigned char *)ast_dns_record_get_data(record);
|
|
const int rr_type = ast_dns_record_get_rr_type(record);
|
|
|
|
if (rr_type == ns_t_a && data_size == 4) {
|
|
ast_rwlock_wrlock(&stunaddr_lock);
|
|
memcpy(&stunaddr.sin_addr, data, data_size);
|
|
stunaddr.sin_family = AF_INET;
|
|
ast_rwlock_unlock(&stunaddr_lock);
|
|
|
|
return 1;
|
|
} else {
|
|
ast_debug_stun(3, "Unrecognized rr_type '%u' or data_size '%zu' from DNS query for stunaddr '%s'\n",
|
|
rr_type, data_size, ast_dns_query_get_name(query));
|
|
continue;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void clean_stunaddr(void) {
|
|
if (stunaddr_resolver) {
|
|
if (ast_dns_resolve_recurring_cancel(stunaddr_resolver)) {
|
|
ast_log(LOG_ERROR, "Failed to cancel recurring DNS resolution of previous stunaddr.\n");
|
|
}
|
|
ao2_ref(stunaddr_resolver, -1);
|
|
stunaddr_resolver = NULL;
|
|
}
|
|
ast_rwlock_wrlock(&stunaddr_lock);
|
|
memset(&stunaddr, 0, sizeof(stunaddr));
|
|
ast_rwlock_unlock(&stunaddr_lock);
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
/*! \pre instance is locked */
|
|
static int ast_rtp_activate(struct ast_rtp_instance *instance)
|
|
{
|
|
struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
|
|
|
|
/* If ICE negotiation is enabled the DTLS Handshake will be performed upon completion of it */
|
|
#ifdef HAVE_PJPROJECT
|
|
if (rtp->ice) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
ast_debug_dtls(3, "(%p) DTLS - ast_rtp_activate rtp=%p - setup and perform DTLS'\n", instance, rtp);
|
|
|
|
dtls_perform_setup(&rtp->dtls);
|
|
dtls_perform_handshake(instance, &rtp->dtls, 0);
|
|
|
|
if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
|
|
dtls_perform_setup(&rtp->rtcp->dtls);
|
|
dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static char *rtp_do_debug_ip(struct ast_cli_args *a)
|
|
{
|
|
char *arg = ast_strdupa(a->argv[4]);
|
|
char *debughost = NULL;
|
|
char *debugport = NULL;
|
|
|
|
if (!ast_sockaddr_parse(&rtpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
|
|
ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
|
|
return CLI_FAILURE;
|
|
}
|
|
rtpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
|
|
ast_cli(a->fd, "RTP Packet Debugging Enabled for address: %s\n",
|
|
ast_sockaddr_stringify(&rtpdebugaddr));
|
|
ast_debug_category_set_sublevel(AST_LOG_CATEGORY_RTP_PACKET, AST_LOG_CATEGORY_ENABLED);
|
|
return CLI_SUCCESS;
|
|
}
|
|
|
|
static char *rtcp_do_debug_ip(struct ast_cli_args *a)
|
|
{
|
|
char *arg = ast_strdupa(a->argv[4]);
|
|
char *debughost = NULL;
|
|
char *debugport = NULL;
|
|
|
|
if (!ast_sockaddr_parse(&rtcpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
|
|
ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
|
|
return CLI_FAILURE;
|
|
}
|
|
rtcpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
|
|
ast_cli(a->fd, "RTCP Packet Debugging Enabled for address: %s\n",
|
|
ast_sockaddr_stringify(&rtcpdebugaddr));
|
|
ast_debug_category_set_sublevel(AST_LOG_CATEGORY_RTCP_PACKET, AST_LOG_CATEGORY_ENABLED);
|
|
return CLI_SUCCESS;
|
|
}
|
|
|
|
static char *handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
|
|
{
|
|
switch (cmd) {
|
|
case CLI_INIT:
|
|
e->command = "rtp set debug {on|off|ip}";
|
|
e->usage =
|
|
"Usage: rtp set debug {on|off|ip host[:port]}\n"
|
|
" Enable/Disable dumping of all RTP packets. If 'ip' is\n"
|
|
" specified, limit the dumped packets to those to and from\n"
|
|
" the specified 'host' with optional port.\n";
|
|
return NULL;
|
|
case CLI_GENERATE:
|
|
return NULL;
|
|
