asterisk/tests/test_taskprocessor.c

991 lines
26 KiB
C
Raw Permalink Normal View History

2023-05-25 18:45:57 +00:00
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 2012-2013, Digium, Inc.
*
* Mark Michelson <mmichelson@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*!
* \file
* \brief taskprocessor unit tests
*
* \author Mark Michelson <mmichelson@digium.com>
*
*/
/*** MODULEINFO
<depend>TEST_FRAMEWORK</depend>
<support_level>core</support_level>
***/
#include "asterisk.h"
#include "asterisk/test.h"
#include "asterisk/taskprocessor.h"
#include "asterisk/module.h"
#include "asterisk/astobj2.h"
#include "asterisk/serializer.h"
#include "asterisk/threadpool.h"
/*!
* \brief userdata associated with baseline taskprocessor test
*/
struct task_data {
/* Condition used to signal to queuing thread that task was executed */
ast_cond_t cond;
/* Lock protecting the condition */
ast_mutex_t lock;
/*! Boolean indicating that the task was run */
int task_complete;
/*! Milliseconds to wait before returning */
unsigned long wait_time;
};
static void task_data_dtor(void *obj)
{
struct task_data *task_data = obj;
ast_mutex_destroy(&task_data->lock);
ast_cond_destroy(&task_data->cond);
}
/*! \brief Create a task_data object */
static struct task_data *task_data_create(void)
{
struct task_data *task_data =
ao2_alloc(sizeof(*task_data), task_data_dtor);
if (!task_data) {
return NULL;
}
ast_cond_init(&task_data->cond, NULL);
ast_mutex_init(&task_data->lock);
task_data->task_complete = 0;
task_data->wait_time = 0;
return task_data;
}
/*!
* \brief Queued task for baseline test.
*
* The task simply sets a boolean to indicate the
* task has been run and then signals a condition
* saying it's complete
*/
static int task(void *data)
{
struct task_data *task_data = data;
SCOPED_MUTEX(lock, &task_data->lock);
if (task_data->wait_time > 0) {
usleep(task_data->wait_time * 1000);
}
task_data->task_complete = 1;
ast_cond_signal(&task_data->cond);
return 0;
}
/*!
* \brief Wait for a task to execute.
*/
static int task_wait(struct task_data *task_data)
{
struct timeval start = ast_tvnow();
struct timespec end;
SCOPED_MUTEX(lock, &task_data->lock);
end.tv_sec = start.tv_sec + 30;
end.tv_nsec = start.tv_usec * 1000;
while (!task_data->task_complete) {
int res;
res = ast_cond_timedwait(&task_data->cond, &task_data->lock,
&end);
if (res == ETIMEDOUT) {
return -1;
}
}
return 0;
}
/*!
* \brief Baseline test for default taskprocessor
*
* This test ensures that when a task is added to a taskprocessor that
* has been allocated with a default listener that the task gets executed
* as expected
*/
AST_TEST_DEFINE(default_taskprocessor)
{
RAII_VAR(struct ast_taskprocessor *, tps, NULL, ast_taskprocessor_unreference);
RAII_VAR(struct task_data *, task_data, NULL, ao2_cleanup);
int res;
switch (cmd) {
case TEST_INIT:
info->name = "default_taskprocessor";
info->category = "/main/taskprocessor/";
info->summary = "Test of default taskprocessor";
info->description =
"Ensures that a queued task gets executed.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tps = ast_taskprocessor_get("test", TPS_REF_DEFAULT);
if (!tps) {
ast_test_status_update(test, "Unable to create test taskprocessor\n");
return AST_TEST_FAIL;
}
task_data = task_data_create();
if (!task_data) {
ast_test_status_update(test, "Unable to create task_data\n");
return AST_TEST_FAIL;
}
if (ast_taskprocessor_push(tps, task, task_data)) {
ast_test_status_update(test, "Failed to queue task\n");
return AST_TEST_FAIL;
}
res = task_wait(task_data);
if (res != 0) {
ast_test_status_update(test, "Queued task did not execute!\n");
return AST_TEST_FAIL;
}
return AST_TEST_PASS;
}
/*!
