/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2012, Digium, Inc. * * Mark Spencer <markster@digium.com> * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * * \brief Various sorts of access control * * \author Mark Spencer <markster@digium.com> */ /*** MODULEINFO <support_level>core</support_level> ***/ #include "asterisk.h" #include "asterisk/network.h" #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__Darwin__) #include <fcntl.h> #include <net/route.h> #endif #if defined(SOLARIS) #include <sys/sockio.h> #include <net/if.h> #elif defined(HAVE_GETIFADDRS) #include <ifaddrs.h> #endif #include "asterisk/acl.h" #include "asterisk/channel.h" #include "asterisk/utils.h" #include "asterisk/lock.h" #include "asterisk/srv.h" #include "asterisk/cli.h" #if (!defined(SOLARIS) && !defined(HAVE_GETIFADDRS)) static int get_local_address(struct ast_sockaddr *ourip) { return -1; } #else static void score_address(const struct sockaddr_in *sin, struct in_addr *best_addr, int *best_score) { const char *address; int score; address = ast_inet_ntoa(sin->sin_addr); /* RFC 1700 alias for the local network */ if (address[0] == '0') { score = -25; /* RFC 1700 localnet */ } else if (strncmp(address, "127", 3) == 0) { score = -20; /* RFC 1918 non-public address space */ } else if (strncmp(address, "10.", 3) == 0) { score = -5; /* RFC 1918 non-public address space */ } else if (strncmp(address, "172", 3) == 0) { /* 172.16.0.0 - 172.19.255.255, but not 172.160.0.0 - 172.169.255.255 */ if (address[4] == '1' && address[5] >= '6' && address[6] == '.') { score = -5; /* 172.20.0.0 - 172.29.255.255, but not 172.200.0.0 - 172.255.255.255 nor 172.2.0.0 - 172.2.255.255 */ } else if (address[4] == '2' && address[6] == '.') { score = -5; /* 172.30.0.0 - 172.31.255.255, but not 172.3.0.0 - 172.3.255.255 */ } else if (address[4] == '3' && (address[5] == '0' || address[5] == '1')) { score = -5; /* All other 172 addresses are public */ } else { score = 0; } /* RFC 2544 Benchmark test range (198.18.0.0 - 198.19.255.255, but not 198.180.0.0 - 198.199.255.255) */ } else if (strncmp(address, "198.1", 5) == 0 && address[5] >= '8' && address[6] == '.') { score = -10; /* RFC 1918 non-public address space */ } else if (strncmp(address, "192.168", 7) == 0) { score = -5; /* RFC 3330 Zeroconf network */ } else if (strncmp(address, "169.254", 7) == 0) { /*!\note Better score than a test network, but not quite as good as RFC 1918 * address space. The reason is that some Linux distributions automatically * configure a Zeroconf address before trying DHCP, so we want to prefer a * DHCP lease to a Zeroconf address. */ score = -10; /* RFC 3330 Test network */ } else if (strncmp(address, "192.0.2.", 8) == 0) { score = -15; /* Every other address should be publically routable */ } else { score = 0; } if (score > *best_score) { *best_score = score; memcpy(best_addr, &sin->sin_addr, sizeof(*best_addr)); } } static int get_local_address(struct ast_sockaddr *ourip) { int s, res = -1; #ifdef SOLARIS struct lifreq *ifr = NULL; struct lifnum ifn; struct lifconf ifc; struct sockaddr_in *sa; char *buf = NULL; int bufsz, x; #endif /* SOLARIS */ #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) || defined(__GLIBC__) struct ifaddrs *ifap, *ifaphead; int rtnerr; const struct sockaddr_in *sin; #endif /* BSD_OR_LINUX */ struct in_addr