}
|
|
|
|
if (a->argc == e->args) { /* set on or off */
|
|
if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
|
|
ast_debug_category_set_sublevel(AST_LOG_CATEGORY_RTP_PACKET, AST_LOG_CATEGORY_ENABLED);
|
|
memset(&rtpdebugaddr, 0, sizeof(rtpdebugaddr));
|
|
ast_cli(a->fd, "RTP Packet Debugging Enabled\n");
|
|
return CLI_SUCCESS;
|
|
} else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
|
|
ast_debug_category_set_sublevel(AST_LOG_CATEGORY_RTP_PACKET, AST_LOG_CATEGORY_DISABLED);
|
|
ast_cli(a->fd, "RTP Packet Debugging Disabled\n");
|
|
return CLI_SUCCESS;
|
|
}
|
|
} else if (a->argc == e->args +1) { /* ip */
|
|
return rtp_do_debug_ip(a);
|
|
}
|
|
|
|
return CLI_SHOWUSAGE; /* default, failure */
|
|
}
|
|
|
|
|
|
static char *handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
|
|
{
|
|
#ifdef HAVE_PJPROJECT
|
|
struct sockaddr_in stunaddr_copy;
|
|
#endif
|
|
switch (cmd) {
|
|
case CLI_INIT:
|
|
e->command = "rtp show settings";
|
|
e->usage =
|
|
"Usage: rtp show settings\n"
|
|
" Display RTP configuration settings\n";
|
|
return NULL;
|
|
case CLI_GENERATE:
|
|
return NULL;
|
|
}
|
|
|
|
if (a->argc != 3) {
|
|
return CLI_SHOWUSAGE;
|
|
}
|
|
|
|
ast_cli(a->fd, "\n\nGeneral Settings:\n");
|
|
ast_cli(a->fd, "----------------\n");
|
|
ast_cli(a->fd, " Port start: %d\n", rtpstart);
|
|
ast_cli(a->fd, " Port end: %d\n", rtpend);
|
|
#ifdef SO_NO_CHECK
|
|
ast_cli(a->fd, " Checksums: %s\n", AST_CLI_YESNO(nochecksums == 0));
|
|
#endif
|
|
ast_cli(a->fd, " DTMF Timeout: %d\n", dtmftimeout);
|
|
ast_cli(a->fd, " Strict RTP: %s\n", AST_CLI_YESNO(strictrtp));
|
|
|
|
if (strictrtp) {
|
|
ast_cli(a->fd, " Probation: %d frames\n", learning_min_sequential);
|
|
}
|
|
|
|
ast_cli(a->fd, " Replay Protect: %s\n", AST_CLI_YESNO(srtp_replay_protection));
|
|
#ifdef HAVE_PJPROJECT
|
|
ast_cli(a->fd, " ICE support: %s\n", AST_CLI_YESNO(icesupport));
|
|
|
|
ast_rwlock_rdlock(&stunaddr_lock);
|
|
memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
|
|
ast_rwlock_unlock(&stunaddr_lock);
|
|
ast_cli(a->fd, " STUN address: %s:%d\n", ast_inet_ntoa(stunaddr_copy.sin_addr), htons(stunaddr_copy.sin_port));
|
|
#endif
|
|
return CLI_SUCCESS;
|
|
}
|
|
|
|
|
|
static char *handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
|
|
{
|
|
switch (cmd) {
|
|
case CLI_INIT:
|
|
e->command = "rtcp set debug {on|off|ip}";
|
|
e->usage =
|
|
"Usage: rtcp set debug {on|off|ip host[:port]}\n"
|
|
" Enable/Disable dumping of all RTCP packets. If 'ip' is\n"
|
|
" specified, limit the dumped packets to those to and from\n"
|
|
" the specified 'host' with optional port.\n";
|
|
return NULL;
|
|
case CLI_GENERATE:
|
|
return NULL;
|
|
}
|
|
|
|
if (a->argc == e->args) { /* set on or off */
|
|
if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
|
|
ast_debug_category_set_sublevel(AST_LOG_CATEGORY_RTCP_PACKET, AST_LOG_CATEGORY_ENABLED);
|
|
memset(&rtcpdebugaddr, 0, sizeof(rtcpdebugaddr));
|
|
ast_cli(a->fd, "RTCP Packet Debugging Enabled\n");
|
|
return CLI_SUCCESS;
|
|
} else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
|
|
ast_debug_category_set_sublevel(AST_LOG_CATEGORY_RTCP_PACKET, AST_LOG_CATEGORY_DISABLED);
|
|
ast_cli(a->fd, "RTCP Packet Debugging Disabled\n");
|
|
return CLI_SUCCESS;
|
|
}
|
|
} else if (a->argc == e->args +1) { /* ip */
|
|
return rtcp_do_debug_ip(a);
|
|
}
|
|
|
|
return CLI_SHOWUSAGE; /* default, failure */
|
|
}
|
|
|
|
static char *handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
|
|
{
|
|
switch (cmd) {
|
|
