arsd/jpeg.d

4577 lines
157 KiB
D

// jpgd.h - C++ class for JPEG decompression.
// Rich Geldreich <richgel99@gmail.com>
// Alex Evans: Linear memory allocator (taken from jpge.h).
// v1.04, May. 19, 2012: Code tweaks to fix VS2008 static code analysis warnings (all looked harmless)
// D translation by Ketmar // Invisible Vector
//
// This is free and unencumbered software released into the public domain.
//
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
//
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// For more information, please refer to <http://unlicense.org/>
//
// Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2.
//
// Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling.
// Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain"
// http://vision.ai.uiuc.edu/~dugad/research/dct/index.html
/**
* Loads a JPEG image from a memory buffer or a file.
*
* req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
* On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
* Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
*/
module arsd.jpeg;
// Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling).
// This is slower, but results in higher quality on images with highly saturated colors.
version = JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING;
/// Input stream interface.
/// This delegate is called when the internal input buffer is empty.
/// Parameters:
/// pBuf - input buffer
/// max_bytes_to_read - maximum bytes that can be written to pBuf
/// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
/// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
/// Notes: This delegate will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
alias JpegStreamReadFunc = int delegate (void* pBuf, int max_bytes_to_read, bool* pEOF_flag);
// ////////////////////////////////////////////////////////////////////////// //
private:
void *jpgd_malloc (size_t nSize) { import core.stdc.stdlib : malloc; return malloc(nSize); }
void jpgd_free (void *p) { import core.stdc.stdlib : free; if (p !is null) free(p); }
// Success/failure error codes.
alias jpgd_status = int;
enum /*jpgd_status*/ {
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM,
}
enum {
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384,
}
// DCT coefficients are stored in this sequence.
static immutable int[64] g_ZAG = [ 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 ];
alias JPEG_MARKER = int;
enum /*JPEG_MARKER*/ {
M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8,
M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC,
M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7,
M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF,
M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0,
}
alias JPEG_SUBSAMPLING = int;
enum /*JPEG_SUBSAMPLING*/ { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 }
enum CONST_BITS = 13;
enum PASS1_BITS = 2;
enum SCALEDONE = cast(int)1;
enum FIX_0_298631336 = cast(int)2446; /* FIX(0.298631336) */
enum FIX_0_390180644 = cast(int)3196; /* FIX(0.390180644) */
enum FIX_0_541196100 = cast(int)4433; /* FIX(0.541196100) */
enum FIX_0_765366865 = cast(int)6270; /* FIX(0.765366865) */
enum FIX_0_899976223 = cast(int)7373; /* FIX(0.899976223) */
enum FIX_1_175875602 = cast(int)9633; /* FIX(1.175875602) */
enum FIX_1_501321110 = cast(int)12299; /* FIX(1.501321110) */
enum FIX_1_847759065 = cast(int)15137; /* FIX(1.847759065) */
enum FIX_1_961570560 = cast(int)16069; /* FIX(1.961570560) */
enum FIX_2_053119869 = cast(int)16819; /* FIX(2.053119869) */
enum FIX_2_562915447 = cast(int)20995; /* FIX(2.562915447) */
enum FIX_3_072711026 = cast(int)25172; /* FIX(3.072711026) */
int DESCALE() (int x, int n) { pragma(inline, true); return (((x) + (SCALEDONE << ((n)-1))) >> (n)); }
int DESCALE_ZEROSHIFT() (int x, int n) { pragma(inline, true); return (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n)); }
ubyte CLAMP() (int i) { pragma(inline, true); return cast(ubyte)(cast(uint)i > 255 ? (((~i) >> 31) & 0xFF) : i); }
// Compiler creates a fast path 1D IDCT for X non-zero columns
struct Row(int NONZERO_COLS) {
pure nothrow @trusted @nogc:
static void idct(int* pTemp, const(jpeg_decoder.jpgd_block_t)* pSrc) {
static if (NONZERO_COLS == 0) {
// nothing
} else static if (NONZERO_COLS == 1) {
immutable int dcval = (pSrc[0] << PASS1_BITS);
pTemp[0] = dcval;
pTemp[1] = dcval;
pTemp[2] = dcval;
pTemp[3] = dcval;
pTemp[4] = dcval;
pTemp[5] = dcval;
pTemp[6] = dcval;
pTemp[7] = dcval;
} else {
// ACCESS_COL() will be optimized at compile time to either an array access, or 0.
//#define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0)
template ACCESS_COL(int x) {
static if (x < NONZERO_COLS) enum ACCESS_COL = "cast(int)pSrc["~x.stringof~"]"; else enum ACCESS_COL = "0";
}
immutable int z2 = mixin(ACCESS_COL!2), z3 = mixin(ACCESS_COL!6);
immutable int z1 = (z2 + z3)*FIX_0_541196100;
immutable int tmp2 = z1 + z3*(-FIX_1_847759065);
immutable int tmp3 = z1 + z2*FIX_0_765366865;
immutable int tmp0 = (mixin(ACCESS_COL!0) + mixin(ACCESS_COL!4)) << CONST_BITS;
immutable int tmp1 = (mixin(ACCESS_COL!0) - mixin(ACCESS_COL!4)) << CONST_BITS;
immutable int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2;
immutable int atmp0 = mixin(ACCESS_COL!7), atmp1 = mixin(ACCESS_COL!5), atmp2 = mixin(ACCESS_COL!3), atmp3 = mixin(ACCESS_COL!1);
immutable int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3;
immutable int bz5 = (bz3 + bz4)*FIX_1_175875602;
immutable int az1 = bz1*(-FIX_0_899976223);
immutable int az2 = bz2*(-FIX_2_562915447);
immutable int az3 = bz3*(-FIX_1_961570560) + bz5;
immutable int az4 = bz4*(-FIX_0_390180644) + bz5;
immutable int btmp0 = atmp0*FIX_0_298631336 + az1 + az3;
immutable int btmp1 = atmp1*FIX_2_053119869 + az2 + az4;
immutable int btmp2 = atmp2*FIX_3_072711026 + az2 + az3;
immutable int btmp3 = atmp3*FIX_1_501321110 + az1 + az4;
pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS);
pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS);
pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS);
pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS);
pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS);
pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS);
pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS);
pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS);
}
}
}
// Compiler creates a fast path 1D IDCT for X non-zero rows
struct Col (int NONZERO_ROWS) {
pure nothrow @trusted @nogc:
static void idct(ubyte* pDst_ptr, const(int)* pTemp) {
static assert(NONZERO_ROWS > 0);
static if (NONZERO_ROWS == 1) {
int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3);
immutable ubyte dcval_clamped = cast(ubyte)CLAMP(dcval);
pDst_ptr[0*8] = dcval_clamped;
pDst_ptr[1*8] = dcval_clamped;
pDst_ptr[2*8] = dcval_clamped;
pDst_ptr[3*8] = dcval_clamped;
pDst_ptr[4*8] = dcval_clamped;
pDst_ptr[5*8] = dcval_clamped;
pDst_ptr[6*8] = dcval_clamped;
pDst_ptr[7*8] = dcval_clamped;
} else {
// ACCESS_ROW() will be optimized at compile time to either an array access, or 0.
