arsd/bmp.d

526 lines
15 KiB
D

/++
Basic .bmp file format implementation for [arsd.color.MemoryImage].
Compare with [arsd.png] basic functionality.
+/
module arsd.bmp;
import arsd.color;
//version = arsd_debug_bitmap_loader;
/// Reads a .bmp file from the given `filename`
MemoryImage readBmp(string filename) {
import core.stdc.stdio;
FILE* fp = fopen((filename ~ "\0").ptr, "rb".ptr);
if(fp is null)
throw new Exception("can't open save file");
scope(exit) fclose(fp);
void specialFread(void* tgt, size_t size) {
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("ofs: 0x%08x\n", cast(uint)ftell(fp)); }
fread(tgt, size, 1, fp);
}
return readBmpIndirect(&specialFread);
}
/// Reads a bitmap out of an in-memory array of data. For example, that returned from [std.file.read].
MemoryImage readBmp(in ubyte[] data, bool lookForFileHeader = true) {
const(ubyte)[] current = data;
void specialFread(void* tgt, size_t size) {
while(size) {
if (current.length == 0) throw new Exception("out of bmp data"); // it's not *that* fatal, so don't throw RangeError
*cast(ubyte*)(tgt) = current[0];
current = current[1 .. $];
tgt++;
size--;
}
}
return readBmpIndirect(&specialFread, lookForFileHeader);
}
/++
Reads using a delegate to read instead of assuming a direct file
History:
The `lookForFileHeader` param was added in July 2020.
+/
MemoryImage readBmpIndirect(scope void delegate(void*, size_t) fread, bool lookForFileHeader = true) {
uint read4() { uint what; fread(&what, 4); return what; }
ushort read2(){ ushort what; fread(&what, 2); return what; }
ubyte read1(){ ubyte what; fread(&what, 1); return what; }
void require1(ubyte t, size_t line = __LINE__) {
if(read1() != t)
throw new Exception("didn't get expected byte value", __FILE__, line);
}
void require2(ushort t) {
if(read2() != t)
throw new Exception("didn't get expected short value");
}
void require4(uint t, size_t line = __LINE__) {
auto got = read4();
//import std.conv;
if(got != t)
throw new Exception("didn't get expected int value " /*~ to!string(got)*/, __FILE__, line);
}
if(lookForFileHeader) {
require1('B');
require1('M');
auto fileSize = read4(); // size of file in bytes
require2(0); // reserved
require2(0); // reserved
auto offsetToBits = read4();
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("pixel data offset: 0x%08x\n", cast(uint)offsetToBits); }
}
auto sizeOfBitmapInfoHeader = read4();
if (sizeOfBitmapInfoHeader < 12) throw new Exception("invalid bitmap header size");
int width, height, rdheight;
if (sizeOfBitmapInfoHeader == 12) {
width = read2();
rdheight = cast(short)read2();
} else {
if (sizeOfBitmapInfoHeader < 16) throw new Exception("invalid bitmap header size");
sizeOfBitmapInfoHeader -= 4; // hack!
width = read4();
rdheight = cast(int)read4();
}
height = (rdheight < 0 ? -rdheight : rdheight);
rdheight = (rdheight < 0 ? 1 : -1); // so we can use it as delta (note the inverted sign)
if (width < 1 || height < 1) throw new Exception("invalid bitmap dimensions");
require2(1); // planes
auto bitsPerPixel = read2();
switch (bitsPerPixel) {
case 1: case 2: case 4: case 8: case 16: case 24: case 32: break;
default: throw new Exception("invalid bitmap depth");
}
/*
0 = BI_RGB
1 = BI_RLE8 RLE 8-bit/pixel Can be used only with 8-bit/pixel bitmaps
2 = BI_RLE4 RLE 4-bit/pixel Can be used only with 4-bit/pixel bitmaps
3 = BI_BITFIELDS
*/
uint compression = 0;
uint sizeOfUncompressedData = 0;
uint xPixelsPerMeter = 0;
uint yPixelsPerMeter = 0;
uint colorsUsed = 0;
uint colorsImportant = 0;
sizeOfBitmapInfoHeader -= 12;
if (sizeOfBitmapInfoHeader > 0) {
if (sizeOfBitmapInfoHeader < 6*4) throw new Exception("invalid bitmap header size");
sizeOfBitmapInfoHeader -= 6*4;
compression = read4();
sizeOfUncompressedData = read4();
xPixelsPerMeter = read4();
yPixelsPerMeter = read4();
colorsUsed = read4();
colorsImportant = read4();
}
if (compression > 3) throw new Exception("invalid bitmap compression");
if (compression == 1 && bitsPerPixel != 8) throw new Exception("invalid bitmap compression");
if (compression == 2 && bitsPerPixel != 4) throw new Exception("invalid bitmap compression");
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("compression: %u; bpp: %u\n", compression, cast(uint)bitsPerPixel); }
uint redMask;
uint greenMask;
uint blueMask;
uint alphaMask;
if (compression == 3) {
if (sizeOfBitmapInfoHeader < 4*4) throw new Exception("invalid bitmap compression");
sizeOfBitmapInfoHeader -= 4*4;
redMask = read4();
greenMask = read4();
blueMask = read4();
alphaMask = read4();
}
// FIXME: we could probably handle RLE4 as well
// I don't know about the rest of the header, so I'm just skipping it.
