asterisk/main/sched.c

869 lines
21 KiB
C
Raw Permalink Normal View History

2023-05-25 18:45:57 +00:00
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2010, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
* Russell Bryant <russell@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Scheduler Routines (from cheops-NG)
*
* \author Mark Spencer <markster@digium.com>
*/
/*** MODULEINFO
<support_level>core</support_level>
***/
#include "asterisk.h"
#ifdef DEBUG_SCHEDULER
#define DEBUG(a) a
#else
#define DEBUG(a)
#endif
#include <sys/time.h>
#include "asterisk/sched.h"
#include "asterisk/channel.h"
#include "asterisk/lock.h"
#include "asterisk/utils.h"
#include "asterisk/heap.h"
#include "asterisk/threadstorage.h"
/*!
* \brief Max num of schedule structs
*
* \note The max number of schedule structs to keep around
* for use. Undefine to disable schedule structure
* caching. (Only disable this on very low memory
* machines)
*/
#define SCHED_MAX_CACHE 128
AST_THREADSTORAGE(last_del_id);
/*!
* \brief Scheduler ID holder
*
* These form a queue on a scheduler context. When a new
* scheduled item is created, a sched_id is popped off the
* queue and its id is assigned to the new scheduled item.
* When the scheduled task is complete, the sched_id on that
* task is then pushed to the back of the queue to be re-used
* on some future scheduled item.
*/
struct sched_id {
/*! Immutable ID number that is copied onto the scheduled task */
int id;
AST_LIST_ENTRY(sched_id) list;
};
struct sched {
AST_LIST_ENTRY(sched) list;
/*! The ID that has been popped off the scheduler context's queue */
struct sched_id *sched_id;
struct timeval when; /*!< Absolute time event should take place */
/*!
* \brief Tie breaker in case the when is the same for multiple entries.
*
* \note The oldest expiring entry in the scheduler heap goes first.
* This is possible when multiple events are scheduled to expire at
* the same time by internal coding.
*/
unsigned int tie_breaker;
int resched; /*!< When to reschedule */
int variable; /*!< Use return value from callback to reschedule */
const void *data; /*!< Data */
ast_sched_cb callback; /*!< Callback */
ssize_t __heap_index;
/*!
* Used to synchronize between thread running a task and thread
* attempting to delete a task
*/
ast_cond_t cond;
/*! Indication that a running task was deleted. */
unsigned int deleted:1;
/*! Indication that a running task was rescheduled. */
unsigned int rescheduled:1;
};
struct sched_thread {
pthread_t thread;
ast_cond_t cond;
unsigned int stop:1;
};
struct ast_sched_context {
ast_mutex_t lock;
unsigned int eventcnt; /*!< Number of events processed */
unsigned int highwater; /*!< highest count so far */
/*! Next tie breaker in case events expire at the same time. */
unsigned int tie_breaker;
struct ast_heap *sched_heap;
struct sched_thread *sched_thread;
/*! The scheduled task that is currently executing */
struct sched *currently_executing;
/*! Valid while currently_executing is not NULL */
pthread_t executing_thread_id;
#ifdef SCHED_MAX_CACHE
AST_LIST_HEAD_NOLOCK(, sched) schedc; /*!< Cache of unused schedule structures and how many */
unsigned int schedccnt;
#endif
/*! Queue of scheduler task IDs to assign */
AST_LIST_HEAD_NOLOCK(, sched_id) id_queue;
/*! The number of IDs in the id_queue */