//#define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0)
template ACCESS_ROW(int x) {
static if (x < NONZERO_ROWS) enum ACCESS_ROW = "pTemp["~(x*8).stringof~"]"; else enum ACCESS_ROW = "0";
}
immutable int z2 = mixin(ACCESS_ROW!2);
immutable int z3 = mixin(ACCESS_ROW!6);
immutable int z1 = (z2 + z3)*FIX_0_541196100;
immutable int tmp2 = z1 + z3*(-FIX_1_847759065);
immutable int tmp3 = z1 + z2*FIX_0_765366865;
immutable int tmp0 = (mixin(ACCESS_ROW!0) + mixin(ACCESS_ROW!4)) << CONST_BITS;
immutable int tmp1 = (mixin(ACCESS_ROW!0) - mixin(ACCESS_ROW!4)) << CONST_BITS;
immutable int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2;
immutable int atmp0 = mixin(ACCESS_ROW!7), atmp1 = mixin(ACCESS_ROW!5), atmp2 = mixin(ACCESS_ROW!3), atmp3 = mixin(ACCESS_ROW!1);
immutable int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3;
immutable int bz5 = (bz3 + bz4)*FIX_1_175875602;
immutable int az1 = bz1*(-FIX_0_899976223);
immutable int az2 = bz2*(-FIX_2_562915447);
immutable int az3 = bz3*(-FIX_1_961570560) + bz5;
immutable int az4 = bz4*(-FIX_0_390180644) + bz5;
immutable int btmp0 = atmp0*FIX_0_298631336 + az1 + az3;
immutable int btmp1 = atmp1*FIX_2_053119869 + az2 + az4;
immutable int btmp2 = atmp2*FIX_3_072711026 + az2 + az3;
immutable int btmp3 = atmp3*FIX_1_501321110 + az1 + az4;
int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*0] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*7] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*1] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*6] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*2] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*5] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*3] = cast(ubyte)CLAMP(i);
i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3);
pDst_ptr[8*4] = cast(ubyte)CLAMP(i);
}
}
}
static immutable ubyte[512] s_idct_row_table = [
1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0,
4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0,
6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0,
6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0,
8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2,
8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2,
8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4,
8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8,
];
static immutable ubyte[64] s_idct_col_table = [ 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 ];
void idct() (const(jpeg_decoder.jpgd_block_t)* pSrc_ptr, ubyte* pDst_ptr, int block_max_zag) {
assert(block_max_zag >= 1);
assert(block_max_zag <= 64);
if (block_max_zag <= 1)
{
int k = ((pSrc_ptr[0] + 4) >> 3) + 128;
k = CLAMP(k);
k = k | (k<<8);
k = k | (k<<16);
for (int i = 8; i > 0; i--)
{
*cast(int*)&pDst_ptr[0] = k;
*cast(int*)&pDst_ptr[4] = k;
pDst_ptr += 8;
}
return;
}
int[64] temp;
const(jpeg_decoder.jpgd_block_t)* pSrc = pSrc_ptr;
int* pTemp = temp.ptr;
const(ubyte)* pRow_tab = &s_idct_row_table.ptr[(block_max_zag - 1) * 8];
int i;
for (i = 8; i > 0; i--, pRow_tab++)
{
switch (*pRow_tab)
{
case 0: Row!(0).idct(pTemp, pSrc); break;
case 1: Row!(1).idct(pTemp, pSrc); break;
case 2: Row!(2).idct(pTemp, pSrc); break;
case 3: Row!(3).idct(pTemp, pSrc); break;
case 4: Row!(4).idct(pTemp, pSrc); break;
case 5: Row!(5).idct(pTemp, pSrc); break;
case 6: Row!(6).idct(pTemp, pSrc); break;
case 7: Row!(7).idct(pTemp, pSrc); break;
case 8: Row!(8).idct(pTemp, pSrc); break;
default: assert(0);
}
pSrc += 8;
pTemp += 8;
}
pTemp = temp.ptr;
immutable int nonzero_rows = s_idct_col_table.ptr[block_max_zag - 1];
for (i = 8; i > 0; i--)
{
switch (nonzero_rows)
{
case 1: Col!(1).idct(pDst_ptr, pTemp); break;
case 2: Col!(2).idct(pDst_ptr, pTemp); break;
case 3: Col!(3).idct(pDst_ptr, pTemp); break;
case 4: Col!(4).idct(pDst_ptr, pTemp); break;
case 5: Col!(5).idct(pDst_ptr, pTemp); break;
case 6: Col!(6).idct(pDst_ptr, pTemp); break;
case 7: Col!(7).idct(pDst_ptr, pTemp); break;
case 8: Col!(8).idct(pDst_ptr, pTemp); break;
default: assert(0);
}
pTemp++;
pDst_ptr++;
}
}
void idct_4x4() (const(jpeg_decoder.jpgd_block_t)* pSrc_ptr, ubyte* pDst_ptr) {
int[64] temp;
int* pTemp = temp.ptr;
const(jpeg_decoder.jpgd_block_t)* pSrc = pSrc_ptr;
for (int i = 4; i > 0; i--)
{
Row!(4).idct(pTemp, pSrc);
pSrc += 8;
pTemp += 8;
}
pTemp = temp.ptr;
for (int i = 8; i > 0; i--)
{
Col!(4).idct(pDst_ptr, pTemp);
pTemp++;
pDst_ptr++;
}
}
// ////////////////////////////////////////////////////////////////////////// //
struct jpeg_decoder {
private import core.stdc.string : memcpy, memset;
private:
static auto JPGD_MIN(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a < b ? a : b); }