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("header bytes left: %u\n", cast(uint)sizeOfBitmapInfoHeader); }
foreach (skip; 0..sizeOfBitmapInfoHeader) read1();
if(bitsPerPixel <= 8) {
// indexed image
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("colorsUsed=%u; colorsImportant=%u\n", colorsUsed, colorsImportant); }
if (colorsUsed == 0 || colorsUsed > (1 << bitsPerPixel)) colorsUsed = (1 << bitsPerPixel);
auto img = new IndexedImage(width, height);
img.palette.reserve(1 << bitsPerPixel);
foreach(idx; 0 .. /*(1 << bitsPerPixel)*/colorsUsed) {
auto b = read1();
auto g = read1();
auto r = read1();
auto reserved = read1();
img.palette ~= Color(r, g, b);
}
while (img.palette.length < (1 << bitsPerPixel)) img.palette ~= Color.transparent;
// and the data
int bytesPerPixel = 1;
auto offsetStart = (rdheight > 0 ? 0 : width * height * bytesPerPixel);
int bytesRead = 0;
if (compression == 1) {
// this is complicated
assert(bitsPerPixel == 8); // always
int x = 0, y = (rdheight > 0 ? 0 : height-1);
void setpix (int v) {
if (x >= 0 && y >= 0 && x < width && y < height) img.data.ptr[y*width+x] = v&0xff;
++x;
}
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("width=%d; height=%d; rdheight=%d\n", width, height, rdheight); }
for (;;) {
ubyte codelen = read1();
ubyte codecode = read1();
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf("x=%d; y=%d; len=%u; code=%u\n", x, y, cast(uint)codelen, cast(uint)codecode); }
bytesRead += 2;
if (codelen == 0) {
// special code
if (codecode == 0) {
// end of line
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf(" EOL\n"); }
while (x < width) setpix(1);
x = 0;
y += rdheight;
if (y < 0 || y >= height) break; // ooops
} else if (codecode == 1) {
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf(" EOB\n"); }
// end of bitmap
break;
} else if (codecode == 2) {
// delta
int xofs = read1();
int yofs = read1();
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf(" deltax=%d; deltay=%d\n", xofs, yofs); }
bytesRead += 2;
x += xofs;
y += yofs*rdheight;
if (y < 0 || y >= height) break; // ooops
} else {
version(arsd_debug_bitmap_loader) { import core.stdc.stdio; printf(" LITERAL: %u\n", cast(uint)codecode); }
// literal copy
while (codecode-- > 0) {
setpix(read1());
++bytesRead;
}
version(arsd_debug_bitmap_loader) if (bytesRead%2) { import core.stdc.stdio; printf(" LITERAL SKIP\n"); }
if (bytesRead%2) { read1(); ++bytesRead; }
assert(bytesRead%2 == 0);
}
} else {
while (codelen-- > 0) setpix(codecode);
}
}
} else if (compression == 2) {
throw new Exception("4RLE for bitmaps aren't supported yet");
} else {
for(int y = height; y > 0; y--) {
if (rdheight < 0) offsetStart -= width * bytesPerPixel;
int offset = offsetStart;
while (bytesRead%4 != 0) {
read1();
++bytesRead;
}
bytesRead = 0;
for(int x = 0; x < width; x++) {
auto b = read1();
++bytesRead;
if(bitsPerPixel == 8) {
img.data[offset++] = b;
} else if(bitsPerPixel == 4) {
img.data[offset++] = (b&0xf0) >> 4;
x++;
if(offset == img.data.length)
break;
img.data[offset++] = (b&0x0f);