int id_queue_size;
};
static void *sched_run(void *data)
{
struct ast_sched_context *con = data;
while (!con->sched_thread->stop) {
int ms;
struct timespec ts = {
.tv_sec = 0,
};
ast_mutex_lock(&con->lock);
if (con->sched_thread->stop) {
ast_mutex_unlock(&con->lock);
return NULL;
}
ms = ast_sched_wait(con);
if (ms == -1) {
ast_cond_wait(&con->sched_thread->cond, &con->lock);
} else {
struct timeval tv;
tv = ast_tvadd(ast_tvnow(), ast_samp2tv(ms, 1000));
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
ast_cond_timedwait(&con->sched_thread->cond, &con->lock, &ts);
}
ast_mutex_unlock(&con->lock);
if (con->sched_thread->stop) {
return NULL;
}
ast_sched_runq(con);
}
return NULL;
}
static void sched_thread_destroy(struct ast_sched_context *con)
{
if (!con->sched_thread) {
return;
}
if (con->sched_thread->thread != AST_PTHREADT_NULL) {
ast_mutex_lock(&con->lock);
con->sched_thread->stop = 1;
ast_cond_signal(&con->sched_thread->cond);
ast_mutex_unlock(&con->lock);
pthread_join(con->sched_thread->thread, NULL);
con->sched_thread->thread = AST_PTHREADT_NULL;
}
ast_cond_destroy(&con->sched_thread->cond);
ast_free(con->sched_thread);
con->sched_thread = NULL;
}
int ast_sched_start_thread(struct ast_sched_context *con)
{
struct sched_thread *st;
if (con->sched_thread) {
ast_log(LOG_ERROR, "Thread already started on this scheduler context\n");
return -1;
}
if (!(st = ast_calloc(1, sizeof(*st)))) {
return -1;
}
ast_cond_init(&st->cond, NULL);
st->thread = AST_PTHREADT_NULL;
con->sched_thread = st;
if (ast_pthread_create_background(&st->thread, NULL, sched_run, con)) {
ast_log(LOG_ERROR, "Failed to create scheduler thread\n");
sched_thread_destroy(con);
return -1;
}
return 0;
}
static int sched_time_cmp(void *va, void *vb)
{
struct sched *a = va;
struct sched *b = vb;
int cmp;
cmp = ast_tvcmp(b->when, a->when);
if (!cmp) {
cmp = b->tie_breaker - a->tie_breaker;
}
return cmp;
}
struct ast_sched_context *ast_sched_context_create(void)
{
struct ast_sched_context *tmp;
if (!(tmp = ast_calloc(1, sizeof(*tmp)))) {
return NULL;
}
ast_mutex_init(&tmp->lock);
tmp->eventcnt = 1;
AST_LIST_HEAD_INIT_NOLOCK(&tmp->id_queue);
if (!(tmp->sched_heap = ast_heap_create(8, sched_time_cmp,
offsetof(struct sched, __heap_index)))) {
ast_sched_context_destroy(tmp);
return NULL;
}
return tmp;
}
static void sched_free(struct sched *task)
{
/* task->sched_id will be NULL most of the time, but when the
* scheduler context shuts down, it will free all scheduled
* tasks, and in that case, the task->sched_id will be non-NULL
*/
ast_free(task->sched_id);
ast_cond_destroy(&task->cond);
ast_free(task);
}
void ast_sched_context_destroy(struct ast_sched_context *con)
{
struct sched *s;
struct sched_id *sid;
sched_thread_destroy(con);
con->sched_thread = NULL;
ast_mutex_lock(&con->lock);
#ifdef SCHED_MAX_CACHE
while ((s = AST_LIST_REMOVE_HEAD(&con->schedc, list))) {
sched_free(s);
}
#endif
if (con->sched_heap) {
while ((s = ast_heap_pop(con->sched_heap))) {
sched_free(s);
}
ast_heap_destroy(con->sched_heap);
con->sched_heap = NULL;
}
while ((sid = AST_LIST_REMOVE_HEAD(&con->id_queue, list))) {
ast_free(sid);
}
ast_mutex_unlock(&con->lock);
ast_mutex_destroy(&con->lock);
ast_free(con);
}
#define ID_QUEUE_INCREMENT 16
/*!
* \brief Add new scheduler IDs to the queue.
