asterisk/main/fskmodem_int.c

366 lines
9.9 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Includes code and algorithms from the Zapata library.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief FSK Modulator/Demodulator
*
* \author Mark Spencer <markster@digium.com>
*
* \arg Includes code and algorithms from the Zapata library.
*
*/
/*** MODULEINFO
<support_level>core</support_level>
***/
#include "asterisk.h"
#include "asterisk/fskmodem.h"
#define NBW 2
#define BWLIST {75,800}
#define NF 6
#define FLIST {1400,1800,1200,2200,1300,2100}
#define STATE_SEARCH_STARTBIT 0
#define STATE_SEARCH_STARTBIT2 1
#define STATE_SEARCH_STARTBIT3 2
#define STATE_GET_BYTE 3
static inline int iget_sample(short **buffer, int *len)
{
int retval;
retval = (int) **buffer;
(*buffer)++;
(*len)--;
return retval;
}
#define IGET_SAMPLE iget_sample(&buffer, len)
/*! \brief Coefficients for input filters
* Coefficients table, generated by program "mkfilter"
* mkfilter is part of the zapatatelephony.org distribution
* Format: coef[IDX_FREC][IDX_BW][IDX_COEF]
* IDX_COEF = 0 => 1/GAIN
* IDX_COEF = 1-6 => Coefficientes y[n]
*/
static double coef_in[NF][NBW][8]={
{ { 1.8229206611e-04,-7.8997325866e-01,2.2401819940e+00,-4.6751353581e+00,5.5080745712e+00,-5.0571565772e+00,2.6215820004e+00,0.0000000000e+00,
}, { 9.8532175289e-02,-5.6297236492e-02,3.3146713415e-01,-9.2239200436e-01,1.4844365184e+00,-2.0183258642e+00,2.0074154497e+00,0.0000000000e+00,
}, }, { { 1.8229206610e-04,-7.8997325866e-01,7.7191410839e-01,-2.8075643964e+00,1.6948618347e+00,-3.0367273700e+00,9.0333559408e-01,0.0000000000e+00,
}, { 9.8531161839e-02,-5.6297236492e-02,1.1421579050e-01,-4.8122536483e-01,4.0121072432e-01,-7.4834487567e-01,6.9170822332e-01,0.0000000000e+00,
}, }, { { 1.8229206611e-04,-7.8997325866e-01,2.9003821430e+00,-6.1082779024e+00,7.7169345751e+00,-6.6075999680e+00,3.3941838836e+00,0.0000000000e+00,
}, { 9.8539686961e-02,-5.6297236492e-02,4.2915323820e-01,-1.2609358633e+00,2.2399213250e+00,-2.9928879142e+00,2.5990173742e+00,0.0000000000e+00,
}, }, { { 1.8229206610e-04,-7.8997325866e-01,-7.7191410839e-01,-2.8075643964e+00,-1.6948618347e+00,-3.0367273700e+00,-9.0333559408e-01,0.0000000000e+00,
}, { 9.8531161839e-02,-5.6297236492e-02,-1.1421579050e-01,-4.8122536483e-01,-4.0121072432e-01,-7.4834487567e-01,-6.9170822332e-01,0.0000000000e+00,
}, }, { { 1.8229206611e-04,-7.8997325866e-01,2.5782298908e+00,-5.3629717478e+00,6.5890882172e+00,-5.8012914776e+00,3.0171839130e+00,0.0000000000e+00,
}, { 9.8534230718e-02,-5.6297236492e-02,3.8148618075e-01,-1.0848760410e+00,1.8441165168e+00,-2.4860666655e+00,2.3103384142e+00,0.0000000000e+00,
}, }, { { 1.8229206610e-04,-7.8997325866e-01,-3.8715051001e-01,-2.6192408538e+00,-8.3977994034e-01,-2.8329897913e+00,-4.5306444352e-01,0.0000000000e+00,
}, { 9.8531160936e-02,-5.6297236492e-02,-5.7284484199e-02,-4.3673866734e-01,-1.9564766257e-01,-6.2028156584e-01,-3.4692356122e-01,0.0000000000e+00,
}, },
};
/*! \brief Coefficients for output filter
* Coefficients table, generated by program "mkfilter"