} else if(bitsPerPixel == 2) {
img.data[offset++] = (b & 0b11000000) >> 6;
x++;
if(offset == img.data.length)
break;
img.data[offset++] = (b & 0b00110000) >> 4;
x++;
if(offset == img.data.length)
break;
img.data[offset++] = (b & 0b00001100) >> 2;
x++;
if(offset == img.data.length)
break;
img.data[offset++] = (b & 0b00000011) >> 0;
} else if(bitsPerPixel == 1) {
foreach(lol; 0 .. 8) {
img.data[offset++] = (b & (1 << lol)) >> (7 - lol);
x++;
if(offset == img.data.length)
break;
}
x--; // we do this once too many times in the loop
} else assert(0);
// I don't think these happen in the wild but I could be wrong, my bmp knowledge is somewhat outdated
}
if (rdheight > 0) offsetStart += width * bytesPerPixel;
}
}
return img;
} else {
if (compression != 0) throw new Exception("invalid bitmap compression");
// true color image
auto img = new TrueColorImage(width, height);
// no palette, so straight into the data
int offsetStart = width * height * 4;
int bytesPerPixel = 4;
for(int y = height; y > 0; y--) {
offsetStart -= width * bytesPerPixel;
int offset = offsetStart;
int b = 0;
foreach(x; 0 .. width) {
if(compression == 3) {
ubyte[8] buffer;
assert(bitsPerPixel / 8 < 8);
foreach(lol; 0 .. bitsPerPixel / 8) {
if(lol >= buffer.length)
throw new Exception("wtf");
buffer[lol] = read1();
b++;
}
ulong data = *(cast(ulong*) buffer.ptr);
auto blue = data & blueMask;
auto green = data & greenMask;
auto red = data & redMask;
auto alpha = data & alphaMask;
if(blueMask)
blue = blue * 255 / blueMask;
if(greenMask)
green = green * 255 / greenMask;
if(redMask)
red = red * 255 / redMask;
if(alphaMask)
alpha = alpha * 255 / alphaMask;
else
alpha = 255;
img.imageData.bytes[offset + 2] = cast(ubyte) blue;
img.imageData.bytes[offset + 1] = cast(ubyte) green;
img.imageData.bytes[offset + 0] = cast(ubyte) red;
img.imageData.bytes[offset + 3] = cast(ubyte) alpha;
} else {
assert(compression == 0);
if(bitsPerPixel == 24 || bitsPerPixel == 32) {
img.imageData.bytes[offset + 2] = read1(); // b
img.imageData.bytes[offset + 1] = read1(); // g
img.imageData.bytes[offset + 0] = read1(); // r
if(bitsPerPixel == 32) {
img.imageData.bytes[offset + 3] = read1(); // a
b++;
} else {
img.imageData.bytes[offset + 3] = 255; // a
}
b += 3;
} else {
assert(bitsPerPixel == 16);
// these are stored xrrrrrgggggbbbbb
ushort d = read1();
d |= cast(ushort)read1() << 8;
// we expect 8 bit numbers but these only give 5 bits of info,
// therefore we shift left 3 to get the right stuff.
img.imageData.bytes[offset + 0] = (d & 0b0111110000000000) >> (10-3);
img.imageData.bytes[offset + 1] = (d & 0b0000001111100000) >> (5-3);
img.imageData.bytes[offset + 2] = (d & 0b0000000000011111) << 3;
img.imageData.bytes[offset + 3] = 255; // r
b += 2;
}
}
offset += bytesPerPixel;
}
int w = b%4;
if(w)
for(int a = 0; a < 4-w; a++)
read1(); // pad until divisible by four
}
return img;
}
assert(0);
}
/// Writes the `img` out to `filename`, in .bmp format. Writes [TrueColorImage] out
/// as a 24 bmp and [IndexedImage] out as an 8 bit bmp. Drops transparency information.