*
* \retval The number of IDs added to the queue
*/
static int add_ids(struct ast_sched_context *con)
{
int new_size;
int original_size;
int i;
original_size = con->id_queue_size;
/* So we don't go overboard with the mallocs here, we'll just up
* the size of the list by a fixed amount each time instead of
* multiplying the size by any particular factor
*/
new_size = original_size + ID_QUEUE_INCREMENT;
if (new_size < 0) {
/* Overflow. Cap it at INT_MAX. */
new_size = INT_MAX;
}
for (i = original_size; i < new_size; ++i) {
struct sched_id *new_id;
new_id = ast_calloc(1, sizeof(*new_id));
if (!new_id) {
break;
}
/*
* According to the API doxygen a sched ID of 0 is valid.
* Unfortunately, 0 was never returned historically and
* several users incorrectly coded usage of the returned
* sched ID assuming that 0 was invalid.
*/
new_id->id = ++con->id_queue_size;
AST_LIST_INSERT_TAIL(&con->id_queue, new_id, list);
}
return con->id_queue_size - original_size;
}
static int set_sched_id(struct ast_sched_context *con, struct sched *new_sched)
{
if (AST_LIST_EMPTY(&con->id_queue) && (add_ids(con) == 0)) {
return -1;
}
new_sched->sched_id = AST_LIST_REMOVE_HEAD(&con->id_queue, list);
return 0;
}
static void sched_release(struct ast_sched_context *con, struct sched *tmp)
{
if (tmp->sched_id) {
AST_LIST_INSERT_TAIL(&con->id_queue, tmp->sched_id, list);
tmp->sched_id = NULL;
}
/*
* Add to the cache, or just free() if we
* already have too many cache entries
*/
#ifdef SCHED_MAX_CACHE
if (con->schedccnt < SCHED_MAX_CACHE) {
AST_LIST_INSERT_HEAD(&con->schedc, tmp, list);
con->schedccnt++;
} else
#endif
sched_free(tmp);
}
static struct sched *sched_alloc(struct ast_sched_context *con)
{
struct sched *tmp;
/*
* We keep a small cache of schedule entries
* to minimize the number of necessary malloc()'s
*/
#ifdef SCHED_MAX_CACHE
if ((tmp = AST_LIST_REMOVE_HEAD(&con->schedc, list))) {
con->schedccnt--;
} else
#endif
{
tmp = ast_calloc(1, sizeof(*tmp));
if (!tmp) {
return NULL;
}
ast_cond_init(&tmp->cond, NULL);
}
if (set_sched_id(con, tmp)) {
sched_release(con, tmp);
return NULL;
}
return tmp;
}
void ast_sched_clean_by_callback(struct ast_sched_context *con, ast_sched_cb match, ast_sched_cb cleanup_cb)
{
int i = 1;
struct sched *current;
ast_mutex_lock(&con->lock);
while ((current = ast_heap_peek(con->sched_heap, i))) {
if (current->callback != match) {
i++;
continue;
}
ast_heap_remove(con->sched_heap, current);
cleanup_cb(current->data);
sched_release(con, current);
}
ast_mutex_unlock(&con->lock);
}
/*! \brief
* Return the number of milliseconds
* until the next scheduled event
*/
int ast_sched_wait(struct ast_sched_context *con)
{
int ms;
struct sched *s;
DEBUG(ast_debug(1, "ast_sched_wait()\n"));
ast_mutex_lock(&con->lock);
if ((s = ast_heap_peek(con->sched_heap, 1))) {
ms = ast_tvdiff_ms(s->when, ast_tvnow());
if (ms < 0) {
ms = 0;
}
} else {
ms = -1;
}
ast_mutex_unlock(&con->lock);
return ms;
}
/*! \brief
* Take a sched structure and put it in the
* queue, such that the soonest event is
* first in the list.