case CLI_INIT:
|
|
e->command = "rtcp set stats {on|off}";
|
|
e->usage =
|
|
"Usage: rtcp set stats {on|off}\n"
|
|
" Enable/Disable dumping of RTCP stats.\n";
|
|
return NULL;
|
|
case CLI_GENERATE:
|
|
return NULL;
|
|
}
|
|
|
|
if (a->argc != e->args)
|
|
return CLI_SHOWUSAGE;
|
|
|
|
if (!strncasecmp(a->argv[e->args-1], "on", 2))
|
|
rtcpstats = 1;
|
|
else if (!strncasecmp(a->argv[e->args-1], "off", 3))
|
|
rtcpstats = 0;
|
|
else
|
|
return CLI_SHOWUSAGE;
|
|
|
|
ast_cli(a->fd, "RTCP Stats %s\n", rtcpstats ? "Enabled" : "Disabled");
|
|
return CLI_SUCCESS;
|
|
}
|
|
|
|
#ifdef AST_DEVMODE
|
|
|
|
static unsigned int use_random(struct ast_cli_args *a, int pos, unsigned int index)
|
|
{
|
|
return pos >= index && !ast_strlen_zero(a->argv[index - 1]) &&
|
|
!strcasecmp(a->argv[index - 1], "random");
|
|
}
|
|
|
|
static char *handle_cli_rtp_drop_incoming_packets(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
|
|
{
|
|
static const char * const completions_2[] = { "stop", "<N>", NULL };
|
|
static const char * const completions_3[] = { "random", "incoming packets", NULL };
|
|
static const char * const completions_5[] = { "on", "every", NULL };
|
|
static const char * const completions_units[] = { "random", "usec", "msec", "sec", "min", NULL };
|
|
|
|
unsigned int use_random_num = 0;
|
|
unsigned int use_random_interval = 0;
|
|
unsigned int num_to_drop = 0;
|
|
unsigned int interval = 0;
|
|
const char *interval_s = NULL;
|
|
const char *unit_s = NULL;
|
|
struct ast_sockaddr addr;
|
|
const char *addr_s = NULL;
|
|
|
|
switch (cmd) {
|
|
case CLI_INIT:
|
|
e->command = "rtp drop";
|
|
e->usage =
|
|
"Usage: rtp drop [stop|[<N> [random] incoming packets[ every <N> [random] {usec|msec|sec|min}][ on <ip[:port]>]]\n"
|
|
" Drop RTP incoming packets.\n";
|
|
return NULL;
|
|
case CLI_GENERATE:
|
|
use_random_num = use_random(a, a->pos, 4);
|
|
use_random_interval = use_random(a, a->pos, 8 + use_random_num) ||
|
|
use_random(a, a->pos, 10 + use_random_num);
|
|
|
|
switch (a->pos - use_random_num - use_random_interval) {
|
|
case 2:
|
|
return ast_cli_complete(a->word, completions_2, a->n);
|
|
case 3:
|
|
return ast_cli_complete(a->word, completions_3 + use_random_num, a->n);
|
|
case 5:
|
|
return ast_cli_complete(a->word, completions_5, a->n);
|
|
case 7:
|
|
if (!strcasecmp(a->argv[a->pos - 2], "on")) {
|
|
ast_cli_completion_add(ast_strdup("every"));
|
|
break;
|
|
}
|
|
/* Fall through */
|
|
case 9:
|
|
if (!strcasecmp(a->argv[a->pos - 2 - use_random_interval], "every")) {
|
|
return ast_cli_complete(a->word, completions_units + use_random_interval, a->n);
|
|
}
|
|
break;
|
|
case 8:
|
|
if (!strcasecmp(a->argv[a->pos - 3 - use_random_interval], "every")) {
|
|
ast_cli_completion_add(ast_strdup("on"));
|
|
}
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
if (a->argc < 3) {
|
|
return CLI_SHOWUSAGE;
|
|
}
|
|
|
|
use_random_num = use_random(a, a->argc, 4);
|
|
use_random_interval = use_random(a, a->argc, 8 + use_random_num) ||
|
|
use_random(a, a->argc, 10 + use_random_num);
|
|
|
|
if (!strcasecmp(a->argv[2], "stop")) {
|
|
/* rtp drop stop */
|
|
} else if (a->argc < 5) {
|
|
return CLI_SHOWUSAGE;
|
|
} else if (ast_str_to_uint(a->argv[2], &num_to_drop)) {
|
|
ast_cli(a->fd, "%s is not a valid number of packets to drop\n", a->argv[2]);
|
|
return CLI_FAILURE;
|
|
} else if (a->argc - use_random_num == 5) {
|
|
/* rtp drop <N> [random] incoming packets */
|
|
} else if (a->argc - use_random_num >= 7 && !strcasecmp(a->argv[5 + use_random_num], "on")) {