void writeBmp(MemoryImage img, string filename) {
import core.stdc.stdio;
FILE* fp = fopen((filename ~ "\0").ptr, "wb".ptr);
if(fp is null)
throw new Exception("can't open save file");
scope(exit) fclose(fp);
void my_fwrite(ubyte b) {
fputc(b, fp);
}
writeBmpIndirect(img, &my_fwrite, true);
}
/+
void main() {
import arsd.simpledisplay;
//import std.file;
//auto img = readBmp(cast(ubyte[]) std.file.read("/home/me/test2.bmp"));
auto img = readBmp("/home/me/test2.bmp");
import std.stdio;
writeln((cast(Object)img).toString());
displayImage(Image.fromMemoryImage(img));
//img.writeBmp("/home/me/test2.bmp");
}
+/
void writeBmpIndirect(MemoryImage img, scope void delegate(ubyte) fwrite, bool prependFileHeader) {
void write4(uint what){
fwrite(what & 0xff);
fwrite((what >> 8) & 0xff);
fwrite((what >> 16) & 0xff);
fwrite((what >> 24) & 0xff);
}
void write2(ushort what){
fwrite(what & 0xff);
fwrite(what >> 8);
}
void write1(ubyte what) { fwrite(what); }
int width = img.width;
int height = img.height;
ushort bitsPerPixel;
ubyte[] data;
Color[] palette;
// FIXME we should be able to write RGBA bitmaps too, though it seems like not many
// programs correctly read them!
if(auto tci = cast(TrueColorImage) img) {
bitsPerPixel = 24;
data = tci.imageData.bytes;
// we could also realistically do 16 but meh
} else if(auto pi = cast(IndexedImage) img) {
// FIXME: implement other bpps for more efficiency
/*
if(pi.palette.length == 2)
bitsPerPixel = 1;
else if(pi.palette.length <= 16)
bitsPerPixel = 4;
else
*/
bitsPerPixel = 8;
data = pi.data;
palette = pi.palette;
} else throw new Exception("I can't save this image type " ~ img.classinfo.name);
ushort offsetToBits;
if(bitsPerPixel == 8)
offsetToBits = 1078;
if (bitsPerPixel == 24 || bitsPerPixel == 16)
offsetToBits = 54;
else
offsetToBits = cast(ushort)(54 + 4 * 1 << bitsPerPixel); // room for the palette...
uint fileSize = offsetToBits;
if(bitsPerPixel == 8)
fileSize += height * (width + width%4);
else if(bitsPerPixel == 24)
fileSize += height * ((width * 3) + (!((width*3)%4) ? 0 : 4-((width*3)%4)));
else assert(0, "not implemented"); // FIXME
if(prependFileHeader) {
write1('B');
write1('M');
write4(fileSize); // size of file in bytes
write2(0); // reserved
write2(0); // reserved
write4(offsetToBits); // offset to the bitmap data
}
write4(40); // size of BITMAPINFOHEADER
write4(width); // width
write4(height); // height
write2(1); // planes
write2(bitsPerPixel); // bpp
write4(0); // compression
write4(0); // size of uncompressed
write4(0); // x pels per meter
write4(0); // y pels per meter
write4(0); // colors used
write4(0); // colors important
// And here we write the palette
if(bitsPerPixel <= 8)
foreach(c; palette[0..(1 << bitsPerPixel)]){
write1(c.b);
write1(c.g);
write1(c.r);
write1(0);
}
// And finally the data
int bytesPerPixel;
if(bitsPerPixel == 8)
bytesPerPixel = 1;
else if(bitsPerPixel == 24)
bytesPerPixel = 4;
else assert(0, "not implemented"); // FIXME
int offsetStart = cast(int) data.length;
for(int y = height; y > 0; y--) {
offsetStart -= width * bytesPerPixel;
int offset = offsetStart;
int b = 0;
foreach(x; 0 .. width) {
if(bitsPerPixel == 8) {
write1(data[offset]);
b++;
} else if(bitsPerPixel == 24) {
write1(data[offset + 2]); // blue
write1(data[offset + 1]); // green
write1(data[offset + 0]); // red
b += 3;
} else assert(0); // FIXME
offset += bytesPerPixel;
}
int w = b%4;
if(w)
for(int a = 0; a < 4-w; a++)
write1(0); // pad until divisible by four
}
}