* \brief Baseline test for subsystem alert
*/
AST_TEST_DEFINE(subsystem_alert)
{
RAII_VAR(struct ast_taskprocessor *, tps, NULL, ast_taskprocessor_unreference);
#define TEST_DATA_ARRAY_SIZE 10
#define LOW_WATER_MARK 3
#define HIGH_WATER_MARK 6
struct task_data *task_data[(TEST_DATA_ARRAY_SIZE + 1)] = { 0 };
int res = 0;
int i;
long queue_count;
unsigned int alert_level;
unsigned int subsystem_alert_level;
switch (cmd) {
case TEST_INIT:
info->name = "subsystem_alert";
info->category = "/main/taskprocessor/";
info->summary = "Test of subsystem alerts";
info->description =
"Ensures alerts are generated properly.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tps = ast_taskprocessor_get("test_subsystem/test", TPS_REF_DEFAULT);
if (!tps) {
ast_test_status_update(test, "Unable to create test taskprocessor\n");
return AST_TEST_FAIL;
}
ast_taskprocessor_alert_set_levels(tps, LOW_WATER_MARK, HIGH_WATER_MARK);
ast_taskprocessor_suspend(tps);
for (i = 1; i <= TEST_DATA_ARRAY_SIZE; i++) {
task_data[i] = task_data_create();
if (!task_data[i]) {
ast_test_status_update(test, "Unable to create task_data\n");
res = -1;
goto data_cleanup;
}
task_data[i]->wait_time = 500;
ast_test_status_update(test, "Pushing task %d\n", i);
if (ast_taskprocessor_push(tps, task, task_data[i])) {
ast_test_status_update(test, "Failed to queue task\n");
res = -1;
goto data_cleanup;
}
queue_count = ast_taskprocessor_size(tps);
alert_level = ast_taskprocessor_alert_get();
subsystem_alert_level = ast_taskprocessor_get_subsystem_alert("test_subsystem");
if (queue_count == HIGH_WATER_MARK) {
if (subsystem_alert_level) {
ast_test_status_update(test, "Subsystem alert triggered correctly at %ld\n", queue_count);
}
if (alert_level) {
ast_test_status_update(test, "Global alert triggered correctly at %ld\n", queue_count);
}
} else if (queue_count < HIGH_WATER_MARK) {
if (subsystem_alert_level > 0) {
ast_test_status_update(test, "Subsystem alert triggered unexpectedly at %ld\n", queue_count);
res = -1;
}
if (alert_level > 0) {
ast_test_status_update(test, "Global alert triggered unexpectedly at %ld\n", queue_count);
res = -1;
}
} else {
if (subsystem_alert_level == 0) {
ast_test_status_update(test, "Subsystem alert failed to trigger at %ld\n", queue_count);
res = -1;
}
if (alert_level == 0) {
ast_test_status_update(test, "Global alert failed to trigger at %ld\n", queue_count);
res = -1;
}
}
}
ast_taskprocessor_unsuspend(tps);
for (i = 1; i <= TEST_DATA_ARRAY_SIZE; i++) {
ast_test_status_update(test, "Waiting on task %d\n", i);
if (task_wait(task_data[i])) {
ast_test_status_update(test, "Queued task '%d' did not execute!\n", i);
res = -1;
goto data_cleanup;
}
queue_count = ast_taskprocessor_size(tps);
alert_level = ast_taskprocessor_alert_get();
subsystem_alert_level = ast_taskprocessor_get_subsystem_alert("test_subsystem");
if (queue_count == LOW_WATER_MARK) {
if (!subsystem_alert_level) {
ast_test_status_update(test, "Subsystem alert cleared correctly at %ld\n", queue_count);
}
if (!alert_level) {
ast_test_status_update(test, "Global alert cleared correctly at %ld\n", queue_count);
}
} else if (queue_count > LOW_WATER_MARK) {
if (subsystem_alert_level == 0) {
ast_test_status_update(test, "Subsystem alert cleared unexpectedly at %ld\n", queue_count);
res = -1;
}
if (alert_level == 0) {
ast_test_status_update(test, "Global alert cleared unexpectedly at %ld\n", queue_count);
res = -1;
}
} else {
if (subsystem_alert_level > 0) {
ast_test_status_update(test, "Subsystem alert failed to clear at %ld\n", queue_count);
res = -1;
}
if (alert_level > 0) {
ast_test_status_update(test, "Global alert failed to clear at %ld\n", queue_count);
res = -1;
}
}
}
data_cleanup:
for (i = 1; i <= TEST_DATA_ARRAY_SIZE; i++) {
ao2_cleanup(task_data[i]);
}
return res ? AST_TEST_FAIL : AST_TEST_PASS;
}
#define NUM_TASKS 20000
/*!
