asterisk/bridges/bridge_softmix/bridge_softmix_binaural.c

581 lines
17 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 2016, Frank Haase, Dennis Guse
*
* Frank Haase <fra.haase@gmail.com>
* Dennis Guse <dennis.guse@alumni.tu-berlin.de>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Multi-party software based binaural mixing
*
* \author Frank Haase <fra.haase@googlemail.com>
* \author Dennis Guse <dennis.guse@alumni.tu-berlin.de>
*
* \ingroup bridges
*/
#include "include/bridge_softmix_internal.h"
#ifdef BINAURAL_RENDERING
#include "include/hrirs_configuration.h"
#endif
/*! The number of prealloced channels when a bridge will be created. */
#define CONVOLVE_CHANNEL_PREALLOC 3
/*! Max size of the convolve buffer. */
#define CONVOLVE_MAX_BUFFER 4096
/*! The default sample size in an binaural environment with a two-channel
* codec at 48kHz is 960 samples.
*/
#define CONVOLUTION_SAMPLE_SIZE 960
#ifdef BINAURAL_RENDERING
#if SOFTMIX_BINAURAL_SAMPLE_RATE != HRIRS_SAMPLE_RATE
#error HRIRs are required to be SOFTMIX_BINAURAL_SAMPLE_RATE Hz. Please adjust hrirs.h accordingly.
#endif
#if CONVOLUTION_SAMPLE_SIZE < HRIRS_IMPULSE_LEN
#error HRIRS_IMPULSE_LEN cannot be longer than CONVOLUTION_SAMPLE_SIZE. Please adjust hrirs.h accordingly.
#endif
#endif
void reset_channel_pair(struct convolve_channel_pair *channel_pair,
unsigned int default_sample_size)
{
memset(channel_pair->chan_left.overlap_add, 0, sizeof(float) * default_sample_size);
memset(channel_pair->chan_right.overlap_add, 0, sizeof(float) * default_sample_size);
}
void random_binaural_pos_change(struct softmix_bridge_data *softmix_data)
{
/*
* We perform a shuffle of all channels, even the ones that aren't used at the
* moment of shuffling now. This has the efect that new members will be placed
* randomly too.
*/
unsigned int i;
unsigned int j;
struct convolve_channel_pair *tmp;
if (softmix_data->convolve.chan_size < 2) {
return;
}
srand(time(NULL));
for (i = softmix_data->convolve.chan_size - 1; i > 0; i--) {
j = rand() % (i + 1);
tmp = softmix_data->convolve.cchan_pair[i];
reset_channel_pair(tmp, softmix_data->default_sample_size);
softmix_data->convolve.cchan_pair[i] = softmix_data->convolve.cchan_pair[j];
softmix_data->convolve.cchan_pair[j] = tmp;
}
}
int do_convolve(struct convolve_channel *chan, int16_t *in_samples,
unsigned int in_sample_size, unsigned int hrtf_length)
{
#ifdef BINAURAL_RENDERING
unsigned int i;
if (in_sample_size != CONVOLUTION_SAMPLE_SIZE) {
return -1;
}
/* FFT setting real part */
for (i = 0; i < CONVOLUTION_SAMPLE_SIZE; i++) {
chan->fftw_in[i] = in_samples[i] * (FLT_MAX / SHRT_MAX);
}
for (i = CONVOLUTION_SAMPLE_SIZE; i < hrtf_length; i++) {
chan->fftw_in[i] = 0;
}
fftw_execute(chan->fftw_plan);
/* Imaginary multiplication (frequency space). */
/* First FFTW result has never an imaginary part. */
chan->fftw_in[0] = chan->fftw_out[0] * chan->hrtf[0];
for (i = 1; i < (hrtf_length / 2); i++) {
/* Real part */
chan->fftw_in[i] = (chan->fftw_out[i] * chan->hrtf[i]) -
(chan->fftw_out[hrtf_length - i] * chan->hrtf[hrtf_length - i]);
/* Imaginary part */
chan->fftw_in[hrtf_length - i] = (chan->fftw_out[i] * chan->hrtf[hrtf_length - i]) +
(chan->fftw_out[hrtf_length - i] * chan->hrtf[i]);