best_addr; int best_score = -100; memset(&best_addr, 0, sizeof(best_addr)); #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) || defined(__GLIBC__) rtnerr = getifaddrs(&ifaphead); if (rtnerr) { perror(NULL); return -1; } #endif /* BSD_OR_LINUX */ s = socket(AF_INET, SOCK_STREAM, 0); if (s > 0) { #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) || defined(__GLIBC__) for (ifap = ifaphead; ifap; ifap = ifap->ifa_next) { if (ifap->ifa_addr && ifap->ifa_addr->sa_family == AF_INET) { sin = (const struct sockaddr_in *) ifap->ifa_addr; score_address(sin, &best_addr, &best_score); res = 0; if (best_score == 0) { break; } } } #endif /* BSD_OR_LINUX */ /* There is no reason whatsoever that this shouldn't work on Linux or BSD also. */ #ifdef SOLARIS /* Get a count of interfaces on the machine */ ifn.lifn_family = AF_INET; ifn.lifn_flags = 0; ifn.lifn_count = 0; if (ioctl(s, SIOCGLIFNUM, &ifn) < 0) { close(s); return -1; } bufsz = ifn.lifn_count * sizeof(struct lifreq); if (!(buf = ast_malloc(bufsz))) { close(s); return -1; } memset(buf, 0, bufsz); /* Get a list of interfaces on the machine */ ifc.lifc_len = bufsz; ifc.lifc_buf = buf; ifc.lifc_family = AF_INET; ifc.lifc_flags = 0; if (ioctl(s, SIOCGLIFCONF, &ifc) < 0) { close(s); ast_free(buf); return -1; } for (ifr = ifc.lifc_req, x = 0; x < ifn.lifn_count; ifr++, x++) { sa = (struct sockaddr_in *)&(ifr->lifr_addr); score_address(sa, &best_addr, &best_score); res = 0; if (best_score == 0) { break; } } ast_free(buf); #endif /* SOLARIS */ close(s); } #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) freeifaddrs(ifaphead); #endif /* BSD_OR_LINUX */ if (res == 0 && ourip) { ast_sockaddr_setnull(ourip); ourip->ss.ss_family = AF_INET; ((struct sockaddr_in *)&ourip->ss)->sin_addr = best_addr; } return res; } #endif /* HAVE_GETIFADDRS */ /* Free HA structure */ void ast_free_ha(struct ast_ha *ha) { struct ast_ha *hal; while (ha) { hal = ha; ha = ha->next; ast_free(hal); } } /* Free ACL list structure */ struct ast_acl_list *ast_free_acl_list(struct ast_acl_list *acl_list) { struct ast_acl *current; if (!acl_list) { return NULL; } AST_LIST_LOCK(acl_list); while ((current = AST_LIST_REMOVE_HEAD(acl_list, list))) { ast_free_ha(current->acl); ast_free(current); } AST_LIST_UNLOCK(acl_list); AST_LIST_HEAD_DESTROY(acl_list); ast_free(acl_list); return NULL; } /* Copy HA structure */ void ast_copy_ha(const struct ast_ha *from, struct ast_ha *to) { ast_sockaddr_copy(&to->addr, &from->addr); ast_sockaddr_copy(&to->netmask, &from->netmask); to->sense = from->sense; } /* Create duplicate of ha structure */ static struct ast_ha *ast_duplicate_ha(struct ast_ha *original) { struct ast_ha *new_ha; if ((new_ha = ast_calloc(1, sizeof(*new_ha)))) { /* Copy from original to new object */ ast_copy_ha(original, new_ha); } return new_ha; } /* Create duplicate HA link list */ /* Used in chan_sip2 templates */ struct ast_ha *ast_duplicate_ha_list(struct ast_ha *original) { struct ast_ha *start = original; struct ast_ha *ret = NULL; struct ast_ha *current, *prev = NULL; while (start) { current = ast_duplicate_ha(start); /* Create copy of this object */ if (!current) { ast_free_ha(ret); return NULL; } if (prev) { prev->next = current; /* Link previous to this object */ } if (!ret) { ret = current; /* Save starting point */ } start = start->next; /* Go to next object */ prev = current; /* Save pointer to this object */ } return ret; /* Return start of list */ } static int acl_new(struct ast_acl **pointer, const char *name) { struct ast_acl *acl; if (!