* \brief Relevant data associated with taskprocessor load test
*/
static struct load_task_data {
/*! Condition used to indicate a task has completed executing */
ast_cond_t cond;
/*! Lock used to protect the condition */
ast_mutex_t lock;
/*! Counter of the number of completed tasks */
int tasks_completed;
/*! Storage for task-specific data */
int task_rand[NUM_TASKS];
} load_task_results;
/*!
* \brief a queued task to be used in the taskprocessor load test
*
* The task increments the number of tasks executed and puts the passed-in
* data into the next slot in the array of random data.
*/
static int load_task(void *data)
{
int *randdata = data;
SCOPED_MUTEX(lock, &load_task_results.lock);
load_task_results.task_rand[load_task_results.tasks_completed++] = *randdata;
ast_cond_signal(&load_task_results.cond);
return 0;
}
/*!
* \brief Load test for taskprocessor with default listener
*
* This test queues a large number of tasks, each with random data associated.
* The test ensures that all of the tasks are run and that the tasks are executed
* in the same order that they were queued
*/
AST_TEST_DEFINE(default_taskprocessor_load)
{
struct ast_taskprocessor *tps;
struct timeval start;
struct timespec ts;
enum ast_test_result_state res = AST_TEST_PASS;
int timedwait_res;
int i;
int rand_data[NUM_TASKS];
switch (cmd) {
case TEST_INIT:
info->name = "default_taskprocessor_load";
info->category = "/main/taskprocessor/";
info->summary = "Load test of default taskprocessor";
info->description =
"Ensure that a large number of queued tasks are executed in the proper order.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tps = ast_taskprocessor_get("test", TPS_REF_DEFAULT);
if (!tps) {
ast_test_status_update(test, "Unable to create test taskprocessor\n");
return AST_TEST_FAIL;
}
start = ast_tvnow();
ts.tv_sec = start.tv_sec + 60;
ts.tv_nsec = start.tv_usec * 1000;
ast_cond_init(&load_task_results.cond, NULL);
ast_mutex_init(&load_task_results.lock);
load_task_results.tasks_completed = 0;
for (i = 0; i < NUM_TASKS; ++i) {
rand_data[i] = ast_random();
if (ast_taskprocessor_push(tps, load_task, &rand_data[i])) {
ast_test_status_update(test, "Failed to queue task\n");
res = AST_TEST_FAIL;
goto test_end;
}
}
ast_mutex_lock(&load_task_results.lock);
while (load_task_results.tasks_completed < NUM_TASKS) {
timedwait_res = ast_cond_timedwait(&load_task_results.cond, &load_task_results.lock, &ts);
if (timedwait_res == ETIMEDOUT) {
break;
}
}
ast_mutex_unlock(&load_task_results.lock);
if (load_task_results.tasks_completed != NUM_TASKS) {
ast_test_status_update(test, "Unexpected number of tasks executed. Expected %d but got %d\n",
NUM_TASKS, load_task_results.tasks_completed);
res = AST_TEST_FAIL;
goto test_end;
}
for (i = 0; i < NUM_TASKS; ++i) {
if (rand_data[i] != load_task_results.task_rand[i]) {
ast_test_status_update(test, "Queued tasks did not execute in order\n");
res = AST_TEST_FAIL;
goto test_end;
}
}
test_end:
tps = ast_taskprocessor_unreference(tps);
ast_mutex_destroy(&load_task_results.lock);
ast_cond_destroy(&load_task_results.cond);
return res;
}
/*!