}
/* The last (if even) FFTW result has never an imaginary part. */
if (hrtf_length % 2 == 0) {
chan->fftw_in[hrtf_length / 2] = chan->fftw_out[hrtf_length / 2] *
chan->hrtf[hrtf_length / 2];
}
/* iFFT */
fftw_execute(chan->fftw_plan_inverse);
/* Remove signal increase due to iFFT. */
for (i = 0; i < hrtf_length; i++) {
chan->fftw_out[i] = chan->fftw_out[i] / (hrtf_length / 2);
}
/* Save the block for overlap add in the next iteration. */
for (i = 0; i < in_sample_size; i++) {
chan->overlap_add[i] += chan->fftw_out[i];
}
/* Copy real part to the output, ignore the complex part. */
for (i = 0; i < in_sample_size; i++) {
chan->out_data[i] = chan->overlap_add[i] * (SHRT_MAX / FLT_MAX);
chan->overlap_add[i] = chan->fftw_out[i + in_sample_size];
}
#endif
return 0;
}
struct convolve_channel_pair *do_convolve_pair(struct convolve_data *data,
unsigned int pos_id, int16_t *in_samples, unsigned int in_sample_size,
const char *channel_name)
{
struct convolve_channel_pair *chan_pair;
/* If a position has no active member we will not convolve. */
if (data->pos_ids[pos_id] != 1) {
ast_log(LOG_ERROR, "Channel %s: Channel pair has no active member! (pos id = %d)\n",
channel_name, pos_id);
return NULL;
}
chan_pair = data->cchan_pair[pos_id];
if (do_convolve(&chan_pair->chan_left, in_samples, in_sample_size, data->hrtf_length)) {
ast_log(LOG_ERROR, "Channel %s: Binaural processing failed.", channel_name);
return NULL;
}
if (do_convolve(&chan_pair->chan_right, in_samples, in_sample_size, data->hrtf_length)) {
ast_log(LOG_ERROR, "Channel %s: Binaural processing failed.", channel_name);
return NULL;
}
return chan_pair;
}
float *get_hrir(unsigned int chan_pos, unsigned int chan_side)
{
#ifdef BINAURAL_RENDERING
if (chan_side == HRIRS_CHANNEL_LEFT) {
return hrirs_left[ast_binaural_positions[chan_pos]];
} else if (chan_side == HRIRS_CHANNEL_RIGHT) {
return hrirs_right[ast_binaural_positions[chan_pos]];
}
#else
ast_log(LOG_ERROR, "Requesting data for the binaural conference feature without "
"it beeing active.\n");
#endif
return NULL;
}
int init_convolve_channel(struct convolve_channel *channel, unsigned int hrtf_len,
unsigned int chan_pos, unsigned int chan_side, unsigned int default_sample_size)
{
#ifdef BINAURAL_RENDERING
unsigned int j;
float *hrir;
/* Prepare FFTW. */
channel->fftw_in = (double *) fftw_malloc(sizeof(double) * (hrtf_len + 1));
if (channel->fftw_in == NULL) {
return -1;
}
channel->fftw_out = (double *) fftw_malloc(sizeof(double) * (hrtf_len + 1));
if (channel->fftw_out == NULL) {
fftw_free(channel->fftw_in);
return -1;
}
memset(channel->fftw_in, 0, sizeof(double) * (hrtf_len + 1));
memset(channel->fftw_out, 0, sizeof(double) * (hrtf_len + 1));
channel->fftw_plan = fftw_plan_r2r_1d(hrtf_len, channel->fftw_in, channel->fftw_out,
FFTW_R2HC, FFTW_PATIENT);
channel->fftw_plan_inverse = fftw_plan_r2r_1d(hrtf_len, channel->fftw_in, channel->fftw_out,
FFTW_HC2R, FFTW_PATIENT);
channel->out_data = ast_calloc(CONVOLVE_MAX_BUFFER, sizeof(int16_t));
if (channel->out_data == NULL) {
fftw_free(channel->fftw_in);
fftw_free(channel->fftw_out);
return -1;
}
/* Reuse positions if all positions are already used. */
chan_pos = chan_pos % HRIRS_IMPULSE_SIZE;