(acl = ast_calloc(1, sizeof(*acl)))) { return 1; } *pointer = acl; ast_copy_string(acl->name, name, ACL_NAME_LENGTH); return 0; } struct ast_acl_list *ast_duplicate_acl_list(struct ast_acl_list *original) { struct ast_acl_list *clone; struct ast_acl *current_cursor; struct ast_acl *current_clone; /* Early return if we receive a duplication request for a NULL original. */ if (!original) { return NULL; } if (!(clone = ast_calloc(1, sizeof(*clone)))) { ast_log(LOG_ERROR, "Failed to allocate ast_acl_list struct while cloning an ACL\n"); return NULL; } AST_LIST_HEAD_INIT(clone); AST_LIST_LOCK(original); AST_LIST_TRAVERSE(original, current_cursor, list) { if ((acl_new(¤t_clone, current_cursor->name))) { ast_log(LOG_ERROR, "Failed to allocate ast_acl struct while cloning an ACL.\n"); ast_free_acl_list(clone); clone = NULL; break; } /* Copy data from original ACL to clone ACL */ current_clone->acl = ast_duplicate_ha_list(current_cursor->acl); current_clone->is_invalid = current_cursor->is_invalid; current_clone->is_realtime = current_cursor->is_realtime; AST_LIST_INSERT_TAIL(clone, current_clone, list); if (current_cursor->acl && !current_clone->acl) { /* Deal with failure after adding to clone so we don't have to free * current_clone separately. */ ast_log(LOG_ERROR, "Failed to duplicate HA list while cloning ACL.\n"); ast_free_acl_list(clone); clone = NULL; break; } } AST_LIST_UNLOCK(original); return clone; } /*! * \brief * Parse a netmask in CIDR notation * * \details * For a mask of an IPv4 address, this should be a number between 0 and 32. For * a mask of an IPv6 address, this should be a number between 0 and 128. This * function creates an IPv6 ast_sockaddr from the given netmask. For masks of * IPv4 addresses, this is accomplished by adding 96 to the original netmask. * * \param[out] addr The ast_sockaddr produced from the CIDR netmask * \param is_v4 Tells if the address we are masking is IPv4. * \param mask_str The CIDR mask to convert * \retval -1 Failure * \retval 0 Success */ static int parse_cidr_mask(struct ast_sockaddr *addr, int is_v4, const char *mask_str) { int mask; if (sscanf(mask_str, "%30d", &mask) != 1) { return -1; } if (is_v4) { struct sockaddr_in sin; if (mask < 0 || mask > 32) { return -1; } memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; /* If mask is 0, then we already have the * appropriate all 0s address in sin from * the above memset. */ if (mask != 0) { sin.sin_addr.s_addr = htonl(0xFFFFFFFF << (32 - mask)); } ast_sockaddr_from_sin(addr, &sin); } else { struct sockaddr_in6 sin6; int i; if (mask < 0 || mask > 128) { return -1; } memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; for (i = 0; i < 4; ++i) { /* Once mask reaches 0, we don't have * to explicitly set anything anymore * since sin6 was zeroed out already */ if (mask > 0) { V6_WORD(&sin6, i) = htonl(0xFFFFFFFF << (mask < 32 ? (32 - mask) : 0)); mask -= mask < 32 ? mask : 32; } } memcpy(&addr->ss, &sin6, sizeof(sin6)); addr->len = sizeof(sin6); } return 0; } void ast_append_acl(const char *sense, const char *stuff, struct ast_acl_list **path, int *error, int *named_acl_flag) { struct ast_acl *acl = NULL; struct ast_acl *current; struct ast_acl_list *working_list; char *tmp, *list; /* If the ACL list is currently uninitialized, it must be initialized. */ if (*path == NULL) { struct ast_acl_list *list; list = ast_calloc(1, sizeof(*list)); if (!list) { /* Allocation Error */ if (error) { *error = 1; } return; } AST_LIST_HEAD_INIT(list); *path = list; } working_list = *path; AST_LIST_LOCK(working_list); /* First we need to determine if we will need to add a new ACL node or if we can use an existing one. */ if (strncasecmp(sense, "a", 1)) { /* The first element in the path should be the unnamed, base ACL. If that's the case, we use it. If not, * we have to make one and link it up appropriately. */ current = AST_LIST_FIRST(working_list); if (!current || !ast_strlen_zero(current->name)) { if (acl_new(&acl, "")) { if (error) { *error = 1; } AST_LIST_UNLOCK(working_list); return; } // Need to INSERT the ACL at the head here. AST_LIST_INSERT_HEAD(working_list, acl, list); } else { /* If the first element was already the unnamed base ACL, we just use that one. */ acl = current; } /* With the proper ACL set for modification, we can just pass this off to the ast_ha append function. */ acl->acl = ast_append_ha(sense, stuff, acl->acl, error); AST_LIST_UNLOCK(working_list); return; } /* We are in ACL append mode, so we know we'll be adding one or more named ACLs. */ list = ast_strdupa(stuff); while ((tmp = strsep(&list, ","))) { struct ast_ha *named_ha; int already_included = 0; /* Remove leading whitespace from the string in case the user put spaces between items */ tmp = ast_skip_blanks(tmp); /* The first step is to check for a duplicate */ AST_LIST_TRAVERSE(working_list, current, list) { if (!strcasecmp(current->name, tmp)) { /* ACL= */ /* Inclusion of the same ACL multiple times isn't a catastrophic error, but it will raise the error flag and skip the entry. */ ast_log(LOG_ERROR, "Named ACL '%s' occurs multiple times in ACL definition. " "Please update your ACL configuration.\n", tmp); if (error) { *error = 1; } already_included = 1; break; } } if (already_included) { continue; } if (acl_new(&acl, tmp)) { /* This is a catastrophic allocation error and we'll return immediately if this happens. */ if (error) { *error = 1; } AST_LIST_UNLOCK(working_list); return; } /* Attempt to grab the Named ACL we are looking for. */ named_ha = ast_named_acl_find(tmp, &acl->is_realtime, &acl->is_invalid); /* Set the ACL's ast_ha to the duplicated named ACL retrieved above. */ acl->acl = named_ha; /* Raise the named_acl_flag since we are adding a named ACL to the ACL container. */ if (named_acl_flag) { *named_acl_flag = 1; } /* Now insert the new ACL at the end of the list. */ AST_LIST_INSERT_TAIL(working_list, acl, list); } AST_LIST_UNLOCK(working_list); } int ast_acl_list_is_empty(struct ast_acl_list *acl_list) { struct ast_acl *head; if (!acl_list) { return 1; } AST_LIST_LOCK(acl_list); head = AST_LIST_FIRST(acl_list); AST_LIST_UNLOCK(acl_list); if (head) { return 0; } return 1; } /*! * \internal * \brief Used by ast_append_ha to avoid ast_strdupa in a loop. * * \note This function is only called at debug level 3 and higher. */ static void debug_ha_sense_appended(struct ast_ha *ha) { const char *parsed_mask = ast_strdupa(ast_sockaddr_stringify(&ha->netmask)); ast_log(LOG_DEBUG, "%s/%s sense %u