static auto JPGD_MAX(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a > b ? a : b); }
alias jpgd_quant_t = short;
alias jpgd_block_t = short;
alias pDecode_block_func = void function (ref jpeg_decoder, int, int, int);
static struct huff_tables {
bool ac_table;
uint[256] look_up;
uint[256] look_up2;
ubyte[256] code_size;
uint[512] tree;
}
static struct coeff_buf {
ubyte* pData;
int block_num_x, block_num_y;
int block_len_x, block_len_y;
int block_size;
}
static struct mem_block {
mem_block* m_pNext;
size_t m_used_count;
size_t m_size;
char[1] m_data;
}
mem_block* m_pMem_blocks;
int m_image_x_size;
int m_image_y_size;
JpegStreamReadFunc readfn;
int m_progressive_flag;
ubyte[JPGD_MAX_HUFF_TABLES] m_huff_ac;
ubyte*[JPGD_MAX_HUFF_TABLES] m_huff_num; // pointer to number of Huffman codes per bit size
ubyte*[JPGD_MAX_HUFF_TABLES] m_huff_val; // pointer to Huffman codes per bit size
jpgd_quant_t*[JPGD_MAX_QUANT_TABLES] m_quant; // pointer to quantization tables
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
int m_comps_in_frame; // # of components in frame
int[JPGD_MAX_COMPONENTS] m_comp_h_samp; // component's horizontal sampling factor
int[JPGD_MAX_COMPONENTS] m_comp_v_samp; // component's vertical sampling factor
int[JPGD_MAX_COMPONENTS] m_comp_quant; // component's quantization table selector
int[JPGD_MAX_COMPONENTS] m_comp_ident; // component's ID
int[JPGD_MAX_COMPONENTS] m_comp_h_blocks;
int[JPGD_MAX_COMPONENTS] m_comp_v_blocks;
int m_comps_in_scan; // # of components in scan
int[JPGD_MAX_COMPS_IN_SCAN] m_comp_list; // components in this scan
int[JPGD_MAX_COMPONENTS] m_comp_dc_tab; // component's DC Huffman coding table selector
int[JPGD_MAX_COMPONENTS] m_comp_ac_tab; // component's AC Huffman coding table selector
int m_spectral_start; // spectral selection start
int m_spectral_end; // spectral selection end
int m_successive_low; // successive approximation low
int m_successive_high; // successive approximation high
int m_max_mcu_x_size; // MCU's max. X size in pixels
int m_max_mcu_y_size; // MCU's max. Y size in pixels
int m_blocks_per_mcu;
int m_max_blocks_per_row;
int m_mcus_per_row, m_mcus_per_col;
int[JPGD_MAX_BLOCKS_PER_MCU] m_mcu_org;
int m_total_lines_left; // total # lines left in image
int m_mcu_lines_left; // total # lines left in this MCU
int m_real_dest_bytes_per_scan_line;
int m_dest_bytes_per_scan_line; // rounded up
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
huff_tables*[JPGD_MAX_HUFF_TABLES] m_pHuff_tabs;
coeff_buf*[JPGD_MAX_COMPONENTS] m_dc_coeffs;
coeff_buf*[JPGD_MAX_COMPONENTS] m_ac_coeffs;
int m_eob_run;
int[JPGD_MAX_COMPONENTS] m_block_y_mcu;
ubyte* m_pIn_buf_ofs;
int m_in_buf_left;
int m_tem_flag;
bool m_eof_flag;
ubyte[128] m_in_buf_pad_start;
ubyte[JPGD_IN_BUF_SIZE+128] m_in_buf;
ubyte[128] m_in_buf_pad_end;
int m_bits_left;
uint m_bit_buf;
int m_restart_interval;
int m_restarts_left;
int m_next_restart_num;
int m_max_mcus_per_row;
int m_max_blocks_per_mcu;
int m_expanded_blocks_per_mcu;
int m_expanded_blocks_per_row;
int m_expanded_blocks_per_component;
bool m_freq_domain_chroma_upsample;
int m_max_mcus_per_col;
uint[JPGD_MAX_COMPONENTS] m_last_dc_val;
jpgd_block_t* m_pMCU_coefficients;
int[JPGD_MAX_BLOCKS_PER_MCU] m_mcu_block_max_zag;
ubyte* m_pSample_buf;
int[256] m_crr;
int[256] m_cbb;
int[256] m_crg;
int[256] m_cbg;
ubyte* m_pScan_line_0;
ubyte* m_pScan_line_1;
jpgd_status m_error_code;
bool m_ready_flag;
int m_total_bytes_read;
public:
// Inspect `error_code` after constructing to determine if the stream is valid or not. You may look at the `width`, `height`, etc.
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
this (JpegStreamReadFunc rfn) { decode_init(rfn); }
~this () { free_all_blocks(); }
@disable this (this); // no copies
// Call this method after constructing the object to begin decompression.
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
int begin_decoding () {
if (m_ready_flag) return JPGD_SUCCESS;
if (m_error_code) return JPGD_FAILED;
try {
decode_start();
m_ready_flag = true;
return JPGD_SUCCESS;
} catch (Exception e) {
//version(jpegd_test) {{ import core.stdc.stdio; stderr.fprintf("ERROR: %.*s...\n", cast(int)e.msg.length, e.msg.ptr); }}
version(jpegd_test) {{ import std.stdio; stderr.writeln(e.toString); }}
}
return JPGD_FAILED;
}
// Returns the next scan line.
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (`bytes_per_pixel` will return 1).
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and `bytes_per_pixel` will return 4).
// Returns JPGD_SUCCESS if a scan line has been returned.
// Returns JPGD_DONE if all scan lines have been returned.