*/
static void schedule(struct ast_sched_context *con, struct sched *s)
{
size_t size;
size = ast_heap_size(con->sched_heap);
/* Record the largest the scheduler heap became for reporting purposes. */
if (con->highwater <= size) {
con->highwater = size + 1;
}
/* Determine the tie breaker value for the new entry. */
if (size) {
++con->tie_breaker;
} else {
/*
* Restart the sequence for the first entry to make integer
* roll over more unlikely.
*/
con->tie_breaker = 0;
}
s->tie_breaker = con->tie_breaker;
ast_heap_push(con->sched_heap, s);
}
/*! \brief
* given the last event *tv and the offset in milliseconds 'when',
* computes the next value,
*/
static void sched_settime(struct timeval *t, int when)
{
struct timeval now = ast_tvnow();
if (when < 0) {
/*
* A negative when value is likely a bug as it
* represents a VERY large timeout time.
*/
ast_log(LOG_WARNING,
"Bug likely: Negative time interval %d (interpreted as %u ms) requested!\n",
when, (unsigned int) when);
ast_assert(0);
}
/*ast_debug(1, "TV -> %lu,%lu\n", tv->tv_sec, tv->tv_usec);*/
if (ast_tvzero(*t)) /* not supplied, default to now */
*t = now;
*t = ast_tvadd(*t, ast_samp2tv(when, 1000));
if (ast_tvcmp(*t, now) < 0) {
*t = now;
}
}
int ast_sched_replace_variable(int old_id, struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data, int variable)
{
/* 0 means the schedule item is new; do not delete */
if (old_id > 0) {
AST_SCHED_DEL(con, old_id);
}
return ast_sched_add_variable(con, when, callback, data, variable);
}
/*! \brief
* Schedule callback(data) to happen when ms into the future
*/
int ast_sched_add_variable(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data, int variable)
{
struct sched *tmp;
int res = -1;
DEBUG(ast_debug(1, "ast_sched_add()\n"));
ast_mutex_lock(&con->lock);
if ((tmp = sched_alloc(con))) {
con->eventcnt++;
tmp->callback = callback;
tmp->data = data;
tmp->resched = when;
tmp->variable = variable;
tmp->when = ast_tv(0, 0);
tmp->deleted = 0;
sched_settime(&tmp->when, when);
schedule(con, tmp);
res = tmp->sched_id->id;
}
#ifdef DUMP_SCHEDULER
/* Dump contents of the context while we have the lock so nothing gets screwed up by accident. */
ast_sched_dump(con);
#endif
if (con->sched_thread) {
ast_cond_signal(&con->sched_thread->cond);
}
ast_mutex_unlock(&con->lock);
return res;
}
int ast_sched_replace(int old_id, struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data)
{
if (old_id > -1) {
AST_SCHED_DEL(con, old_id);
}
return ast_sched_add(con, when, callback, data);
}
int ast_sched_add(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data)
{
return ast_sched_add_variable(con, when, callback, data, 0);
}
static struct sched *sched_find(struct ast_sched_context *con, int id)
{
int x;
size_t heap_size;
heap_size = ast_heap_size(con->sched_heap);
for (x = 1; x <= heap_size; x++) {
struct sched *cur = ast_heap_peek(con->sched_heap, x);
if (cur->sched_id->id == id) {
return cur;
}
}
return NULL;
}
const void *ast_sched_find_data(struct ast_sched_context *con, int id)
{
struct sched *s;
const void *data = NULL;
ast_mutex_lock(&con->lock);
s = sched_find(con, id);
if (s) {
data = s->data;
}
ast_mutex_unlock(&con->lock);
return data;
}
/*! \brief
* Delete the schedule entry with number
* "id". It's nearly impossible that there
* would be two or more in the list with that
* id.
* Deprecated in favor of ast_sched_del_nonrunning
* which checks running event status.
*/
int ast_sched_del(struct ast_sched_context *con, int id)
{
return ast_sched_del_nonrunning(con, id) ? -1 : 0;
}
/*! \brief
* Delete the schedule entry with number "id".