|
|
/* rtp drop <N> [random] incoming packets on <ip[:port]> */
|
|
addr_s = a->argv[6 + use_random_num];
|
|
if (a->argc - use_random_num - use_random_interval == 10 &&
|
|
!strcasecmp(a->argv[7 + use_random_num], "every")) {
|
|
/* rtp drop <N> [random] incoming packets on <ip[:port]> every <N> [random] {usec|msec|sec|min} */
|
|
interval_s = a->argv[8 + use_random_num];
|
|
unit_s = a->argv[9 + use_random_num + use_random_interval];
|
|
}
|
|
} else if (a->argc - use_random_num >= 8 && !strcasecmp(a->argv[5 + use_random_num], "every")) {
|
|
/* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} */
|
|
interval_s = a->argv[6 + use_random_num];
|
|
unit_s = a->argv[7 + use_random_num + use_random_interval];
|
|
if (a->argc == 10 + use_random_num + use_random_interval &&
|
|
!strcasecmp(a->argv[8 + use_random_num + use_random_interval], "on")) {
|
|
/* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} on <ip[:port]> */
|
|
addr_s = a->argv[9 + use_random_num + use_random_interval];
|
|
}
|
|
} else {
|
|
return CLI_SHOWUSAGE;
|
|
}
|
|
|
|
if (a->argc - use_random_num >= 8 && !interval_s && !addr_s) {
|
|
return CLI_SHOWUSAGE;
|
|
}
|
|
|
|
if (interval_s && ast_str_to_uint(interval_s, &interval)) {
|
|
ast_cli(a->fd, "%s is not a valid interval number\n", interval_s);
|
|
return CLI_FAILURE;
|
|
}
|
|
|
|
memset(&addr, 0, sizeof(addr));
|
|
if (addr_s && !ast_sockaddr_parse(&addr, addr_s, 0)) {
|
|
ast_cli(a->fd, "%s is not a valid hostname[:port]\n", addr_s);
|
|
return CLI_FAILURE;
|
|
}
|
|
|
|
drop_packets_data.use_random_num = use_random_num;
|
|
drop_packets_data.use_random_interval = use_random_interval;
|
|
drop_packets_data.num_to_drop = num_to_drop;
|
|
drop_packets_data.interval = ast_time_create_by_unit_str(interval, unit_s);
|
|
ast_sockaddr_copy(&drop_packets_data.addr, &addr);
|
|
drop_packets_data.port = ast_sockaddr_port(&addr);
|
|
|
|
drop_packets_data_update(ast_tvnow());
|
|
|
|
return CLI_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
static struct ast_cli_entry cli_rtp[] = {
|
|
AST_CLI_DEFINE(handle_cli_rtp_set_debug, "Enable/Disable RTP debugging"),
|
|
AST_CLI_DEFINE(handle_cli_rtp_settings, "Display RTP settings"),
|
|
AST_CLI_DEFINE(handle_cli_rtcp_set_debug, "Enable/Disable RTCP debugging"),
|
|
AST_CLI_DEFINE(handle_cli_rtcp_set_stats, "Enable/Disable RTCP stats"),
|
|
#ifdef AST_DEVMODE
|
|
AST_CLI_DEFINE(handle_cli_rtp_drop_incoming_packets, "Drop RTP incoming packets"),
|
|
#endif
|
|
};
|
|
|
|
static int rtp_reload(int reload, int by_external_config)
|
|
{
|
|
struct ast_config *cfg;
|
|
const char *s;
|
|
struct ast_flags config_flags = { (reload && !by_external_config) ? CONFIG_FLAG_FILEUNCHANGED : 0 };
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
struct ast_variable *var;
|
|
struct ast_ice_host_candidate *candidate;
|
|
int acl_subscription_flag = 0;
|
|
#endif
|
|
|
|
cfg = ast_config_load2("rtp.conf", "rtp", config_flags);
|
|
if (!cfg || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SO_NO_CHECK
|
|
nochecksums = 0;
|
|
#endif
|
|
|
|
rtpstart = DEFAULT_RTP_START;
|
|
rtpend = DEFAULT_RTP_END;
|
|
rtcpinterval = RTCP_DEFAULT_INTERVALMS;
|
|
dtmftimeout = DEFAULT_DTMF_TIMEOUT;
|
|
strictrtp = DEFAULT_STRICT_RTP;
|
|
learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL;
|
|
learning_min_duration = DEFAULT_LEARNING_MIN_DURATION;
|
|
srtp_replay_protection = DEFAULT_SRTP_REPLAY_PROTECTION;
|
|
|
|
/** This resource is not "reloaded" so much as unloaded and loaded again.