/* Get HRTF for the channels spatial position. */
hrir = get_hrir(chan_pos, chan_side);
if (hrir == NULL) {
fftw_free(channel->fftw_in);
fftw_free(channel->fftw_out);
ast_free(channel->out_data);
return -1;
}
for (j = 0; j < HRIRS_IMPULSE_LEN; j++) {
channel->fftw_in[j] = hrir[j];
}
for (j = HRIRS_IMPULSE_LEN; j < hrtf_len; j++) {
channel->fftw_in[j] = 0;
}
fftw_execute(channel->fftw_plan);
channel->hrtf = (double *) fftw_malloc(sizeof(double) * hrtf_len);
if (channel->hrtf == NULL) {
fftw_free(channel->fftw_in);
fftw_free(channel->fftw_out);
ast_free(channel->out_data);
return -1;
}
for (j = 0; j < hrtf_len; j++) {
channel->hrtf[j] = channel->fftw_out[j];
}
channel->overlap_add = ast_calloc(default_sample_size, sizeof(float));
return 0;
#endif
return -1;
}
int init_convolve_channel_pair(struct convolve_channel_pair *cchan_pair,
unsigned int hrtf_len, unsigned int chan_pos, unsigned int default_sample_size)
{
#ifdef BINAURAL_RENDERING
unsigned int hrirs_pos = chan_pos * 2;
int success = 0;
ast_debug(3, "Binaural pos for the new channel pair will be L: %d R: %d (pos id = %d)\n",
hrirs_pos, hrirs_pos + 1, chan_pos);
success = init_convolve_channel(&cchan_pair->chan_left, hrtf_len, chan_pos, HRIRS_CHANNEL_LEFT,
default_sample_size);
if (success == -1) {
return success;
}
success = init_convolve_channel(&cchan_pair->chan_right, hrtf_len, chan_pos,
HRIRS_CHANNEL_RIGHT, default_sample_size);
if (success == -1) {
free_convolve_channel(&cchan_pair->chan_left);
}
return success;
#else
ast_log(LOG_ERROR, "Requesting data for the binaural conference feature "
"without it beeing active.\n");
return -1;
#endif
}
int init_convolve_data(struct convolve_data *data, unsigned int default_sample_size)
{
unsigned int i;
unsigned int j;
int success;
success = 0;
data->pos_ids = ast_calloc(sizeof(int), sizeof(int) * CONVOLVE_CHANNEL_PREALLOC);
if (data->pos_ids == NULL) {
return -1;
}
data->chan_size = CONVOLVE_CHANNEL_PREALLOC;
data->number_channels = 0;
data->cchan_pair = ast_malloc(sizeof(struct convolve_channel_pair *) *
CONVOLVE_CHANNEL_PREALLOC);
if (data->cchan_pair == NULL) {
ast_free(data->pos_ids);
return -1;
}
for (i = 0; i < CONVOLVE_CHANNEL_PREALLOC; i++) {
data->cchan_pair[i] = ast_malloc(sizeof(struct convolve_channel_pair));
if (data->cchan_pair[i] == NULL) {
ast_free(data->pos_ids);
for (j = 0; j < i; j++) {
ast_free(data->cchan_pair[j]);
}
ast_free(data->cchan_pair);
return -1;
}
}
data->hrtf_length = (default_sample_size * 2) - 1;
for (i = 0; i < CONVOLVE_CHANNEL_PREALLOC; i++) {
success = init_convolve_channel_pair(data->cchan_pair[i], data->hrtf_length, i,
default_sample_size);
if (success == -1) {
ast_free(data->pos_ids);
for (j = 0; j < i; j++) {
free_convolve_channel_pair(data->cchan_pair[j]);
}
for (j = 0; j < CONVOLVE_CHANNEL_PREALLOC; j++) {
ast_free(data->cchan_pair[j]);
}
return -1;
}
}
return success;
}
void free_convolve_channel(struct convolve_channel *cchan)
{
#ifdef BINAURAL_RENDERING
fftw_free(cchan->fftw_out);
fftw_free(cchan->fftw_in);
fftw_free(cchan->hrtf);
ast_free(cchan->overlap_add);
ast_free(cchan->out_data);
fftw_destroy_plan(cchan->fftw_plan);
fftw_destroy_plan(cchan->fftw_plan_inverse);
#endif
}