appended to ACL\n", ast_sockaddr_stringify(&ha->addr), parsed_mask, ha->sense); } static struct ast_ha *append_ha_core(const char *sense, const char *stuff, struct ast_ha *path, int *error, int port_flags) { struct ast_ha *ha; struct ast_ha *prev = NULL; struct ast_ha *ret; char *tmp, *list = ast_strdupa(stuff ?: ""); char *address = NULL, *mask = NULL; int addr_is_v4; int allowing = strncasecmp(sense, "p", 1) ? AST_SENSE_DENY : AST_SENSE_ALLOW; ret = path; while (path) { prev = path; path = path->next; } while ((tmp = strsep(&list, ","))) { uint16_t save_port; if (!(ha = ast_calloc(1, sizeof(*ha)))) { if (error) { *error = 1; } return ret; } address = strsep(&tmp, "/"); if (!address) { address = tmp; } else { mask = tmp; } if (*address == '!') { ha->sense = (allowing == AST_SENSE_DENY) ? AST_SENSE_ALLOW : AST_SENSE_DENY; address++; } else { ha->sense = allowing; } if (!ast_sockaddr_parse(&ha->addr, address, port_flags)) { ast_log(LOG_WARNING, "Invalid IP address: %s\n", address); ast_free_ha(ha); if (error) { *error = 1; } return ret; } /* Be pedantic and zero out the port if we don't want it */ if ((port_flags & PARSE_PORT_MASK) == PARSE_PORT_FORBID) { ast_sockaddr_set_port(&ha->addr, 0); } /* If someone specifies an IPv4-mapped IPv6 address, * we just convert this to an IPv4 ACL */ if (ast_sockaddr_ipv4_mapped(&ha->addr, &ha->addr)) { ast_log(LOG_NOTICE, "IPv4-mapped ACL network address specified. " "Converting to an IPv4 ACL network address.\n"); } addr_is_v4 = ast_sockaddr_is_ipv4(&ha->addr); if (!mask) { parse_cidr_mask(&ha->netmask, addr_is_v4, addr_is_v4 ? "32" : "128"); } else if (strchr(mask, ':') || strchr(mask, '.')) { int mask_is_v4; /* Mask is of x.x.x.x or x:x:x:x:x:x:x:x variety */ if (!ast_sockaddr_parse(&ha->netmask, mask, PARSE_PORT_FORBID)) { ast_log(LOG_WARNING, "Invalid netmask: %s\n", mask); ast_free_ha(ha); if (error) { *error = 1; } return ret; } /* If someone specifies an IPv4-mapped IPv6 netmask, * we just convert this to an IPv4 ACL */ if (ast_sockaddr_ipv4_mapped(&ha->netmask, &ha->netmask)) { ast_log(LOG_NOTICE, "IPv4-mapped ACL netmask specified. " "Converting to an IPv4 ACL netmask.\n"); } mask_is_v4 = ast_sockaddr_is_ipv4(&ha->netmask); if (addr_is_v4 ^ mask_is_v4) { ast_log(LOG_WARNING, "Address and mask are not using same address scheme.\n"); ast_free_ha(ha); if (error) { *error = 1; } return ret; } } else if (parse_cidr_mask(&ha->netmask, addr_is_v4, mask)) { ast_log(LOG_WARNING, "Invalid CIDR netmask: %s\n", mask); ast_free_ha(ha); if (error) { *error = 1; } return ret; } /* ast_sockaddr_apply_netmask() does not preserve the port, so we need to save and * restore it */ save_port = ast_sockaddr_port(&ha->addr); if (ast_sockaddr_apply_netmask(&ha->addr, &ha->netmask, &ha->addr)) { /* This shouldn't happen because ast_sockaddr_parse would * have failed much earlier on an unsupported address scheme */ char *failmask = ast_strdupa(ast_sockaddr_stringify(&ha->netmask)); char *failaddr = ast_strdupa(ast_sockaddr_stringify(&ha->addr)); ast_log(LOG_WARNING, "Unable to apply netmask %s to address %s\n", failmask, failaddr); ast_free_ha(ha); if (error) { *error = 1; } return ret; } ast_sockaddr_set_port(&ha->addr, save_port); if (prev) { prev->next = ha; } else { ret = ha; } prev = ha; if (DEBUG_ATLEAST(3)) { debug_ha_sense_appended(ha); } } return ret; } struct