* Format: coef[IDX_BW][IDX_COEF]
* IDX_COEF = 0 => 1/GAIN
* IDX_COEF = 1-6 => Coefficientes y[n]
*/
static double coef_out[NBW][8]={
{ 1.3868644653e-08,-6.3283665042e-01,4.0895057217e+00,-1.1020074592e+01,1.5850766191e+01,-1.2835109292e+01,5.5477477340e+00,0.0000000000e+00,
}, { 3.1262119724e-03,-7.8390522307e-03,8.5209627801e-02,-4.0804129163e-01,1.1157139955e+00,-1.8767603680e+00,1.8916395224e+00,0.0000000000e+00
},
};
/*! Integer Pass Band demodulator filter */
static inline int ibpdfilter(struct filter_struct * fs, int in)
{
int i,j;
int s;
int64_t s_interim;
/* integer filter */
s = in * fs->icoefs[0];
fs->ixv[(fs->ip + 6) & 7] = s;
s = (fs->ixv[fs->ip] + fs->ixv[(fs->ip + 6) & 7]) +
6 * (fs->ixv[(fs->ip + 1) & 7] + fs->ixv[(fs->ip + 5) & 7]) +
15 * (fs->ixv[(fs->ip + 2) & 7] + fs->ixv[(fs->ip + 4) & 7]) +
20 * fs->ixv[(fs->ip + 3) & 7];
for (i = 1, j = fs->ip; i < 7; i++, j++) {
/* Promote operation to 64 bit to prevent overflow that occurred in 32 bit) */
s_interim = (int64_t)(fs->iyv[j & 7]) *
(int64_t)(fs->icoefs[i]) /
(int64_t)(1024);
s += (int) s_interim;
}
fs->iyv[j & 7] = s;
fs->ip++;
fs->ip &= 7;
return s;
}
/*! Integer Band Pass filter */
static inline int ibpfilter(struct filter_struct * fs, int in)
{
int i, j;
int s;
int64_t s_interim;
/* integer filter */
s = in * fs->icoefs[0] / 256;
fs->ixv[(fs->ip + 6) & 7] = s;
s = (fs->ixv[(fs->ip + 6) & 7] - fs->ixv[fs->ip])
+ 3 * (fs->ixv[(fs->ip + 2) & 7] - fs->ixv[(fs->ip + 4) & 7]);
for (i = 1, j = fs->ip; i < 7; i++, j++) {
s_interim = (int64_t)(fs->iyv[j & 7]) *
(int64_t)(fs->icoefs[i]) /
(int64_t)(256);
s += (int) s_interim;
}
fs->iyv[j & 7] = s;
fs->ip++;
fs->ip &= 7;
return s;
}
static inline int idemodulator(fsk_data *fskd, int *retval, int x)
{
int is, im, id;
int ilin2;
is = ibpfilter(&fskd->space_filter, x);
im = ibpfilter(&fskd->mark_filter, x);
ilin2 = ((im * im) - (is * is)) / (256 * 256);
id = ibpdfilter(&fskd->demod_filter, ilin2);
*retval = id;
return 0;
}
static int get_bit_raw(fsk_data *fskd, short *buffer, int *len)
{
/* This function implements a DPLL to synchronize with the bits */
int f;
int ix;
/* PLL coeffs are set up in callerid_new */
for (f = 0;;) {
if (idemodulator(fskd, &ix, IGET_SAMPLE)) return(-1);
if ((ix * fskd->xi0) < 0) { /* Transicion */
if (!f) {
if (fskd->icont < (fskd->pllispb2)) {
fskd->icont += fskd->pllids;
} else {
fskd->icont -= fskd->pllids;
}
f = 1;
}
}
fskd->xi0 = ix;
fskd->icont += 32;
if (fskd->icont > fskd->pllispb) {
fskd->icont -= fskd->pllispb;
break;
}
}
f = (ix > 0) ? 0x80 : 0;
return f;
}
int fskmodem_init(fsk_data *fskd)
{
int i;
fskd->space_filter.ip = 0;
fskd->mark_filter.ip = 0;
fskd->demod_filter.ip = 0;
for ( i = 0 ; i < 7 ; i++ ) {
fskd->space_filter.icoefs[i] =
coef_in[fskd->f_space_idx][fskd->bw][i] * 256;
fskd->space_filter.ixv[i] = 0;;
fskd->space_filter.iyv[i] = 0;;
fskd->mark_filter.icoefs[i] =
coef_in[fskd->f_mark_idx][fskd->bw][i] * 256;
fskd->mark_filter.ixv[i] = 0;;
fskd->mark_filter.iyv[i] = 0;;
fskd->demod_filter.icoefs[i] =