* If running, wait for the task to complete,
* check to see if it is rescheduled then
* schedule the release.
* It's nearly impossible that there would be
* two or more in the list with that id.
*/
int ast_sched_del_nonrunning(struct ast_sched_context *con, int id)
{
struct sched *s = NULL;
int *last_id = ast_threadstorage_get(&last_del_id, sizeof(int));
int res = 0;
DEBUG(ast_debug(1, "ast_sched_del(%d)\n", id));
if (id < 0) {
return 0;
}
ast_mutex_lock(&con->lock);
s = sched_find(con, id);
if (s) {
if (!ast_heap_remove(con->sched_heap, s)) {
ast_log(LOG_WARNING,"sched entry %d not in the sched heap?\n", s->sched_id->id);
}
sched_release(con, s);
} else if (con->currently_executing && (id == con->currently_executing->sched_id->id)) {
if (con->executing_thread_id == pthread_self()) {
/* The scheduled callback is trying to delete itself.
* Not good as that is a deadlock. */
ast_log(LOG_ERROR,
"BUG! Trying to delete sched %d from within the callback %p. "
"Ignoring so we don't deadlock\n",
id, con->currently_executing->callback);
ast_log_backtrace();
/* We'll return -1 below because s is NULL.
* The caller will rightly assume that the unscheduling failed. */
} else {
s = con->currently_executing;
s->deleted = 1;
/* Wait for executing task to complete so that the caller of
* ast_sched_del() does not free memory out from under the task. */
while (con->currently_executing && (id == con->currently_executing->sched_id->id)) {
ast_cond_wait(&s->cond, &con->lock);
}
/* This is not rescheduled so the caller of ast_sched_del_nonrunning needs to know
* that it was still deleted
*/
if (!s->rescheduled) {
res = -2;
}
/* ast_sched_runq knows we are waiting on this item and is passing responsibility for
* its destruction to us
*/
sched_release(con, s);
s = NULL;
}
}
#ifdef DUMP_SCHEDULER
/* Dump contents of the context while we have the lock so nothing gets screwed up by accident. */
ast_sched_dump(con);
#endif
if (con->sched_thread) {
ast_cond_signal(&con->sched_thread->cond);
}
ast_mutex_unlock(&con->lock);
if(res == -2){
return res;
}
else if (!s && *last_id != id) {
ast_debug(1, "Attempted to delete nonexistent schedule entry %d!\n", id);
/* Removing nonexistent schedule entry shouldn't trigger assert (it was enabled in DEV_MODE);
* because in many places entries is deleted without having valid id. */
*last_id = id;
return -1;
} else if (!s) {
return -1;
}
return res;
}
void ast_sched_report(struct ast_sched_context *con, struct ast_str **buf, struct ast_cb_names *cbnames)
{
int i, x;
struct sched *cur;
int countlist[cbnames->numassocs + 1];
size_t heap_size;
memset(countlist, 0, sizeof(countlist));
ast_str_set(buf, 0, " Highwater = %u\n schedcnt = %zu\n", con->highwater, ast_heap_size(con->sched_heap));
ast_mutex_lock(&con->lock);
heap_size = ast_heap_size(con->sched_heap);
for (x = 1; x <= heap_size; x++) {
cur = ast_heap_peek(con->sched_heap, x);
/* match the callback to the cblist */
for (i = 0; i < cbnames->numassocs; i++) {
if (cur->callback == cbnames->cblist[i]) {
break;
}
}
if (i < cbnames->numassocs) {
countlist[i]++;
} else {
countlist[cbnames->numassocs]++;
}
}
ast_mutex_unlock(&con->lock);
for (i = 0; i < cbnames->numassocs; i++) {
ast_str_append(buf, 0, " %s : %d\n", cbnames->list[i], countlist[i]);
}
ast_str_append(buf, 0, " <unknown> : %d\n", countlist[cbnames->numassocs]);
}