ast_ha *ast_append_ha(const char *sense, const char *stuff, struct ast_ha *path, int *error) { return append_ha_core(sense, stuff, path, error, PARSE_PORT_FORBID); } struct ast_ha *ast_append_ha_with_port(const char *sense, const char *stuff, struct ast_ha *path, int *error) { return append_ha_core(sense, stuff, path, error, 0); } void ast_ha_join(const struct ast_ha *ha, struct ast_str **buf) { for (; ha; ha = ha->next) { const char *addr; if (ast_sockaddr_port(&ha->addr)) { addr = ast_sockaddr_stringify(&ha->addr); } else { addr = ast_sockaddr_stringify_addr(&ha->addr); } ast_str_append(buf, 0, "%s%s/", ha->sense == AST_SENSE_ALLOW ? "!" : "", addr); /* Separated to avoid duplicating stringified addresses. */ ast_str_append(buf, 0, "%s", ast_sockaddr_stringify_addr(&ha->netmask)); if (ha->next) { ast_str_append(buf, 0, ","); } } } void ast_ha_join_cidr(const struct ast_ha *ha, struct ast_str **buf) { for (; ha; ha = ha->next) { const char *addr = ast_sockaddr_stringify_addr(&ha->addr); ast_str_append(buf, 0, "%s%s/%d", ha->sense == AST_SENSE_ALLOW ? "!" : "", addr, ast_sockaddr_cidr_bits(&ha->netmask)); if (ha->next) { ast_str_append(buf, 0, ","); } } } static enum ast_acl_sense ast_apply_acl_internal(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr, const char *log_prefix) { struct ast_acl *acl; /* If the list is NULL, there are no rules, so we'll allow automatically. */ if (!acl_list) { return AST_SENSE_ALLOW; } AST_LIST_LOCK(acl_list); AST_LIST_TRAVERSE(acl_list, acl, list) { if (acl->is_invalid) { /* In this case, the baseline ACL shouldn't ever trigger this, but if that somehow happens, it'll still be shown. */ if (log_prefix) { ast_log(LOG_WARNING, "%sRejecting '%s' due to use of an invalid ACL '%s'.\n", log_prefix, ast_sockaddr_stringify_addr(addr), ast_strlen_zero(acl->name) ? "(BASELINE)" : acl->name); } AST_LIST_UNLOCK(acl_list); return AST_SENSE_DENY; } if (acl->acl) { if (ast_apply_ha(acl->acl, addr) == AST_SENSE_DENY) { if (log_prefix) { ast_log(LOG_NOTICE, "%sRejecting '%s' due to a failure to pass ACL '%s'\n", log_prefix, ast_sockaddr_stringify_addr(addr), ast_strlen_zero(acl->name) ? "(BASELINE)" : acl->name); } AST_LIST_UNLOCK(acl_list); return AST_SENSE_DENY; } } } AST_LIST_UNLOCK(acl_list); return AST_SENSE_ALLOW; } enum ast_acl_sense ast_apply_acl(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr, const char *purpose) { return ast_apply_acl_internal(acl_list, addr, purpose ?: ""); } enum ast_acl_sense ast_apply_acl_nolog(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr) { return ast_apply_acl_internal(acl_list, addr, NULL); } enum ast_acl_sense ast_apply_ha(const struct ast_ha *ha, const struct ast_sockaddr *addr) { /* Start optimistic */ enum ast_acl_sense res = AST_SENSE_ALLOW; const struct ast_ha *current_ha; for (current_ha = ha; current_ha; current_ha = current_ha->next) { struct ast_sockaddr result; struct ast_sockaddr mapped_addr; const struct ast_sockaddr *addr_to_use; uint16_t save_port; #if 0 /* debugging code */ char iabuf[INET_ADDRSTRLEN]; char iabuf2[INET_ADDRSTRLEN]; /* DEBUG */ ast_copy_string(iabuf, ast_sockaddr_stringify(addr), sizeof(iabuf)); ast_copy_string(iabuf2, ast_sockaddr_stringify(¤t_ha->addr), sizeof(iabuf2)); ast_debug(1, "##### Testing %s with %s\n", iabuf, iabuf2); #endif if (ast_sockaddr_is_ipv4(¤t_ha->addr)) { if (ast_sockaddr_is_ipv6(addr)) { if (ast_sockaddr_is_ipv4_mapped(addr)) { /* IPv4 ACLs apply to IPv4-mapped addresses */ if (!ast_sockaddr_ipv4_mapped(addr, &mapped_addr)) { ast_log(LOG_ERROR, "%s provided to ast_sockaddr_ipv4_mapped could not be converted. That shouldn't be possible.