// Returns JPGD_FAILED if an error occurred. Inspect `error_code` for a more info.
int decode (/*const void** */void** pScan_line, uint* pScan_line_len) {
if (m_error_code || !m_ready_flag) return JPGD_FAILED;
if (m_total_lines_left == 0) return JPGD_DONE;
try {
if (m_mcu_lines_left == 0) {
if (m_progressive_flag) load_next_row(); else decode_next_row();
// Find the EOI marker if that was the last row.
if (m_total_lines_left <= m_max_mcu_y_size) find_eoi();
m_mcu_lines_left = m_max_mcu_y_size;
}
if (m_freq_domain_chroma_upsample) {
expanded_convert();
*pScan_line = m_pScan_line_0;
} else {
switch (m_scan_type) {
case JPGD_YH2V2:
if ((m_mcu_lines_left & 1) == 0) {
H2V2Convert();
*pScan_line = m_pScan_line_0;
} else {
*pScan_line = m_pScan_line_1;
}
break;
case JPGD_YH2V1:
H2V1Convert();
*pScan_line = m_pScan_line_0;
break;
case JPGD_YH1V2:
if ((m_mcu_lines_left & 1) == 0) {
H1V2Convert();
*pScan_line = m_pScan_line_0;
} else {
*pScan_line = m_pScan_line_1;
}
break;
case JPGD_YH1V1:
H1V1Convert();
*pScan_line = m_pScan_line_0;
break;
case JPGD_GRAYSCALE:
gray_convert();
*pScan_line = m_pScan_line_0;
break;
default:
}
}
*pScan_line_len = m_real_dest_bytes_per_scan_line;
--m_mcu_lines_left;
--m_total_lines_left;
return JPGD_SUCCESS;
} catch (Exception) {}
return JPGD_FAILED;
}
@property const pure nothrow @safe @nogc {
jpgd_status error_code () { pragma(inline, true); return m_error_code; }
int width () { pragma(inline, true); return m_image_x_size; }
int height () { pragma(inline, true); return m_image_y_size; }
int num_components () { pragma(inline, true); return m_comps_in_frame; }
int bytes_per_pixel () { pragma(inline, true); return m_dest_bytes_per_pixel; }
int bytes_per_scan_line () { pragma(inline, true); return m_image_x_size * bytes_per_pixel(); }
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
int total_bytes_read () { pragma(inline, true); return m_total_bytes_read; }
}
private:
// Retrieve one character from the input stream.
uint get_char () {
// Any bytes remaining in buffer?
if (!m_in_buf_left) {
// Try to get more bytes.
prep_in_buffer();
// Still nothing to get?
if (!m_in_buf_left) {
// Pad the end of the stream with 0xFF 0xD9 (EOI marker)
int t = m_tem_flag;
m_tem_flag ^= 1;
return (t ? 0xD9 : 0xFF);
}
}
uint c = *m_pIn_buf_ofs++;
--m_in_buf_left;
return c;
}
// Same as previous method, except can indicate if the character is a pad character or not.
uint get_char (bool* pPadding_flag) {
if (!m_in_buf_left) {
prep_in_buffer();
if (!m_in_buf_left) {
*pPadding_flag = true;
int t = m_tem_flag;
m_tem_flag ^= 1;
return (t ? 0xD9 : 0xFF);
}
}
*pPadding_flag = false;
uint c = *m_pIn_buf_ofs++;
--m_in_buf_left;
return c;
}
// Inserts a previously retrieved character back into the input buffer.
void stuff_char (ubyte q) {
*(--m_pIn_buf_ofs) = q;
m_in_buf_left++;
}
// Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered.
ubyte get_octet () {
bool padding_flag;
int c = get_char(&padding_flag);
if (c == 0xFF) {
if (padding_flag) return 0xFF;
c = get_char(&padding_flag);
if (padding_flag) { stuff_char(0xFF); return 0xFF; }
if (c == 0x00) return 0xFF;
stuff_char(cast(ubyte)(c));
stuff_char(0xFF);
return 0xFF;
}
return cast(ubyte)(c);
}
// Retrieves a variable number of bits from the input stream. Does not recognize markers.
uint get_bits (int num_bits) {
if (!num_bits) return 0;
uint i = m_bit_buf >> (32 - num_bits);
if ((m_bits_left -= num_bits) <= 0) {
m_bit_buf <<= (num_bits += m_bits_left);
uint c1 = get_char();
uint c2 = get_char();
m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2;
m_bit_buf <<= -m_bits_left;
m_bits_left += 16;
assert(m_bits_left >= 0);
} else {
m_bit_buf <<= num_bits;
}
return i;
}
// Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered.
uint get_bits_no_markers (int num_bits) {
if (!num_bits) return 0;
uint i = m_bit_buf >> (32 - num_bits);
if ((m_bits_left -= num_bits) <= 0) {
m_bit_buf <<= (num_bits += m_bits_left);
if (m_in_buf_left < 2 || m_pIn_buf_ofs[0] == 0xFF || m_pIn_buf_ofs[1] == 0xFF) {
uint c1 = get_octet();
uint c2 = get_octet();
m_bit_buf |= (c1 << 8) | c2;
} else {
m_bit_buf |= (cast(uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1];
m_in_buf_left -= 2;
m_pIn_buf_ofs += 2;
}
m_bit_buf <<= -m_bits_left;
m_bits_left += 16;
assert(m_bits_left >= 0);
} else {
m_bit_buf <<= num_bits;
}
return i;
}
// Decodes a Huffman encoded symbol.
int huff_decode (huff_tables *pH) {
int symbol;
// Check first 8-bits: do we have a complete symbol?
if ((symbol = pH.look_up.ptr[m_bit_buf >> 24]) < 0) {
// Decode more bits, use a tree traversal to find symbol.
int ofs = 23;
do {
symbol = pH.tree.ptr[-cast(int)(symbol + ((m_bit_buf >> ofs) & 1))];
--ofs;
} while (symbol < 0);
get_bits_no_markers(8 + (23 - ofs));
} else {
get_bits_no_markers(pH.code_size.ptr[symbol]);
}
return symbol;
}
// Decodes a Huffman encoded symbol.
int huff_decode (huff_tables *pH, ref int extra_bits) {
int symbol;
// Check first 8-bits: do we have a complete symbol?
if ((symbol = pH.look_up2.ptr[m_bit_buf >> 24]) < 0) {
// Use a tree traversal to find symbol.
int ofs = 23;
do {
symbol = pH.tree.ptr[-cast(int)(symbol + ((m_bit_buf >> ofs) & 1))];
--ofs;
} while (symbol < 0);
get_bits_no_markers(8 + (23 - ofs));
extra_bits = get_bits_no_markers(symbol & 0xF);
} else {
assert(((symbol >> 8) & 31) == pH.code_size.ptr[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0));
if (symbol & 0x8000) {
get_bits_no_markers((symbol >> 8) & 31);
extra_bits = symbol >> 16;
} else {
int code_size = (symbol >> 8) & 31;
int num_extra_bits = symbol & 0xF;
int bits = code_size + num_extra_bits;
if (bits <= (m_bits_left + 16)) {
extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1);
} else {
get_bits_no_markers(code_size);
extra_bits = get_bits_no_markers(num_extra_bits);
}
}
symbol &= 0xFF;
}
return symbol;
}
// Tables and macro used to fully decode the DPCM differences.