void free_convolve_channel_pair(struct convolve_channel_pair *cchan_pair)
{
free_convolve_channel(&cchan_pair->chan_left);
free_convolve_channel(&cchan_pair->chan_right);
}
void free_convolve_data(struct convolve_data *data)
{
unsigned int i;
ast_free(data->pos_ids);
for (i = 0; i < data->chan_size; i++) {
free_convolve_channel_pair(data->cchan_pair[i]);
ast_free(data->cchan_pair[i]);
}
ast_free(data->cchan_pair);
}
int set_binaural_data_join(struct convolve_data *data, unsigned int default_sample_size)
{
struct convolve_channel_pair **cchan_pair_tmp;
unsigned int i;
int *pos_ids_tmp;
/* Raise the number of input channels. */
data->number_channels++;
/* We realloc another channel pair if we are out of prealloced ones. */
/* We have prealloced one at the beginning of a conference and if a member leaves. */
if (data->chan_size < data->number_channels) {
data->chan_size += 1;
pos_ids_tmp = ast_realloc(data->pos_ids, data->chan_size * sizeof(int));
if (pos_ids_tmp) {
data->pos_ids = pos_ids_tmp;
} else {
goto binaural_join_fails;
}
data->pos_ids[data->chan_size - 1] = 0;
cchan_pair_tmp = ast_realloc(data->cchan_pair,
data->chan_size * sizeof(struct convolve_channel_pair *));
if (cchan_pair_tmp) {
data->cchan_pair = cchan_pair_tmp;
} else {
goto binaural_join_fails;
}
data->cchan_pair[data->chan_size - 1] = ast_malloc(sizeof(struct convolve_channel_pair));
if (data->cchan_pair[data->chan_size - 1] == NULL) {
goto binaural_join_fails;
}
i = init_convolve_channel_pair(data->cchan_pair[data->chan_size - 1], data->hrtf_length,
data->chan_size - 1, default_sample_size);
if (i == -1) {
goto binaural_join_fails;
}
}
for (i = 0; i < data->chan_size; i++) {
if (data->pos_ids[i] == 0) {
data->pos_ids[i] = 1;
break;
}
}
return i;
binaural_join_fails:
data->number_channels--;
data->chan_size -= 1;
return -1;
}
void set_binaural_data_leave(struct convolve_data *data, unsigned int pos,
unsigned int default_sample_size)
{
if (pos >= data->chan_size || data->pos_ids[pos] == 0) {
return;
}
reset_channel_pair(data->cchan_pair[pos], default_sample_size);
data->number_channels--;
data->pos_ids[pos] = 0;
}
void softmix_process_write_binaural_audio(struct softmix_channel *sc,
unsigned int default_sample_size)
{
unsigned int i;
if (sc->write_frame.samples % default_sample_size != 0) {
return;
}
/* If binaural is suspended, the source audio (mono) will be removed. */
if (sc->binaural_suspended) {
for (i = 0; i < default_sample_size; i++) {
ast_slinear_saturated_subtract(&sc->final_buf[i * 2], &sc->our_buf[i]);
ast_slinear_saturated_subtract(&sc->final_buf[(i * 2) + 1], &sc->our_buf[i]);
}
return;
}
/* If binaural is NOT suspended, the source audio (binaural) will be removed. */
for (i = 0; i < default_sample_size; i++) {
ast_slinear_saturated_subtract(&sc->final_buf[i * 2],
&sc->our_chan_pair->chan_left.out_data[i]);
ast_slinear_saturated_subtract(&sc->final_buf[(i * 2) + 1],
&sc->our_chan_pair->chan_right.out_data[i]);
}
}
void check_binaural_position_change(struct ast_bridge *bridge,
struct softmix_bridge_data *softmix_data)
{
unsigned int pos_change;
struct ast_bridge_channel *bridge_channel;
/*
* We only check binaural things if binaural is activated by the config
* and at least one binaural channel joined.