|
|
* In the case of the TURN related variables, the memory referenced by a
|
|
* previously loaded instance *should* have been released when the
|
|
* corresponding pool was destroyed. If at some point in the future this
|
|
* resource were to support ACTUAL live reconfiguration and did NOT release
|
|
* the pool this will cause a small memory leak.
|
|
*/
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
icesupport = DEFAULT_ICESUPPORT;
|
|
stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
|
|
turnport = DEFAULT_TURN_PORT;
|
|
clean_stunaddr();
|
|
turnaddr = pj_str(NULL);
|
|
turnusername = pj_str(NULL);
|
|
turnpassword = pj_str(NULL);
|
|
host_candidate_overrides_clear();
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
dtls_mtu = DEFAULT_DTLS_MTU;
|
|
#endif
|
|
|
|
if ((s = ast_variable_retrieve(cfg, "general", "rtpstart"))) {
|
|
rtpstart = atoi(s);
|
|
if (rtpstart < MINIMUM_RTP_PORT)
|
|
rtpstart = MINIMUM_RTP_PORT;
|
|
if (rtpstart > MAXIMUM_RTP_PORT)
|
|
rtpstart = MAXIMUM_RTP_PORT;
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "rtpend"))) {
|
|
rtpend = atoi(s);
|
|
if (rtpend < MINIMUM_RTP_PORT)
|
|
rtpend = MINIMUM_RTP_PORT;
|
|
if (rtpend > MAXIMUM_RTP_PORT)
|
|
rtpend = MAXIMUM_RTP_PORT;
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "rtcpinterval"))) {
|
|
rtcpinterval = atoi(s);
|
|
if (rtcpinterval == 0)
|
|
rtcpinterval = 0; /* Just so we're clear... it's zero */
|
|
if (rtcpinterval < RTCP_MIN_INTERVALMS)
|
|
rtcpinterval = RTCP_MIN_INTERVALMS; /* This catches negative numbers too */
|
|
if (rtcpinterval > RTCP_MAX_INTERVALMS)
|
|
rtcpinterval = RTCP_MAX_INTERVALMS;
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "rtpchecksums"))) {
|
|
#ifdef SO_NO_CHECK
|
|
nochecksums = ast_false(s) ? 1 : 0;
|
|
#else
|
|
if (ast_false(s))
|
|
ast_log(LOG_WARNING, "Disabling RTP checksums is not supported on this operating system!\n");
|
|
#endif
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "dtmftimeout"))) {
|
|
dtmftimeout = atoi(s);
|
|
if ((dtmftimeout < 0) || (dtmftimeout > 64000)) {
|
|
ast_log(LOG_WARNING, "DTMF timeout of '%d' outside range, using default of '%d' instead\n",
|
|
dtmftimeout, DEFAULT_DTMF_TIMEOUT);
|
|
dtmftimeout = DEFAULT_DTMF_TIMEOUT;
|
|
};
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "strictrtp"))) {
|
|
if (ast_true(s)) {
|
|
strictrtp = STRICT_RTP_YES;
|
|
} else if (!strcasecmp(s, "seqno")) {
|
|
strictrtp = STRICT_RTP_SEQNO;
|
|
} else {
|
|
strictrtp = STRICT_RTP_NO;
|
|
}
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "probation"))) {
|
|
if ((sscanf(s, "%d", &learning_min_sequential) != 1) || learning_min_sequential <= 1) {
|
|
ast_log(LOG_WARNING, "Value for 'probation' could not be read, using default of '%d' instead\n",
|
|
DEFAULT_LEARNING_MIN_SEQUENTIAL);
|
|
learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL;
|
|
}
|
|
learning_min_duration = CALC_LEARNING_MIN_DURATION(learning_min_sequential);
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "srtpreplayprotection"))) {
|
|
srtp_replay_protection = ast_true(s);
|
|
}
|
|
#ifdef HAVE_PJPROJECT
|
|
if ((s = ast_variable_retrieve(cfg, "general", "icesupport"))) {
|
|
icesupport = ast_true(s);
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "stun_software_attribute"))) {