* \brief Private data for the test taskprocessor listener
*/
struct test_listener_pvt {
/* Counter of number of tasks pushed to the queue */
int num_pushed;
/* Counter of number of times the queue was emptied */
int num_emptied;
/* Counter of number of times that a pushed task occurred on an empty queue */
int num_was_empty;
/* Boolean indicating whether the shutdown callback was called */
int shutdown;
};
/*!
* \brief test taskprocessor listener's alloc callback
*/
static void *test_listener_pvt_alloc(void)
{
struct test_listener_pvt *pvt;
pvt = ast_calloc(1, sizeof(*pvt));
return pvt;
}
/*!
* \brief test taskprocessor listener's start callback
*/
static int test_start(struct ast_taskprocessor_listener *listener)
{
return 0;
}
/*!
* \brief test taskprocessor listener's task_pushed callback
*
* Adjusts private data's stats as indicated by the parameters.
*/
static void test_task_pushed(struct ast_taskprocessor_listener *listener, int was_empty)
{
struct test_listener_pvt *pvt = ast_taskprocessor_listener_get_user_data(listener);
++pvt->num_pushed;
if (was_empty) {
++pvt->num_was_empty;
}
}
/*!
* \brief test taskprocessor listener's emptied callback.
*/
static void test_emptied(struct ast_taskprocessor_listener *listener)
{
struct test_listener_pvt *pvt = ast_taskprocessor_listener_get_user_data(listener);
++pvt->num_emptied;
}
/*!
* \brief test taskprocessor listener's shutdown callback.
*/
static void test_shutdown(struct ast_taskprocessor_listener *listener)
{
struct test_listener_pvt *pvt = ast_taskprocessor_listener_get_user_data(listener);
pvt->shutdown = 1;
}
static const struct ast_taskprocessor_listener_callbacks test_callbacks = {
.start = test_start,
.task_pushed = test_task_pushed,
.emptied = test_emptied,
.shutdown = test_shutdown,
};
/*!
* \brief Queued task for taskprocessor listener test.
*
* Does nothing.
*/
static int listener_test_task(void *ignore)
{
return 0;
}
/*!
* \brief helper to ensure that statistics the listener is keeping are what we expect
*
* \param test The currently-running test
* \param pvt The private data for the taskprocessor listener
* \param num_pushed The expected current number of tasks pushed to the processor
* \param num_emptied The expected current number of times the taskprocessor has become empty
* \param num_was_empty The expected current number of times that tasks were pushed to an empty taskprocessor
* \retval -1 Stats were not as expected
* \retval 0 Stats were as expected
*/
static int check_stats(struct ast_test *test, const struct test_listener_pvt *pvt, int num_pushed, int num_emptied, int num_was_empty)
{
if (pvt->num_pushed != num_pushed) {
ast_test_status_update(test, "Unexpected number of tasks pushed. Expected %d but got %d\n",
num_pushed, pvt->num_pushed);
return -1;
}
if (pvt->num_emptied != num_emptied) {
ast_test_status_update(test, "Unexpected number of empties. Expected %d but got %d\n",
num_emptied, pvt->num_emptied);
return -1;
}
if (pvt->num_was_empty != num_was_empty) {
ast_test_status_update(test, "Unexpected number of empties. Expected %d but got %d\n",
num_was_empty, pvt->num_emptied);
return -1;
}
return 0;
}
/*!
* \brief Test for a taskprocessor with custom listener.
*
* This test pushes tasks to a taskprocessor with a custom listener, executes the tasks,
* and destroys the taskprocessor.
*
* The test ensures that the listener's callbacks are called when expected and that the data
* being passed in is accurate.