*/
if (!(bridge->softmix.binaural_active && softmix_data->convolve.binaural_active)) {
return;
}
/*
* Before we pull any audio, we must check if any channel requests a
* change of binaural positions.
*/
pos_change = 0;
AST_LIST_TRAVERSE(&bridge->channels, bridge_channel, entry) {
if (!bridge_channel->binaural_pos_change) {
continue;
}
ast_bridge_channel_lock_bridge(bridge_channel);
bridge_channel->binaural_pos_change = 0;
ast_bridge_unlock(bridge_channel->bridge);
pos_change = 1;
}
if (pos_change) {
random_binaural_pos_change(softmix_data);
}
}
void add_binaural_mixing(struct ast_bridge *bridge, struct softmix_bridge_data *softmix_data,
unsigned int softmix_samples, struct softmix_mixing_array *mixing_array,
struct softmix_channel *sc, const char *channel_name)
{
struct convolve_channel_pair *pair;
pair = NULL;
/* We only check binaural things if at least one binaural channel joined. */
if (!(bridge->softmix.binaural_active && softmix_data->convolve.binaural_active
&& (softmix_samples % CONVOLUTION_SAMPLE_SIZE) == 0)) {
return;
}
if (!sc->is_announcement) {
pair = do_convolve_pair(&softmix_data->convolve, sc->binaural_pos,
mixing_array->buffers[mixing_array->used_entries], softmix_samples, channel_name);
}
sc->our_chan_pair = pair;
mixing_array->chan_pairs[mixing_array->used_entries] = pair;
}
void binaural_mixing(struct ast_bridge *bridge, struct softmix_bridge_data *softmix_data,
struct softmix_mixing_array *mixing_array, int16_t *bin_buf, int16_t *ann_buf)
{
unsigned int idx;
unsigned int x;
if (!(bridge->softmix.binaural_active && softmix_data->convolve.binaural_active)) {
return;
}
/* mix it like crazy (binaural channels) */
memset(bin_buf, 0, MAX_DATALEN);
memset(ann_buf, 0, MAX_DATALEN);
for (idx = 0; idx < mixing_array->used_entries; idx++) {
if (mixing_array->chan_pairs[idx] == NULL) {
for (x = 0; x < softmix_data->default_sample_size; x++) {
ast_slinear_saturated_add(bin_buf + (x * 2), mixing_array->buffers[idx] + x);
ast_slinear_saturated_add(bin_buf + (x * 2) + 1, mixing_array->buffers[idx] + x);
ann_buf[x * 2] = mixing_array->buffers[idx][x];
ann_buf[(x * 2) + 1] = mixing_array->buffers[idx][x];
}
} else {
for (x = 0; x < softmix_data->default_sample_size; x++) {
ast_slinear_saturated_add(bin_buf + (x * 2),
mixing_array->chan_pairs[idx]->chan_left.out_data + x);
ast_slinear_saturated_add(bin_buf + (x * 2) + 1,
mixing_array->chan_pairs[idx]->chan_right.out_data + x);
}
}
}
}
void create_binaural_frame(struct ast_bridge_channel *bridge_channel,
struct softmix_channel *sc, int16_t *bin_buf, int16_t *ann_buf,
unsigned int softmix_datalen, unsigned int softmix_samples, int16_t *buf)
{
unsigned int i;
sc->write_frame.datalen = softmix_datalen * 2;
sc->write_frame.samples = softmix_samples * 2;
if (!bridge_channel->binaural_suspended) {
sc->binaural_suspended = 0;
if (sc->is_announcement) {
memcpy(sc->final_buf, ann_buf, softmix_datalen * 2);
} else {
memcpy(sc->final_buf, bin_buf, softmix_datalen * 2);
}
return;
}
/*
* Mark that binaural output is suspended, since we use two channel audio
* we copy the same signals into both channels.
*/
sc->binaural_suspended = 1;
for (i = 0; i < softmix_samples; i++) {
sc->final_buf[i * 2] = buf[i];
sc->final_buf[(i * 2) + 1] = buf[i];
}
}