asterisk/main/sha1.c

406 lines
13 KiB
C

/*! \file
*
* \brief Based on the RFC 6234
*
* Copyright (c) 2011 IETF Trust and the persons identified as
* authors of the code. All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and
* the following disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* - Neither the name of Internet Society, IETF or IETF Trust, nor
* the names of specific contributors, may be used to endorse or
* promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Description:
* This file implements the Secure Hash Algorithm SHA-1
* as defined in the U.S. National Institute of Standards
* and Technology Federal Information Processing Standards
* Publication (FIPS PUB) 180-3 published in October 2008
* and formerly defined in its predecessors, FIPS PUB 180-1
* and FIP PUB 180-2.
*
* A combined document showing all algorithms is available at
* http://csrc.nist.gov/publications/fips/
* fips180-3/fips180-3_final.pdf
*
* The SHA-1 algorithm produces a 160-bit message digest for a
* given data stream that can serve as a means of providing a
* "fingerprint" for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code
* uses <stdint.h> (included via "sha.h") to define 32- and
* 8-bit unsigned integer types. If your C compiler does
* not support 32-bit unsigned integers, this code is not
* appropriate.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. This implementation uses SHA1Input() to hash the bits
* that are a multiple of the size of an 8-bit octet, and then
* optionally uses SHA1FinalBits() to hash the final few bits of
* the input.
*/
#include <asterisk/sha1.h>
/*! Define the SHA1 circular left shift macro */
#define SHA1_ROTL(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
/*
* Add "length" to the length.
* Set Corrupted when overflow has occurred.
*/
static uint32_t addTemp;
#define SHA1AddLength(context, length) \
(addTemp = (context)->Length_Low, \
(context)->Corrupted = \
(((context)->Length_Low += (length)) < addTemp) && \
(++(context)->Length_High == 0) ? shaInputTooLong \
: (context)->Corrupted )
/* Local Function Prototypes */
static void SHA1ProcessMessageBlock(SHA1Context * context);
static void SHA1Finalize(SHA1Context * context, uint8_t Pad_Byte);
static void SHA1PadMessage(SHA1Context * context, uint8_t Pad_Byte);
/*!
* \brief SHA1Reset
* \param context the context to be reset.
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
* \return sha Error Code.
*/
int SHA1Reset(SHA1Context *context)
{
if (!context) {
return shaNull;
}
context->Length_High = context->Length_Low = 0;
context->Message_Block_Index = 0;
/* Initial Hash Values: FIPS 180-3 section 5.3.1 */
context->Intermediate_Hash[0] = 0x67452301;
context->Intermediate_Hash[1] = 0xEFCDAB89;
context->Intermediate_Hash[2] = 0x98BADCFE;
context->Intermediate_Hash[3] = 0x10325476;
context->Intermediate_Hash[4] = 0xC3D2E1F0;
context->Computed = 0;
context->Corrupted = shaSuccess;
return shaSuccess;
}
/*!
* \brief SHA1Input
* \param[in,out] context The SHA context to update
* \param[in] message_array An array of characters representing the next portion of
* the message.
* \param[in] length The length of the message in message_array.
* This function accepts an array of octets as the next portion
* of the message.
* \return sha Error Code.
*/
int SHA1Input(SHA1Context *context,
const uint8_t *message_array, unsigned length)
{
if (!context) {
return shaNull;
}
if (!length) {
return shaSuccess;
}
if (!message_array) {
return shaNull;
}
if (context->Computed) {
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted) {
return context->Corrupted;
}
while (length--) {
context->Message_Block[context->Message_Block_Index++] =
*message_array;
if ((SHA1AddLength(context, 8) == shaSuccess) &&
(context->Message_Block_Index == SHA1_Message_Block_Size))
SHA1ProcessMessageBlock(context);
message_array++;
}
return context->Corrupted;
}
/*!
* \brief SHA1FinalBits Add in any final bits of the message.
*
* \param[in,out] context The SHA context to update.
* \param[in] message_bits The final bits of the message, in the upper portion of the
* byte. (Use 0b###00000 instead of 0b00000### to input the
* three bits ###.)
* \param[in] length The number of bits in message_bits, between 1 and 7.
* \returns sha Error Code.
*/
int SHA1FinalBits(SHA1Context * context, uint8_t message_bits,
unsigned int length)
{
static uint8_t masks[8] = {
/* 0 0b00000000 */ 0x00, /* 1 0b10000000 */ 0x80,
/* 2 0b11000000 */ 0xC0, /* 3 0b11100000 */ 0xE0,
/* 4 0b11110000 */ 0xF0, /* 5 0b11111000 */ 0xF8,
/* 6 0b11111100 */ 0xFC, /* 7 0b11111110 */ 0xFE
};
static uint8_t markbit[8] = {
/* 0 0b10000000 */ 0x80, /* 1 0b01000000 */ 0x40,
/* 2 0b00100000 */ 0x20, /* 3 0b00010000 */ 0x10,
/* 4 0b00001000 */ 0x08, /* 5 0b00000100 */ 0x04,
/* 6 0b00000010 */ 0x02, /* 7 0b00000001 */ 0x01
};
if (!context)
return shaNull;
if (!length)
return shaSuccess;
if (context->Corrupted)
return context->Corrupted;
if (context->Computed)
return context->Corrupted = shaStateError;
if (length >= 8)
return context->Corrupted = shaBadParam;
SHA1AddLength(context, length);
SHA1Finalize(context,
(uint8_t) ((message_bits & masks[length]) |
markbit[length]));
return context->Corrupted;
}
/*!