*/
AST_TEST_DEFINE(taskprocessor_listener)
{
struct ast_taskprocessor *tps = NULL;
struct ast_taskprocessor_listener *listener = NULL;
struct test_listener_pvt *pvt = NULL;
enum ast_test_result_state res = AST_TEST_PASS;
switch (cmd) {
case TEST_INIT:
info->name = "taskprocessor_listener";
info->category = "/main/taskprocessor/";
info->summary = "Test of taskprocessor listeners";
info->description =
"Ensures that listener callbacks are called when expected.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
pvt = test_listener_pvt_alloc();
if (!pvt) {
ast_test_status_update(test, "Unable to allocate test taskprocessor listener user data\n");
return AST_TEST_FAIL;
}
listener = ast_taskprocessor_listener_alloc(&test_callbacks, pvt);
if (!listener) {
ast_test_status_update(test, "Unable to allocate test taskprocessor listener\n");
res = AST_TEST_FAIL;
goto test_exit;
}
tps = ast_taskprocessor_create_with_listener("test_listener", listener);
if (!tps) {
ast_test_status_update(test, "Unable to allocate test taskprocessor\n");
res = AST_TEST_FAIL;
goto test_exit;
}
if (ast_taskprocessor_push(tps, listener_test_task, NULL)) {
ast_test_status_update(test, "Failed to queue task\n");
res = AST_TEST_FAIL;
goto test_exit;
}
if (check_stats(test, pvt, 1, 0, 1) < 0) {
res = AST_TEST_FAIL;
goto test_exit;
}
if (ast_taskprocessor_push(tps, listener_test_task, NULL)) {
ast_test_status_update(test, "Failed to queue task\n");
res = AST_TEST_FAIL;
goto test_exit;
}
if (check_stats(test, pvt, 2, 0, 1) < 0) {
res = AST_TEST_FAIL;
goto test_exit;
}
ast_taskprocessor_execute(tps);
if (check_stats(test, pvt, 2, 0, 1) < 0) {
res = AST_TEST_FAIL;
goto test_exit;
}
ast_taskprocessor_execute(tps);
if (check_stats(test, pvt, 2, 1, 1) < 0) {
res = AST_TEST_FAIL;
goto test_exit;
}
tps = ast_taskprocessor_unreference(tps);
if (!pvt->shutdown) {
res = AST_TEST_FAIL;
goto test_exit;
}
test_exit:
ao2_cleanup(listener);
/* This is safe even if tps is NULL */
ast_taskprocessor_unreference(tps);
ast_free(pvt);
return res;
}
struct shutdown_data {
ast_cond_t in;
ast_cond_t out;
ast_mutex_t lock;
int task_complete;
int task_started;
int task_stop_waiting;
};
static void shutdown_data_dtor(void *data)
{
struct shutdown_data *shutdown_data = data;
ast_mutex_destroy(&shutdown_data->lock);
ast_cond_destroy(&shutdown_data->in);
ast_cond_destroy(&shutdown_data->out);
}
static struct shutdown_data *shutdown_data_create(int dont_wait)
{
RAII_VAR(struct shutdown_data *, shutdown_data, NULL, ao2_cleanup);
shutdown_data = ao2_alloc(sizeof(*shutdown_data), shutdown_data_dtor);
if (!shutdown_data) {
return NULL;
}
ast_mutex_init(&shutdown_data->lock);
ast_cond_init(&shutdown_data->in, NULL);
ast_cond_init(&shutdown_data->out, NULL);
shutdown_data->task_stop_waiting = dont_wait;
ao2_ref(shutdown_data, +1);
return shutdown_data;
}
static int shutdown_task_exec(void *data)
{
struct shutdown_data *shutdown_data = data;
SCOPED_MUTEX(lock, &shutdown_data->lock);
shutdown_data->task_started = 1;
ast_cond_signal(&shutdown_data->out);
while (!shutdown_data->task_stop_waiting) {
ast_cond_wait(&shutdown_data->in, &shutdown_data->lock);
}
shutdown_data->task_complete = 1;
ast_cond_signal(&shutdown_data->out);
return 0;
}
static int shutdown_waitfor_completion(struct shutdown_data *shutdown_data)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
SCOPED_MUTEX(lock, &shutdown_data->lock);
while (!shutdown_data->task_complete) {
if (ast_cond_timedwait(&shutdown_data->out, &shutdown_data->lock, &end) == ETIMEDOUT) {
break;
}
}
return shutdown_data->task_complete;
}
static int shutdown_has_completed(struct shutdown_data *shutdown_data)
{
SCOPED_MUTEX(lock, &shutdown_data->lock);
return shutdown_data->task_complete;
}
static int shutdown_waitfor_start(struct shutdown_data *shutdown_data)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
SCOPED_MUTEX(lock, &shutdown_data->lock);
while (!shutdown_data->task_started) {