static immutable int[16] s_extend_test = [ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 ];
static immutable int[16] s_extend_offset = [ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 ];
static immutable int[18] s_extend_mask = [ 0, (1<<0), (1<<1), (1<<2), (1<<3), (1<<4), (1<<5), (1<<6), (1<<7), (1<<8), (1<<9), (1<<10), (1<<11), (1<<12), (1<<13), (1<<14), (1<<15), (1<<16) ];
// The logical AND's in this macro are to shut up static code analysis (aren't really necessary - couldn't find another way to do this)
//#define JPGD_HUFF_EXTEND(x, s) (((x) < s_extend_test[s & 15]) ? ((x) + s_extend_offset[s & 15]) : (x))
static JPGD_HUFF_EXTEND (int x, int s) nothrow @trusted @nogc { pragma(inline, true); return (((x) < s_extend_test.ptr[s & 15]) ? ((x) + s_extend_offset.ptr[s & 15]) : (x)); }
// Clamps a value between 0-255.
//static ubyte clamp (int i) { if (cast(uint)(i) > 255) i = (((~i) >> 31) & 0xFF); return cast(ubyte)(i); }
alias clamp = CLAMP;
static struct DCT_Upsample {
static:
static struct Matrix44 {
pure nothrow @trusted @nogc:
alias Element_Type = int;
enum { NUM_ROWS = 4, NUM_COLS = 4 }
Element_Type[NUM_COLS][NUM_ROWS] v;
this() (in auto ref Matrix44 m) {
foreach (immutable r; 0..NUM_ROWS) v[r][] = m.v[r][];
}
//@property int rows () const { pragma(inline, true); return NUM_ROWS; }
//@property int cols () const { pragma(inline, true); return NUM_COLS; }
ref inout(Element_Type) at (int r, int c) inout { pragma(inline, true); return v.ptr[r].ptr[c]; }
ref Matrix44 opOpAssign(string op:"+") (in auto ref Matrix44 a) {
foreach (int r; 0..NUM_ROWS) {
at(r, 0) += a.at(r, 0);
at(r, 1) += a.at(r, 1);
at(r, 2) += a.at(r, 2);
at(r, 3) += a.at(r, 3);
}
return this;
}
ref Matrix44 opOpAssign(string op:"-") (in auto ref Matrix44 a) {
foreach (int r; 0..NUM_ROWS) {
at(r, 0) -= a.at(r, 0);
at(r, 1) -= a.at(r, 1);
at(r, 2) -= a.at(r, 2);
at(r, 3) -= a.at(r, 3);
}
return this;
}
Matrix44 opBinary(string op:"+") (in auto ref Matrix44 b) const {
alias a = this;
Matrix44 ret;
foreach (int r; 0..NUM_ROWS) {
ret.at(r, 0) = a.at(r, 0) + b.at(r, 0);
ret.at(r, 1) = a.at(r, 1) + b.at(r, 1);
ret.at(r, 2) = a.at(r, 2) + b.at(r, 2);
ret.at(r, 3) = a.at(r, 3) + b.at(r, 3);
}
return ret;
}
Matrix44 opBinary(string op:"-") (in auto ref Matrix44 b) const {
alias a = this;
Matrix44 ret;
foreach (int r; 0..NUM_ROWS) {
ret.at(r, 0) = a.at(r, 0) - b.at(r, 0);
ret.at(r, 1) = a.at(r, 1) - b.at(r, 1);
ret.at(r, 2) = a.at(r, 2) - b.at(r, 2);
ret.at(r, 3) = a.at(r, 3) - b.at(r, 3);
}
return ret;
}
static void add_and_store() (jpgd_block_t* pDst, in auto ref Matrix44 a, in auto ref Matrix44 b) {
foreach (int r; 0..4) {
pDst[0*8 + r] = cast(jpgd_block_t)(a.at(r, 0) + b.at(r, 0));
pDst[1*8 + r] = cast(jpgd_block_t)(a.at(r, 1) + b.at(r, 1));
pDst[2*8 + r] = cast(jpgd_block_t)(a.at(r, 2) + b.at(r, 2));
pDst[3*8 + r] = cast(jpgd_block_t)(a.at(r, 3) + b.at(r, 3));
}
}
static void sub_and_store() (jpgd_block_t* pDst, in auto ref Matrix44 a, in auto ref Matrix44 b) {
foreach (int r; 0..4) {
pDst[0*8 + r] = cast(jpgd_block_t)(a.at(r, 0) - b.at(r, 0));
pDst[1*8 + r] = cast(jpgd_block_t)(a.at(r, 1) - b.at(r, 1));
pDst[2*8 + r] = cast(jpgd_block_t)(a.at(r, 2) - b.at(r, 2));
pDst[3*8 + r] = cast(jpgd_block_t)(a.at(r, 3) - b.at(r, 3));
}
}
}
enum FRACT_BITS = 10;
enum SCALE = 1 << FRACT_BITS;
alias Temp_Type = int;
//TODO: convert defines to mixins
//#define D(i) (((i) + (SCALE >> 1)) >> FRACT_BITS)
//#define F(i) ((int)((i) * SCALE + .5f))
// Any decent C++ compiler will optimize this at compile time to a 0, or an array access.