|
|
stun_software_attribute = ast_true(s);
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "stunaddr"))) {
|
|
char *hostport, *host, *port;
|
|
unsigned int port_parsed = STANDARD_STUN_PORT;
|
|
struct ast_sockaddr stunaddr_parsed;
|
|
|
|
hostport = ast_strdupa(s);
|
|
|
|
if (!ast_parse_arg(hostport, PARSE_ADDR, &stunaddr_parsed)) {
|
|
ast_debug_stun(3, "stunaddr = '%s' does not need name resolution\n",
|
|
ast_sockaddr_stringify_host(&stunaddr_parsed));
|
|
if (!ast_sockaddr_port(&stunaddr_parsed)) {
|
|
ast_sockaddr_set_port(&stunaddr_parsed, STANDARD_STUN_PORT);
|
|
}
|
|
ast_rwlock_wrlock(&stunaddr_lock);
|
|
ast_sockaddr_to_sin(&stunaddr_parsed, &stunaddr);
|
|
ast_rwlock_unlock(&stunaddr_lock);
|
|
} else if (ast_sockaddr_split_hostport(hostport, &host, &port, 0)) {
|
|
if (port) {
|
|
ast_parse_arg(port, PARSE_UINT32|PARSE_IN_RANGE, &port_parsed, 1, 65535);
|
|
}
|
|
stunaddr.sin_port = htons(port_parsed);
|
|
|
|
stunaddr_resolver = ast_dns_resolve_recurring(host, T_A, C_IN,
|
|
&stunaddr_resolve_callback, NULL);
|
|
if (!stunaddr_resolver) {
|
|
ast_log(LOG_ERROR, "Failed to setup recurring DNS resolution of stunaddr '%s'",
|
|
host);
|
|
}
|
|
} else {
|
|
ast_log(LOG_ERROR, "Failed to parse stunaddr '%s'", hostport);
|
|
}
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "turnaddr"))) {
|
|
struct sockaddr_in addr;
|
|
addr.sin_port = htons(DEFAULT_TURN_PORT);
|
|
if (ast_parse_arg(s, PARSE_INADDR, &addr)) {
|
|
ast_log(LOG_WARNING, "Invalid TURN server address: %s\n", s);
|
|
} else {
|
|
pj_strdup2_with_null(pool, &turnaddr, ast_inet_ntoa(addr.sin_addr));
|
|
/* ntohs() is not a bug here. The port number is used in host byte order with
|
|
* a pjnat API. */
|
|
turnport = ntohs(addr.sin_port);
|
|
}
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "turnusername"))) {
|
|
pj_strdup2_with_null(pool, &turnusername, s);
|
|
}
|
|
if ((s = ast_variable_retrieve(cfg, "general", "turnpassword"))) {
|
|
pj_strdup2_with_null(pool, &turnpassword, s);
|
|
}
|
|
|
|
AST_RWLIST_WRLOCK(&host_candidates);
|
|
for (var = ast_variable_browse(cfg, "ice_host_candidates"); var; var = var->next) {
|
|
struct ast_sockaddr local_addr, advertised_addr;
|
|
unsigned int include_local_address = 0;
|
|
char *sep;
|
|
|
|
ast_sockaddr_setnull(&local_addr);
|
|
ast_sockaddr_setnull(&advertised_addr);
|
|
|
|
if (ast_parse_arg(var->name, PARSE_ADDR | PARSE_PORT_IGNORE, &local_addr)) {
|
|
ast_log(LOG_WARNING, "Invalid local ICE host address: %s\n", var->name);
|
|
continue;
|
|
}
|
|
|
|
sep = strchr(var->value,',');
|
|
if (sep) {
|
|
*sep = '\0';
|
|
sep++;
|
|
sep = ast_skip_blanks(sep);
|
|
include_local_address = strcmp(sep, "include_local_address") == 0;
|
|
}
|
|
|
|
if (ast_parse_arg(var->value, PARSE_ADDR | PARSE_PORT_IGNORE, &advertised_addr)) {
|
|
ast_log(LOG_WARNING, "Invalid advertised ICE host address: %s\n", var->value);
|
|
continue;
|
|
}
|
|
|
|
if (!(candidate = ast_calloc(1, sizeof(*candidate)))) {
|
|
ast_log(LOG_ERROR, "Failed to allocate ICE host candidate mapping.\n");
|
|
break;
|
|
}
|
|
|
|
candidate->include_local = include_local_address;
|
|
|
|
ast_sockaddr_copy(&candidate->local, &local_addr);
|
|
ast_sockaddr_copy(&candidate->advertised, &advertised_addr);
|
|
|
|