/*! \brief Dump the contents of the scheduler to LOG_DEBUG */
void ast_sched_dump(struct ast_sched_context *con)
{
struct sched *q;
struct timeval when;
int x;
size_t heap_size;
if (!DEBUG_ATLEAST(1)) {
return;
}
when = ast_tvnow();
#ifdef SCHED_MAX_CACHE
ast_log(LOG_DEBUG, "Asterisk Schedule Dump (%zu in Q, %u Total, %u Cache, %u high-water)\n",
ast_heap_size(con->sched_heap), con->eventcnt - 1, con->schedccnt, con->highwater);
#else
ast_log(LOG_DEBUG, "Asterisk Schedule Dump (%zu in Q, %u Total, %u high-water)\n",
ast_heap_size(con->sched_heap), con->eventcnt - 1, con->highwater);
#endif
ast_log(LOG_DEBUG, "=============================================================\n");
ast_log(LOG_DEBUG, "|ID Callback Data Time (sec:ms) |\n");
ast_log(LOG_DEBUG, "+-----+-----------------+-----------------+-----------------+\n");
ast_mutex_lock(&con->lock);
heap_size = ast_heap_size(con->sched_heap);
for (x = 1; x <= heap_size; x++) {
struct timeval delta;
q = ast_heap_peek(con->sched_heap, x);
delta = ast_tvsub(q->when, when);
ast_log(LOG_DEBUG, "|%.4d | %-15p | %-15p | %.6ld : %.6ld |\n",
q->sched_id->id,
q->callback,
q->data,
(long)delta.tv_sec,
(long int)delta.tv_usec);
}
ast_mutex_unlock(&con->lock);
ast_log(LOG_DEBUG, "=============================================================\n");
}
/*! \brief
* Launch all events which need to be run at this time.
*/
int ast_sched_runq(struct ast_sched_context *con)
{
struct sched *current;
struct timeval when;
int numevents;
int res;
DEBUG(ast_debug(1, "ast_sched_runq()\n"));
ast_mutex_lock(&con->lock);
when = ast_tvadd(ast_tvnow(), ast_tv(0, 1000));
for (numevents = 0; (current = ast_heap_peek(con->sched_heap, 1)); numevents++) {
/* schedule all events which are going to expire within 1ms.
* We only care about millisecond accuracy anyway, so this will
* help us get more than one event at one time if they are very
* close together.
*/
if (ast_tvcmp(current->when, when) != -1) {
break;
}
current = ast_heap_pop(con->sched_heap);
/*
* At this point, the schedule queue is still intact. We
* have removed the first event and the rest is still there,
* so it's permissible for the callback to add new events, but
* trying to delete itself won't work because it isn't in
* the schedule queue. If that's what it wants to do, it
* should return 0.
*/
con->currently_executing = current;
con->executing_thread_id = pthread_self();
ast_mutex_unlock(&con->lock);
res = current->callback(current->data);
ast_mutex_lock(&con->lock);
con->currently_executing = NULL;
ast_cond_signal(&current->cond);
if (current->deleted) {
/*
* Another thread is waiting on this scheduled item. That thread
* will be responsible for it's destruction
*/
current->rescheduled = res ? 1 : 0;
} else if (res) {
/*
* If they return non-zero, we should schedule them to be
* run again.
*/
sched_settime(&current->when, current->variable ? res : current->resched);
schedule(con, current);
} else {
/* No longer needed, so release it */
sched_release(con, current);
}
}
ast_mutex_unlock(&con->lock);
return numevents;
}
long ast_sched_when(struct ast_sched_context *con,int id)
{
struct sched *s;
long secs = -1;
DEBUG(ast_debug(1, "ast_sched_when()\n"));
ast_mutex_lock(&con->lock);
s = sched_find(con, id);
if (s) {
struct timeval now = ast_tvnow();
secs = s->when.tv_sec - now.tv_sec;
}
ast_mutex_unlock(&con->lock);
return secs;
}