* \brief SHA1Result Returns the resulting 160-bit digest
* \param[in,out] context The SHA context to update.
* \param[out] Message_Digest Where the digest is returned.
*
* This function will return the 160-bit message digest
* into the Message_Digest array provided by the caller.
* \note The first octet of hash is stored in the element with index 0,
* the last octet of hash in the element with index 19.
* \returns sha Error Code.
*/
int SHA1Result(SHA1Context * context, uint8_t Message_Digest[SHA1HashSize])
{
int i;
if (!context) {
return shaNull;
}
if (!Message_Digest) {
return shaNull;
}
if (context->Corrupted) {
return context->Corrupted;
}
if (!context->Computed) {
SHA1Finalize(context, 0x80);
}
for (i = 0; i < SHA1HashSize; ++i) {
Message_Digest[i] = (uint8_t) (context->Intermediate_Hash[i >> 2]
>> (8 * (3 - (i & 0x03))));
}
return shaSuccess;
}
/*!
* \brief Process the next 512 bits of the message stored in the Message_Block array.
* \param[in,out] context The SHA context to update
* \note Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*/
static void SHA1ProcessMessageBlock(SHA1Context *context)
{
/* Constants defined in FIPS 180-3, section 4.2.1 */
const uint32_t K[4] = {
0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for (t = 0; t < 16; t++) {
W[t] = ((uint32_t) context->Message_Block[t * 4]) << 24;
W[t] |= ((uint32_t) context->Message_Block[t * 4 + 1]) << 16;
W[t] |= ((uint32_t) context->Message_Block[t * 4 + 2]) << 8;
W[t] |= ((uint32_t) context->Message_Block[t * 4 + 3]);
}
for (t = 16; t < 80; t++) {
W[t] = SHA1_ROTL(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
}
A = context->Intermediate_Hash[0];
B = context->Intermediate_Hash[1];
C = context->Intermediate_Hash[2];
D = context->Intermediate_Hash[3];
E = context->Intermediate_Hash[4];
for (t = 0; t < 20; t++) {
temp = SHA1_ROTL(5, A) + SHA_Ch(B, C, D) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1_ROTL(30, B);
B = A;
A = temp;
}
for (t = 20; t < 40; t++) {
temp = SHA1_ROTL(5, A) + SHA_Parity(B, C, D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1_ROTL(30, B);
B = A;
A = temp;
}
for (t = 40; t < 60; t++) {
temp = SHA1_ROTL(5, A) + SHA_Maj(B, C, D) + E + W[t] + K[2];
E = D;
D = C;
C = SHA1_ROTL(30, B);
B = A;
A = temp;
}
for (t = 60; t < 80; t++) {
temp = SHA1_ROTL(5, A) + SHA_Parity(B, C, D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1_ROTL(30, B);
B = A;
A = temp;
}
context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;
context->Message_Block_Index = 0;
}
/*!
* \brief This helper function finishes off the digest calculations.
* \param[in,out] context The context to pad.
* \param[in] Pad_Byte The last byte to add to the message block
* before the 0-padding and length. This will contain the last
* bits of the message followed by another single bit. If the
* message was an exact multiple of 8-bits long, Pad_Byte will
* be 0x80.
*/
static void SHA1Finalize(SHA1Context * context, uint8_t Pad_Byte)
{
int i;
SHA1PadMessage(context, Pad_Byte);
/* message may be sensitive, clear it out */
for (i = 0; i < SHA1_Message_Block_Size; ++i) {
context->Message_Block[i] = 0;
}
context->Length_High = 0; /* and clear length */
context->Length_Low = 0;
context->Computed = 1;
}
/*!
* \brief Pad message to be 512 bits.
* \param[in,out] context The context to pad.
* \param[in] Pad_Byte Last padding byte.
*
* According to the standard, the message must be padded to the next
* even multiple of 512 bits. The first padding bit must be a '1'.
* The last 64 bits represent the length of the original message.
* All bits in between should be 0. This helper function will pad
* the message according to those rules by filling the Message_Block
* array accordingly. When it returns, it can be assumed that the
* message digest has been computed.
*/
static void SHA1PadMessage(SHA1Context * context, uint8_t Pad_Byte)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index >= (SHA1_Message_Block_Size - 8)) {
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
while (context->Message_Block_Index < SHA1_Message_Block_Size) {
context->Message_Block[context->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(context);
} else
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
while (context->Message_Block_Index < (SHA1_Message_Block_Size - 8)) {
context->Message_Block[context->Message_Block_Index++] = 0;
}
/*
* Store the message length as the last 8 octets
*/
context->Message_Block[56] = (uint8_t) (context->Length_High >> 24);
context->Message_Block[57] = (uint8_t) (context->Length_High >> 16);
context->Message_Block[58] = (uint8_t) (context->Length_High >> 8);
context->Message_Block[59] = (uint8_t) (context->Length_High);
context->Message_Block[60] = (uint8_t) (context->Length_Low >> 24);
context->Message_Block[61] = (uint8_t) (context->Length_Low >> 16);
context->Message_Block[62] = (uint8_t) (context->Length_Low >> 8);
context->Message_Block[63] = (uint8_t) (context->Length_Low);
SHA1ProcessMessageBlock(context);
}