\n", ast_sockaddr_stringify(addr)); continue; } addr_to_use = &mapped_addr; } else { /* An IPv4 ACL does not apply to an IPv6 address */ continue; } } else { /* Address is IPv4 and ACL is IPv4. No biggie */ addr_to_use = addr; } } else { if (ast_sockaddr_is_ipv6(addr) && !ast_sockaddr_is_ipv4_mapped(addr)) { addr_to_use = addr; } else { /* Address is IPv4 or IPv4 mapped but ACL is IPv6. Skip */ continue; } } /* ast_sockaddr_apply_netmask() does not preserve the port, so we need to save and * restore it */ save_port = ast_sockaddr_port(addr_to_use); /* For each rule, if this address and the netmask = the net address apply the current rule */ if (ast_sockaddr_apply_netmask(addr_to_use, ¤t_ha->netmask, &result)) { /* Unlikely to happen since we know the address to be IPv4 or IPv6 */ continue; } ast_sockaddr_set_port(&result, save_port); if (!ast_sockaddr_cmp_addr(&result, ¤t_ha->addr) && (!ast_sockaddr_port(¤t_ha->addr) || ast_sockaddr_port(¤t_ha->addr) == ast_sockaddr_port(&result))) { res = current_ha->sense; } } return res; } static int resolve_first(struct ast_sockaddr *addr, const char *name, int flag, int family) { struct ast_sockaddr *addrs; int addrs_cnt; addrs_cnt = ast_sockaddr_resolve(&addrs, name, flag, family); if (addrs_cnt > 0) { if (addrs_cnt > 1) { ast_debug(1, "Multiple addresses. Using the first only\n"); } ast_sockaddr_copy(addr, &addrs[0]); ast_free(addrs); } else { ast_log(LOG_WARNING, "Unable to lookup '%s'\n", name); return -1; } return 0; } int ast_get_ip_or_srv(struct ast_sockaddr *addr, const char *hostname, const char *service) { char srv[256]; char host[256]; int srv_ret = 0; int tportno; if (service) { snprintf(srv, sizeof(srv), "%s.%s", service, hostname); if ((srv_ret = ast_get_srv(NULL, host, sizeof(host), &tportno, srv)) > 0) { hostname = host; } } if (resolve_first(addr, hostname, PARSE_PORT_FORBID, addr->ss.ss_family) != 0) { return -1; } if (srv_ret > 0) { ast_sockaddr_set_port(addr, tportno); } return 0; } struct dscp_codepoint { char *name; unsigned int space; }; /* IANA registered DSCP codepoints */ static const struct dscp_codepoint dscp_pool1[] = { { "CS0", 0x00 }, { "CS1", 0x08 }, { "CS2", 0x10 }, { "CS3", 0x18 }, { "CS4", 0x20 }, { "CS5", 0x28 }, { "CS6", 0x30 }, { "CS7", 0x38 }, { "AF11", 0x0A }, { "AF12", 0x0C }, { "AF13", 0x0E }, { "AF21", 0x12 }, { "AF22", 0x14 }, { "AF23", 0x16 }, { "AF31", 0x1A }, { "AF32", 0x1C }, { "AF33", 0x1E }, { "AF41", 0x22 }, { "AF42", 0x24 }, { "AF43", 0x26 }, { "EF", 0x2E }, }; int ast_str2cos(const char *value, unsigned int *cos) { int fval; if (sscanf(value, "%30d", &fval) == 1) { if (fval < 8) { *cos = fval; return 0; } } return -1; } int ast_str2tos(const char *value, unsigned int *tos) { int fval; unsigned int x; if (sscanf(value, "%30i", &fval) == 1) { *tos = fval & 0xFF; return 0; } for (x = 0; x < ARRAY_LEN(dscp_pool1); x++) { if (!strcasecmp(value, dscp_pool1[x].name)) { *tos = dscp_pool1[x].space << 2; return 0; } } return -1; } const char *ast_tos2str(unsigned int tos) { unsigned int x; for (x = 0; x < ARRAY_LEN(dscp_pool1); x++) { if (dscp_pool1[x].space == (tos >> 2)) { return dscp_pool1[x].name; } } return "unknown"; } int ast_get_ip(struct ast_sockaddr *addr, const char *hostname) { return ast_get_ip_or_srv(addr, hostname, NULL); } int ast_ouraddrfor(const struct ast_sockaddr *them, struct ast_sockaddr *us) { /* * We must create the errno string before creating the address * string because it could wipe out errno on the error return * paths. */ const char *sock_err; int port; int s; /* Preserve our original address port */ port = ast_sockaddr_port(us); s = socket(ast_sockaddr_is_ipv6(them) ? AF_INET6 : AF_INET, SOCK_DGRAM, 0); if (s < 0) { sock_err = ast_strdupa(strerror(errno)); ast_log(LOG_ERROR, "Cannot create socket to %s: %s\n", ast_sockaddr_stringify_addr(them), sock_err); return -1; } if (ast_connect(s, them)) { sock_err = ast_strdupa(strerror(errno)); ast_log(LOG_WARNING, "Cannot connect to %s: %s\n", ast_sockaddr_stringify_addr(them), sock_err); close(s); return -1; } if (ast_getsockname(s, us)) { sock_err = ast_strdupa(strerror(errno)); ast_log(LOG_WARNING, "Cannot get socket name for connection to %s: %s\n", ast_sockaddr_stringify_addr(them), sock_err); close(s); return -1; } close(s); ast_sockaddr_set_port(us, port); ast_debug(3, "For destination '%s', our source address is '%s'.\n", ast_strdupa(ast_sockaddr_stringify_addr(them)), ast_strdupa(ast_sockaddr_stringify_addr(us))); return 0; } int ast_find_ourip(struct ast_sockaddr *ourip, const struct ast_sockaddr *bindaddr, int family) { char ourhost[MAXHOSTNAMELEN] = ""; struct ast_sockaddr root; int res, port = ast_sockaddr_port(ourip); /* just use the bind address if it is nonzero */ if (!ast_sockaddr_is_any(bindaddr)) { ast_sockaddr_copy(ourip, bindaddr); ast_debug(3, "Attached to given IP address\n"); return 0; } /* try to use our hostname */ if (gethostname(ourhost, sizeof(ourhost) - 1)) { ast_log(LOG_WARNING, "Unable to get hostname\n"); } else { if (resolve_first(ourip, ourhost, PARSE_PORT_FORBID, family) == 0) { /* reset port since resolve_first wipes this out */ ast_sockaddr_set_port(ourip, port); return 0; } } ast_debug(3, "Trying to check A.ROOT-SERVERS.NET and get our IP address for that connection\n"); /* A.ROOT-SERVERS.NET. */ if (!resolve_first(&root, "A.ROOT-SERVERS.NET", PARSE_PORT_FORBID, 0) && !ast_ouraddrfor(&root, ourip)) { /* reset port since resolve_first wipes this out */ ast_sockaddr_set_port(ourip, port); return 0; } res = get_local_address(ourip); ast_sockaddr_set_port(ourip, port); return res; } void ast_ha_output(int fd, const struct ast_ha *ha, const char *prefix) { char addr[AST_SOCKADDR_BUFLEN]; char *mask; int index = 0; for (; ha; ha = ha->next, ++index) { strcpy(addr, ast_sockaddr_stringify_addr(&ha->addr)); mask = ast_sockaddr_stringify_addr(&ha->netmask); ast_cli(fd, "%s%3d: %s - %s/%s\n", prefix ?: "", index, ha->sense == AST_SENSE_ALLOW ? "allow" : " deny", addr, mask); } } void ast_acl_output(int fd, struct ast_acl_list *acl_list, const char *prefix) { struct ast_acl *acl; AST_LIST_LOCK(acl_list); AST_LIST_TRAVERSE(acl_list, acl, list) { ast_cli(fd, "%sACL: %s%s\n---------------------------------------------\n", prefix ?: "", ast_strlen_zero(acl->name) ? "(unnamed)" : acl->name, acl->is_realtime ? " (realtime)" : ""); ast_ha_output(fd, acl->acl, prefix); } AST_LIST_UNLOCK(acl_list); }