//#define AT(c, r) ((((c)>=NUM_COLS)||((r)>=NUM_ROWS)) ? 0 : pSrc[(c)+(r)*8])
static int D(T) (T i) { pragma(inline, true); return (((i) + (SCALE >> 1)) >> FRACT_BITS); }
enum F(float i) = (cast(int)((i) * SCALE + 0.5f));
// NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix
static struct P_Q(int NUM_ROWS, int NUM_COLS) {
static void calc (ref Matrix44 P, ref Matrix44 Q, const(jpgd_block_t)* pSrc) {
//auto AT (int c, int r) nothrow @trusted @nogc { return (c >= NUM_COLS || r >= NUM_ROWS ? 0 : pSrc[c+r*8]); }
template AT(int c, int r) {
static if (c >= NUM_COLS || r >= NUM_ROWS) enum AT = "0"; else enum AT = "pSrc["~c.stringof~"+"~r.stringof~"*8]";
}
// 4x8 = 4x8 times 8x8, matrix 0 is constant
immutable Temp_Type X000 = mixin(AT!(0, 0));
immutable Temp_Type X001 = mixin(AT!(0, 1));
immutable Temp_Type X002 = mixin(AT!(0, 2));
immutable Temp_Type X003 = mixin(AT!(0, 3));
immutable Temp_Type X004 = mixin(AT!(0, 4));
immutable Temp_Type X005 = mixin(AT!(0, 5));
immutable Temp_Type X006 = mixin(AT!(0, 6));
immutable Temp_Type X007 = mixin(AT!(0, 7));
immutable Temp_Type X010 = D(F!(0.415735f) * mixin(AT!(1, 0)) + F!(0.791065f) * mixin(AT!(3, 0)) + F!(-0.352443f) * mixin(AT!(5, 0)) + F!(0.277785f) * mixin(AT!(7, 0)));
immutable Temp_Type X011 = D(F!(0.415735f) * mixin(AT!(1, 1)) + F!(0.791065f) * mixin(AT!(3, 1)) + F!(-0.352443f) * mixin(AT!(5, 1)) + F!(0.277785f) * mixin(AT!(7, 1)));
immutable Temp_Type X012 = D(F!(0.415735f) * mixin(AT!(1, 2)) + F!(0.791065f) * mixin(AT!(3, 2)) + F!(-0.352443f) * mixin(AT!(5, 2)) + F!(0.277785f) * mixin(AT!(7, 2)));
immutable Temp_Type X013 = D(F!(0.415735f) * mixin(AT!(1, 3)) + F!(0.791065f) * mixin(AT!(3, 3)) + F!(-0.352443f) * mixin(AT!(5, 3)) + F!(0.277785f) * mixin(AT!(7, 3)));
immutable Temp_Type X014 = D(F!(0.415735f) * mixin(AT!(1, 4)) + F!(0.791065f) * mixin(AT!(3, 4)) + F!(-0.352443f) * mixin(AT!(5, 4)) + F!(0.277785f) * mixin(AT!(7, 4)));
immutable Temp_Type X015 = D(F!(0.415735f) * mixin(AT!(1, 5)) + F!(0.791065f) * mixin(AT!(3, 5)) + F!(-0.352443f) * mixin(AT!(5, 5)) + F!(0.277785f) * mixin(AT!(7, 5)));
immutable Temp_Type X016 = D(F!(0.415735f) * mixin(AT!(1, 6)) + F!(0.791065f) * mixin(AT!(3, 6)) + F!(-0.352443f) * mixin(AT!(5, 6)) + F!(0.277785f) * mixin(AT!(7, 6)));
immutable Temp_Type X017 = D(F!(0.415735f) * mixin(AT!(1, 7)) + F!(0.791065f) * mixin(AT!(3, 7)) + F!(-0.352443f) * mixin(AT!(5, 7)) + F!(0.277785f) * mixin(AT!(7, 7)));
immutable Temp_Type X020 = mixin(AT!(4, 0));
immutable Temp_Type X021 = mixin(AT!(4, 1));
immutable Temp_Type X022 = mixin(AT!(4, 2));
immutable Temp_Type X023 = mixin(AT!(4, 3));
immutable Temp_Type X024 = mixin(AT!(4, 4));
immutable Temp_Type X025 = mixin(AT!(4, 5));
immutable Temp_Type X026 = mixin(AT!(4, 6));
immutable Temp_Type X027 = mixin(AT!(4, 7));
immutable Temp_Type X030 = D(F!(0.022887f) * mixin(AT!(1, 0)) + F!(-0.097545f) * mixin(AT!(3, 0)) + F!(0.490393f) * mixin(AT!(5, 0)) + F!(0.865723f) * mixin(AT!(7, 0)));
immutable Temp_Type X031 = D(F!(0.022887f) * mixin(AT!(1, 1)) + F!(-0.097545f) * mixin(AT!(3, 1)) + F!(0.490393f) * mixin(AT!(5, 1)) + F!(0.865723f) * mixin(AT!(7, 1)));
immutable Temp_Type X032 = D(F!(0.022887f) * mixin(AT!(1, 2)) + F!(-0.097545f) * mixin(AT!(3, 2)) + F!(0.490393f) * mixin(AT!(5, 2)) + F!(0.865723f) * mixin(AT!(7, 2)));
immutable Temp_Type X033 = D(F!(0.022887f) * mixin(AT!(1, 3)) + F!(-0.097545f) * mixin(AT!(3, 3)) + F!(0.490393f) * mixin(AT!(5, 3)) + F!(0.865723f) * mixin(AT!(7, 3)));
immutable Temp_Type X034 = D(F!(0.022887f) * mixin(AT!(1, 4)) + F!(-0.097545f) * mixin(AT!(3, 4)) + F!(0.490393f) * mixin(AT!(5, 4)) + F!(0.865723f) * mixin(AT!(7, 4)));
immutable Temp_Type X035 = D(F!(0.022887f) * mixin(AT!(1, 5)) + F!(-0.097545f) * mixin(AT!(3, 5)) + F!(0.490393f) * mixin(AT!(5, 5)) + F!(0.865723f) * mixin(AT!(7, 5)));
immutable Temp_Type X036 = D(F!(0.022887f) * mixin(AT!(1, 6)) + F!(-0.097545f) * mixin(AT!(3, 6)) + F!(0.490393f) * mixin(AT!(5, 6)) + F!(0.865723f) * mixin(AT!(7, 6)));
immutable Temp_Type X037 = D(F!(0.022887f) * mixin(AT!(1, 7)) + F!(-0.097545f) * mixin(AT!(3, 7)) + F!(0.490393f) * mixin(AT!(5, 7)) + F!(0.865723f) * mixin(AT!(7, 7)));