AST_RWLIST_INSERT_TAIL(&host_candidates, candidate, next);
|
|
}
|
|
AST_RWLIST_UNLOCK(&host_candidates);
|
|
|
|
ast_rwlock_wrlock(&ice_acl_lock);
|
|
ast_rwlock_wrlock(&stun_acl_lock);
|
|
|
|
ice_acl = ast_free_acl_list(ice_acl);
|
|
stun_acl = ast_free_acl_list(stun_acl);
|
|
|
|
for (var = ast_variable_browse(cfg, "general"); var; var = var->next) {
|
|
const char* sense = NULL;
|
|
struct ast_acl_list **acl = NULL;
|
|
if (strncasecmp(var->name, "ice_", 4) == 0) {
|
|
sense = var->name + 4;
|
|
acl = &ice_acl;
|
|
} else if (strncasecmp(var->name, "stun_", 5) == 0) {
|
|
sense = var->name + 5;
|
|
acl = &stun_acl;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (strcasecmp(sense, "blacklist") == 0) {
|
|
sense = "deny";
|
|
}
|
|
|
|
if (strcasecmp(sense, "acl") && strcasecmp(sense, "permit") && strcasecmp(sense, "deny")) {
|
|
continue;
|
|
}
|
|
|
|
ast_append_acl(sense, var->value, acl, NULL, &acl_subscription_flag);
|
|
}
|
|
ast_rwlock_unlock(&ice_acl_lock);
|
|
ast_rwlock_unlock(&stun_acl_lock);
|
|
|
|
if (acl_subscription_flag && !acl_change_sub) {
|
|
acl_change_sub = stasis_subscribe(ast_security_topic(), acl_change_stasis_cb, NULL);
|
|
stasis_subscription_accept_message_type(acl_change_sub, ast_named_acl_change_type());
|
|
stasis_subscription_set_filter(acl_change_sub, STASIS_SUBSCRIPTION_FILTER_SELECTIVE);
|
|
} else if (!acl_subscription_flag && acl_change_sub) {
|
|
acl_change_sub = stasis_unsubscribe_and_join(acl_change_sub);
|
|
}
|
|
#endif
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
|
|
if ((s = ast_variable_retrieve(cfg, "general", "dtls_mtu"))) {
|
|
if ((sscanf(s, "%d", &dtls_mtu) != 1) || dtls_mtu < 256) {
|
|
ast_log(LOG_WARNING, "Value for 'dtls_mtu' could not be read, using default of '%d' instead\n",
|
|
DEFAULT_DTLS_MTU);
|
|
dtls_mtu = DEFAULT_DTLS_MTU;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ast_config_destroy(cfg);
|
|
|
|
/* Choosing an odd start port casues issues (like a potential infinite loop) and as odd parts are not
|
|
chosen anyway, we are going to round up and issue a warning */
|
|
if (rtpstart & 1) {
|
|
rtpstart++;
|
|
ast_log(LOG_WARNING, "Odd start value for RTP port in rtp.conf, rounding up to %d\n", rtpstart);
|
|
}
|
|
|
|
if (rtpstart >= rtpend) {
|
|
ast_log(LOG_WARNING, "Unreasonable values for RTP start/end port in rtp.conf\n");
|
|
rtpstart = DEFAULT_RTP_START;
|
|
rtpend = DEFAULT_RTP_END;
|
|
}
|
|
ast_verb(2, "RTP Allocating from port range %d -> %d\n", rtpstart, rtpend);
|
|
return 0;
|
|
}
|
|
|
|
static int reload_module(void)
|
|
{
|
|
rtp_reload(1, 0);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
static void rtp_terminate_pjproject(void)
|
|
{
|
|
pj_thread_register_check();
|
|
|
|
if (timer_thread) {
|
|
timer_terminate = 1;
|
|
pj_thread_join(timer_thread);
|
|
pj_thread_destroy(timer_thread);
|
|
}
|
|
|
|
ast_pjproject_caching_pool_destroy(&cachingpool);
|
|
pj_shutdown();
|
|
}
|
|
|
|
static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
|
|
{
|
|
if (stasis_message_type(message) != ast_named_acl_change_type()) {
|
|
return;
|
|
}
|
|
|
|
/* There is no simple way to just reload the ACLs, so just execute a forced reload. */
|
|
rtp_reload(1, 1);
|
|
}
|
|
#endif
|
|
|
|
static int load_module(void)
|
|
{
|
|
#ifdef HAVE_PJPROJECT
|