coef_out[fskd->bw][i] * 1024;
fskd->demod_filter.ixv[i] = 0;;
fskd->demod_filter.iyv[i] = 0;;
}
return 0;
}
int fsk_serial(fsk_data *fskd, short *buffer, int *len, int *outbyte)
{
int a;
int i, j, n1, r;
int samples = 0;
int olen;
int beginlen = *len;
int beginlenx;
switch (fskd->state) {
/* Pick up where we left off */
case STATE_SEARCH_STARTBIT2:
goto search_startbit2;
case STATE_SEARCH_STARTBIT3:
goto search_startbit3;
case STATE_GET_BYTE:
goto getbyte;
}
/* We await for start bit */
do {
/* this was jesus's nice, reasonable, working (at least with RTTY) code
to look for the beginning of the start bit. Unfortunately, since TTY/TDD's
just start sending a start bit with nothing preceding it at the beginning
of a transmission (what a LOSING design), we cant do it this elegantly */
/* NOT USED
if (demodulator(zap,&x1))
return -1;
for(;;) {
if (demodulator(zap,&x2))
return -1;
if (x1>0 && x2<0) break;
x1=x2;
}
*/
/* this is now the imprecise, losing, but functional code to detect the
beginning of a start bit in the TDD sceanario. It just looks for sufficient
level to maybe, perhaps, guess, maybe that its maybe the beginning of
a start bit, perhaps. This whole thing stinks! */
beginlenx = beginlen; /* just to avoid unused war warnings */
if (idemodulator(fskd, &fskd->xi1, IGET_SAMPLE))
return -1;
samples++;
for(;;) {
search_startbit2:
if (*len <= 0) {
fskd->state = STATE_SEARCH_STARTBIT2;
return 0;
}
samples++;
if (idemodulator(fskd, &fskd->xi2, IGET_SAMPLE))
return -1;
#if 0
printf("xi2 = %d ", fskd->xi2);
#endif
if (fskd->xi2 < 512) {
break;
}
}
search_startbit3:
/* We await for 0.5 bits before using DPLL */
i = fskd->ispb / 2;
if (*len < i) {
fskd->state = STATE_SEARCH_STARTBIT3;
return 0;
}
for (; i > 0; i--) {
if (idemodulator(fskd, &fskd->xi1, IGET_SAMPLE))
return(-1);
#if 0
printf("xi1 = %d ", fskd->xi1);
#endif
samples++;
}
/* x1 must be negative (start bit confirmation) */
} while (fskd->xi1 > 0);
fskd->state = STATE_GET_BYTE;
getbyte:
/* Need at least 80 samples (for 1200) or
1320 (for 45.5) to be sure we'll have a byte */
if (fskd->nbit < 8) {
if (*len < 1320)
return 0;
} else {
if (*len < 80)
return 0;
}
/* Now we read the data bits */
j = fskd->nbit;
for (a = n1 = 0; j; j--) {
olen = *len;
i = get_bit_raw(fskd, buffer, len);
buffer += (olen - *len);
if (i == -1)
return -1;
if (i)
n1++;
a >>= 1;
a |= i;
}
j = 8 - fskd->nbit;
a >>= j;
/* We read parity bit (if exists) and check parity */
if (fskd->parity) {
olen = *len;
i = get_bit_raw(fskd, buffer, len);
buffer += (olen - *len);
if (i == -1)
return -1;
if (i)
n1++;
if (fskd->parity == 1) { /* parity=1 (even) */
if (n1 & 1)
a |= 0x100; /* error */
} else { /* parity=2 (odd) */
if (!(n1 & 1))
a |= 0x100; /* error */
}
}
/* We read STOP bits. All of them must be 1 */
for (j = fskd->instop; j; j--) {
r = get_bit_raw(fskd, buffer, len);
if (r == -1)
return -1;
if (!r)
a |= 0x200;
}
/* And finally we return
* Bit 8 : Parity error
* Bit 9 : Framing error
*/
*outbyte = a;
fskd->state = STATE_SEARCH_STARTBIT;
return 1;
}