// 4x4 = 4x8 times 8x4, matrix 1 is constant
P.at(0, 0) = X000;
P.at(0, 1) = D(X001 * F!(0.415735f) + X003 * F!(0.791065f) + X005 * F!(-0.352443f) + X007 * F!(0.277785f));
P.at(0, 2) = X004;
P.at(0, 3) = D(X001 * F!(0.022887f) + X003 * F!(-0.097545f) + X005 * F!(0.490393f) + X007 * F!(0.865723f));
P.at(1, 0) = X010;
P.at(1, 1) = D(X011 * F!(0.415735f) + X013 * F!(0.791065f) + X015 * F!(-0.352443f) + X017 * F!(0.277785f));
P.at(1, 2) = X014;
P.at(1, 3) = D(X011 * F!(0.022887f) + X013 * F!(-0.097545f) + X015 * F!(0.490393f) + X017 * F!(0.865723f));
P.at(2, 0) = X020;
P.at(2, 1) = D(X021 * F!(0.415735f) + X023 * F!(0.791065f) + X025 * F!(-0.352443f) + X027 * F!(0.277785f));
P.at(2, 2) = X024;
P.at(2, 3) = D(X021 * F!(0.022887f) + X023 * F!(-0.097545f) + X025 * F!(0.490393f) + X027 * F!(0.865723f));
P.at(3, 0) = X030;
P.at(3, 1) = D(X031 * F!(0.415735f) + X033 * F!(0.791065f) + X035 * F!(-0.352443f) + X037 * F!(0.277785f));
P.at(3, 2) = X034;
P.at(3, 3) = D(X031 * F!(0.022887f) + X033 * F!(-0.097545f) + X035 * F!(0.490393f) + X037 * F!(0.865723f));
// 40 muls 24 adds
// 4x4 = 4x8 times 8x4, matrix 1 is constant
Q.at(0, 0) = D(X001 * F!(0.906127f) + X003 * F!(-0.318190f) + X005 * F!(0.212608f) + X007 * F!(-0.180240f));
Q.at(0, 1) = X002;
Q.at(0, 2) = D(X001 * F!(-0.074658f) + X003 * F!(0.513280f) + X005 * F!(0.768178f) + X007 * F!(-0.375330f));
Q.at(0, 3) = X006;
Q.at(1, 0) = D(X011 * F!(0.906127f) + X013 * F!(-0.318190f) + X015 * F!(0.212608f) + X017 * F!(-0.180240f));
Q.at(1, 1) = X012;
Q.at(1, 2) = D(X011 * F!(-0.074658f) + X013 * F!(0.513280f) + X015 * F!(0.768178f) + X017 * F!(-0.375330f));
Q.at(1, 3) = X016;
Q.at(2, 0) = D(X021 * F!(0.906127f) + X023 * F!(-0.318190f) + X025 * F!(0.212608f) + X027 * F!(-0.180240f));
Q.at(2, 1) = X022;
Q.at(2, 2) = D(X021 * F!(-0.074658f) + X023 * F!(0.513280f) + X025 * F!(0.768178f) + X027 * F!(-0.375330f));
Q.at(2, 3) = X026;
Q.at(3, 0) = D(X031 * F!(0.906127f) + X033 * F!(-0.318190f) + X035 * F!(0.212608f) + X037 * F!(-0.180240f));
Q.at(3, 1) = X032;
Q.at(3, 2) = D(X031 * F!(-0.074658f) + X033 * F!(0.513280f) + X035 * F!(0.768178f) + X037 * F!(-0.375330f));
Q.at(3, 3) = X036;
// 40 muls 24 adds
}
}
static struct R_S(int NUM_ROWS, int NUM_COLS) {
static void calc(ref Matrix44 R, ref Matrix44 S, const(jpgd_block_t)* pSrc) {
//auto AT (int c, int r) nothrow @trusted @nogc { return (c >= NUM_COLS || r >= NUM_ROWS ? 0 : pSrc[c+r*8]); }
template AT(int c, int r) {
static if (c >= NUM_COLS || r >= NUM_ROWS) enum AT = "0"; else enum AT = "pSrc["~c.stringof~"+"~r.stringof~"*8]";
}
// 4x8 = 4x8 times 8x8, matrix 0 is constant
immutable Temp_Type X100 = D(F!(0.906127f) * mixin(AT!(1, 0)) + F!(-0.318190f) * mixin(AT!(3, 0)) + F!(0.212608f) * mixin(AT!(5, 0)) + F!(-0.180240f) * mixin(AT!(7, 0)));
immutable Temp_Type X101 = D(F!(0.906127f) * mixin(AT!(1, 1)) + F!(-0.318190f) * mixin(AT!(3, 1)) + F!(0.212608f) * mixin(AT!(5, 1)) + F!(-0.180240f) * mixin(AT!(7, 1)));
immutable Temp_Type X102 = D(F!(0.906127f) * mixin(AT!(1, 2)) + F!(-0.318190f) * mixin(AT!(3, 2)) + F!(0.212608f) * mixin(AT!(5, 2)) + F!(-0.180240f) * mixin(AT!(7, 2)));
immutable Temp_Type X103 = D(F!(0.906127f) * mixin(AT!(1, 3)) + F!(-0.318190f) * mixin(AT!(3, 3)) + F!(0.212608f) * mixin(AT!(5, 3)) + F!(-0.180240f) * mixin(AT!(7, 3)));
immutable Temp_Type X104 = D(F!(0.906127f) * mixin(AT!(1, 4)) + F!(-0.318190f) * mixin(AT!(3, 4)) + F!(0.212608f) * mixin(AT!(5, 4)) + F!(-0.180240f) * mixin(AT!(7, 4)));
immutable Temp_Type X105 = D(F!(0.906127f) * mixin(AT!(1, 5)) + F!(-0.318190f) * mixin(AT!(3, 5)) + F!(0.212608f) * mixin(AT!(5, 5)) + F!(-0.180240f) * mixin(AT!(7, 5)));
immutable Temp_Type X106 = D(F!(0.906127f) * mixin(AT!(1, 6)) + F!(-0.318190f) * mixin(AT!(3, 6)) + F!(0.212608f) * mixin(AT!(5, 6)) + F!(-0.180240f) * mixin(AT!(7, 6)));
immutable Temp_Type X107 = D(F!(0.906127f) * mixin(AT!(1, 7)) + F!(-0.318190f) * mixin(AT!(3, 7)) + F!(0.212608f) * mixin(AT!(5, 7)) + F!(-0.180240f) * mixin(AT!(7, 7)));
immutable Temp_Type X110 = mixin(AT!(2, 0));
immutable Temp_Type X111 = mixin(AT!(2, 1));
immutable Temp_Type X112 = mixin(AT!(2, 2));
immutable Temp_Type X113 = mixin(AT!(2, 3));
immutable Temp_Type X114 = mixin(AT!(2, 4));