if (ast_cond_timedwait(&shutdown_data->out, &shutdown_data->lock, &end) == ETIMEDOUT) {
break;
}
}
return shutdown_data->task_started;
}
static void shutdown_poke(struct shutdown_data *shutdown_data)
{
SCOPED_MUTEX(lock, &shutdown_data->lock);
shutdown_data->task_stop_waiting = 1;
ast_cond_signal(&shutdown_data->in);
}
static void *tps_shutdown_thread(void *data)
{
struct ast_taskprocessor *tps = data;
ast_taskprocessor_unreference(tps);
return NULL;
}
AST_TEST_DEFINE(taskprocessor_shutdown)
{
RAII_VAR(struct ast_taskprocessor *, tps, NULL, ast_taskprocessor_unreference);
RAII_VAR(struct shutdown_data *, task1, NULL, ao2_cleanup);
RAII_VAR(struct shutdown_data *, task2, NULL, ao2_cleanup);
int push_res;
int wait_res;
int pthread_res;
pthread_t shutdown_thread;
switch (cmd) {
case TEST_INIT:
info->name = "taskprocessor_shutdown";
info->category = "/main/taskprocessor/";
info->summary = "Test of taskprocessor shutdown sequence";
info->description =
"Ensures that all tasks run to completion after the taskprocessor has been unref'ed.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tps = ast_taskprocessor_get("test_shutdown", TPS_REF_DEFAULT);
task1 = shutdown_data_create(0); /* task1 waits to be poked */
task2 = shutdown_data_create(1); /* task2 waits for nothing */
if (!tps || !task1 || !task2) {
ast_test_status_update(test, "Allocation error\n");
return AST_TEST_FAIL;
}
push_res = ast_taskprocessor_push(tps, shutdown_task_exec, task1);
if (push_res != 0) {
ast_test_status_update(test, "Could not push task1\n");
return AST_TEST_FAIL;
}
push_res = ast_taskprocessor_push(tps, shutdown_task_exec, task2);
if (push_res != 0) {
ast_test_status_update(test, "Could not push task2\n");
return AST_TEST_FAIL;
}
wait_res = shutdown_waitfor_start(task1);
if (!wait_res) {
ast_test_status_update(test, "Task1 didn't start\n");
return AST_TEST_FAIL;
}
pthread_res = ast_pthread_create(&shutdown_thread, NULL, tps_shutdown_thread, tps);
if (pthread_res != 0) {
ast_test_status_update(test, "Failed to create shutdown thread\n");
return AST_TEST_FAIL;
}
tps = NULL;
/* Wakeup task1; it should complete */
shutdown_poke(task1);
wait_res = shutdown_waitfor_completion(task1);
if (!wait_res) {
ast_test_status_update(test, "Task1 didn't complete\n");
return AST_TEST_FAIL;
}
/* Wait for shutdown to complete */
pthread_join(shutdown_thread, NULL);
/* Should have also completed task2 */
wait_res = shutdown_has_completed(task2);
if (!wait_res) {
ast_test_status_update(test, "Task2 didn't finish\n");
return AST_TEST_FAIL;
}
return AST_TEST_PASS;
}
static int local_task_exe(struct ast_taskprocessor_local *local)
{
int *local_data = local->local_data;
struct task_data *task_data = local->data;
*local_data = 1;
task(task_data);
return 0;
}
AST_TEST_DEFINE(taskprocessor_push_local)
{
RAII_VAR(struct ast_taskprocessor *, tps, NULL,
ast_taskprocessor_unreference);
RAII_VAR(struct task_data *, task_data, NULL, ao2_cleanup);
int local_data;
int res;
switch (cmd) {
case TEST_INIT:
info->name = __func__;
info->category = "/main/taskprocessor/";
info->summary = "Test of pushing local data";
info->description =
"Ensures that local data is passed along.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tps = ast_taskprocessor_get("test", TPS_REF_DEFAULT);
if (!tps) {
ast_test_status_update(test, "Unable to create test taskprocessor\n");
return AST_TEST_FAIL;
}
task_data = task_data_create();
if (!task_data) {
ast_test_status_update(test, "Unable to create task_data\n");
return AST_TEST_FAIL;
}
local_data = 0;
ast_taskprocessor_set_local(tps, &local_data);
if (ast_taskprocessor_push_local(tps, local_task_exe, task_data)) {
ast_test_status_update(test, "Failed to queue task\n");
return AST_TEST_FAIL;
}
res = task_wait(task_data);
if (res != 0) {
ast_test_status_update(test, "Queued task did not execute!\n");
return AST_TEST_FAIL;
}
if (local_data != 1) {
ast_test_status_update(test,
"Queued task did not set local_data!\n");
return AST_TEST_FAIL;
}
return AST_TEST_PASS;
}
/*!