|
pj_lock_t *lock;
|
|
|
|
ast_sockaddr_parse(&lo6, "::1", PARSE_PORT_IGNORE);
|
|
|
|
AST_PJPROJECT_INIT_LOG_LEVEL();
|
|
if (pj_init() != PJ_SUCCESS) {
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
if (pjlib_util_init() != PJ_SUCCESS) {
|
|
rtp_terminate_pjproject();
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
if (pjnath_init() != PJ_SUCCESS) {
|
|
rtp_terminate_pjproject();
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
ast_pjproject_caching_pool_init(&cachingpool, &pj_pool_factory_default_policy, 0);
|
|
|
|
pool = pj_pool_create(&cachingpool.factory, "timer", 512, 512, NULL);
|
|
|
|
if (pj_timer_heap_create(pool, 100, &timer_heap) != PJ_SUCCESS) {
|
|
rtp_terminate_pjproject();
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
if (pj_lock_create_recursive_mutex(pool, "rtp%p", &lock) != PJ_SUCCESS) {
|
|
rtp_terminate_pjproject();
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
pj_timer_heap_set_lock(timer_heap, lock, PJ_TRUE);
|
|
|
|
if (pj_thread_create(pool, "timer", &timer_worker_thread, NULL, 0, 0, &timer_thread) != PJ_SUCCESS) {
|
|
rtp_terminate_pjproject();
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
|
|
dtls_bio_methods = BIO_meth_new(BIO_TYPE_BIO, "rtp write");
|
|
if (!dtls_bio_methods) {
|
|
#ifdef HAVE_PJPROJECT
|
|
rtp_terminate_pjproject();
|
|
#endif
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
BIO_meth_set_write(dtls_bio_methods, dtls_bio_write);
|
|
BIO_meth_set_ctrl(dtls_bio_methods, dtls_bio_ctrl);
|
|
BIO_meth_set_create(dtls_bio_methods, dtls_bio_new);
|
|
BIO_meth_set_destroy(dtls_bio_methods, dtls_bio_free);
|
|
#endif
|
|
|
|
if (ast_rtp_engine_register(&asterisk_rtp_engine)) {
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
|
|
BIO_meth_free(dtls_bio_methods);
|
|
#endif
|
|
#ifdef HAVE_PJPROJECT
|
|
rtp_terminate_pjproject();
|
|
#endif
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
if (ast_cli_register_multiple(cli_rtp, ARRAY_LEN(cli_rtp))) {
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
|
|
BIO_meth_free(dtls_bio_methods);
|
|
#endif
|
|
#ifdef HAVE_PJPROJECT
|
|
ast_rtp_engine_unregister(&asterisk_rtp_engine);
|
|
rtp_terminate_pjproject();
|
|
#endif
|
|
return AST_MODULE_LOAD_DECLINE;
|
|
}
|
|
|
|
rtp_reload(0, 0);
|
|
|
|
return AST_MODULE_LOAD_SUCCESS;
|
|
}
|
|
|
|
static int unload_module(void)
|
|
{
|
|
ast_rtp_engine_unregister(&asterisk_rtp_engine);
|
|
ast_cli_unregister_multiple(cli_rtp, ARRAY_LEN(cli_rtp));
|
|
|
|
#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
|
|
if (dtls_bio_methods) {
|
|
BIO_meth_free(dtls_bio_methods);
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_PJPROJECT
|
|
host_candidate_overrides_clear();
|
|
pj_thread_register_check();
|
|
rtp_terminate_pjproject();
|
|
|
|
acl_change_sub = stasis_unsubscribe_and_join(acl_change_sub);
|
|
rtp_unload_acl(&ice_acl_lock, &ice_acl);
|
|
rtp_unload_acl(&stun_acl_lock, &stun_acl);
|
|
clean_stunaddr();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_LOAD_ORDER, "Asterisk RTP Stack",
|
|
.support_level = AST_MODULE_SUPPORT_CORE,
|
|
.load = load_module,
|
|
.unload = unload_module,
|
|
.reload = reload_module,
|
|
.load_pri = AST_MODPRI_CHANNEL_DEPEND,
|
|
#ifdef HAVE_PJPROJECT
|
|
.requires = "res_pjproject",
|
|
#endif
|
|
);
|