* \brief Baseline test for a serializer pool
*
* This test ensures that when a task is added to a taskprocessor that
* has been allocated with a default listener that the task gets executed
* as expected
*/
AST_TEST_DEFINE(serializer_pool)
{
RAII_VAR(struct ast_threadpool *, threadpool, NULL, ast_threadpool_shutdown);
RAII_VAR(struct ast_serializer_pool *, serializer_pool, NULL, ast_serializer_pool_destroy);
RAII_VAR(struct task_data *, task_data, NULL, ao2_cleanup);
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 1,
.max_size = 0,
};
/* struct ast_taskprocessor *tps; */
switch (cmd) {
case TEST_INIT:
info->name = "serializer_pool";
info->category = "/main/taskprocessor/";
info->summary = "Test using a serializer pool";
info->description =
"Ensures that a queued task gets executed.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
ast_test_validate(test, threadpool = ast_threadpool_create("test", NULL, &options));
ast_test_validate(test, serializer_pool = ast_serializer_pool_create(
"test/test", 5, threadpool, 2)); /* 2 second shutdown group time out */
ast_test_validate(test, !strcmp(ast_serializer_pool_name(serializer_pool), "test/test"));
ast_test_validate(test, !ast_serializer_pool_set_alerts(serializer_pool, 5, 0));
ast_test_validate(test, task_data = task_data_create());
task_data->wait_time = 4000; /* task takes 4 seconds */
ast_test_validate(test, !ast_taskprocessor_push(
ast_serializer_pool_get(serializer_pool), task, task_data));
if (!ast_serializer_pool_destroy(serializer_pool)) {
ast_test_status_update(test, "Unexpected pool destruction!\n");
/*
* The pool should have timed out, so if it destruction reports success
* we need to fail.
*/
serializer_pool = NULL;
return AST_TEST_FAIL;
}
ast_test_validate(test, !task_wait(task_data));
/* The first attempt should have failed. Second try should destroy successfully */
if (ast_serializer_pool_destroy(serializer_pool)) {
ast_test_status_update(test, "Unable to destroy serializer pool in allotted time!\n");
/*
* If this fails we'll try again on return to hopefully avoid a memory leak.
* If it again times out a third time, well not much we can do.
*/
return AST_TEST_FAIL;
}
/* Test passed, so set pool to NULL to avoid "re-running" destroy */
serializer_pool = NULL;
return AST_TEST_PASS;
}
static int unload_module(void)
{
ast_test_unregister(default_taskprocessor);
ast_test_unregister(default_taskprocessor_load);
ast_test_unregister(subsystem_alert);
ast_test_unregister(taskprocessor_listener);
ast_test_unregister(taskprocessor_shutdown);
ast_test_unregister(taskprocessor_push_local);
ast_test_unregister(serializer_pool);
return 0;
}
static int load_module(void)
{
ast_test_register(default_taskprocessor);
ast_test_register(default_taskprocessor_load);
ast_test_register(subsystem_alert);
ast_test_register(taskprocessor_listener);
ast_test_register(taskprocessor_shutdown);
ast_test_register(taskprocessor_push_local);
ast_test_register(serializer_pool);
return AST_MODULE_LOAD_SUCCESS;
}
AST_MODULE_INFO_STANDARD(ASTERISK_GPL_KEY, "taskprocessor test module");