immutable Temp_Type X115 = mixin(AT!(2, 5));
immutable Temp_Type X116 = mixin(AT!(2, 6));
immutable Temp_Type X117 = mixin(AT!(2, 7));
immutable Temp_Type X120 = D(F!(-0.074658f) * mixin(AT!(1, 0)) + F!(0.513280f) * mixin(AT!(3, 0)) + F!(0.768178f) * mixin(AT!(5, 0)) + F!(-0.375330f) * mixin(AT!(7, 0)));
immutable Temp_Type X121 = D(F!(-0.074658f) * mixin(AT!(1, 1)) + F!(0.513280f) * mixin(AT!(3, 1)) + F!(0.768178f) * mixin(AT!(5, 1)) + F!(-0.375330f) * mixin(AT!(7, 1)));
immutable Temp_Type X122 = D(F!(-0.074658f) * mixin(AT!(1, 2)) + F!(0.513280f) * mixin(AT!(3, 2)) + F!(0.768178f) * mixin(AT!(5, 2)) + F!(-0.375330f) * mixin(AT!(7, 2)));
immutable Temp_Type X123 = D(F!(-0.074658f) * mixin(AT!(1, 3)) + F!(0.513280f) * mixin(AT!(3, 3)) + F!(0.768178f) * mixin(AT!(5, 3)) + F!(-0.375330f) * mixin(AT!(7, 3)));
immutable Temp_Type X124 = D(F!(-0.074658f) * mixin(AT!(1, 4)) + F!(0.513280f) * mixin(AT!(3, 4)) + F!(0.768178f) * mixin(AT!(5, 4)) + F!(-0.375330f) * mixin(AT!(7, 4)));
immutable Temp_Type X125 = D(F!(-0.074658f) * mixin(AT!(1, 5)) + F!(0.513280f) * mixin(AT!(3, 5)) + F!(0.768178f) * mixin(AT!(5, 5)) + F!(-0.375330f) * mixin(AT!(7, 5)));
immutable Temp_Type X126 = D(F!(-0.074658f) * mixin(AT!(1, 6)) + F!(0.513280f) * mixin(AT!(3, 6)) + F!(0.768178f) * mixin(AT!(5, 6)) + F!(-0.375330f) * mixin(AT!(7, 6)));
immutable Temp_Type X127 = D(F!(-0.074658f) * mixin(AT!(1, 7)) + F!(0.513280f) * mixin(AT!(3, 7)) + F!(0.768178f) * mixin(AT!(5, 7)) + F!(-0.375330f) * mixin(AT!(7, 7)));
immutable Temp_Type X130 = mixin(AT!(6, 0));
immutable Temp_Type X131 = mixin(AT!(6, 1));
immutable Temp_Type X132 = mixin(AT!(6, 2));
immutable Temp_Type X133 = mixin(AT!(6, 3));
immutable Temp_Type X134 = mixin(AT!(6, 4));
immutable Temp_Type X135 = mixin(AT!(6, 5));
immutable Temp_Type X136 = mixin(AT!(6, 6));
immutable Temp_Type X137 = mixin(AT!(6, 7));
// 80 muls 48 adds
// 4x4 = 4x8 times 8x4, matrix 1 is constant
R.at(0, 0) = X100;
R.at(0, 1) = D(X101 * F!(0.415735f) + X103 * F!(0.791065f) + X105 * F!(-0.352443f) + X107 * F!(0.277785f));
R.at(0, 2) = X104;
R.at(0, 3) = D(X101 * F!(0.022887f) + X103 * F!(-0.097545f) + X105 * F!(0.490393f) + X107 * F!(0.865723f));
R.at(1, 0) = X110;
R.at(1, 1) = D(X111 * F!(0.415735f) + X113 * F!(0.791065f) + X115 * F!(-0.352443f) + X117 * F!(0.277785f));
R.at(1, 2) = X114;
R.at(1, 3) = D(X111 * F!(0.022887f) + X113 * F!(-0.097545f) + X115 * F!(0.490393f) + X117 * F!(0.865723f));
R.at(2, 0) = X120;
R.at(2, 1) = D(X121 * F!(0.415735f) + X123 * F!(0.791065f) + X125 * F!(-0.352443f) + X127 * F!(0.277785f));
R.at(2, 2) = X124;
R.at(2, 3) = D(X121 * F!(0.022887f) + X123 * F!(-0.097545f) + X125 * F!(0.490393f) + X127 * F!(0.865723f));
R.at(3, 0) = X130;
R.at(3, 1) = D(X131 * F!(0.415735f) + X133 * F!(0.791065f) + X135 * F!(-0.352443f) + X137 * F!(0.277785f));
R.at(3, 2) = X134;
R.at(3, 3) = D(X131 * F!(0.022887f) + X133 * F!(-0.097545f) + X135 * F!(0.490393f) + X137 * F!(0.865723f));
// 40 muls 24 adds
// 4x4 = 4x8 times 8x4, matrix 1 is constant
S.at(0, 0) = D(X101 * F!(0.906127f) + X103 * F!(-0.318190f) + X105 * F!(0.212608f) + X107 * F!(-0.180240f));
S.at(0, 1) = X102;
S.at(0, 2) = D(X101 * F!(-0.074658f) + X103 * F!(0.513280f) + X105 * F!(0.768178f) + X107 * F!(-0.375330f));
S.at(0, 3) = X106;
S.at(1, 0) = D(X111 * F!(0.906127f) + X113 * F!(-0.318190f) + X115 * F!(0.212608f) + X117 * F!(-0.180240f));
S.at(1, 1) = X112;
S.at(1, 2) = D(X111 * F!(-0.074658f) + X113 * F!(0.513280f) + X115 * F!(0.768178f) + X117 * F!(-0.375330f));
S.at(1, 3) = X116;
S.at(2, 0) = D(X121 * F!(0.906127f) + X123 * F!(-0.318190f) + X125 * F!(0.212608f) + X127 * F!(-0.180240f));
S.at(2, 1) = X122;
S.at(2, 2) = D(X121 * F!(-0.074658f) + X123 * F!(0.513280f) + X125 * F!(0.768178f) + X127 * F!(-0.375330f));
S.at(2, 3) = X126;
S.at(3, 0) = D(X131 * F!(0.906127f) + X133 * F!(-0.318190f) + X135 * F!(0.212608f) + X137 * F!(-0.180240f));
S.at(3, 1) = X132;
S.at(3, 2) = D(X131 * F!(-0.074658f) + X133 * F!(0.513280f) + X135 * F!(0.768178f) + X137 * F!(-0.375330f));
S.at(3, 3) = X136;
// 40 muls 24 adds
}
}
} // end namespace DCT_Upsample
// Unconditionally frees all allocated m_blocks.
void free_all_blocks () {
//m_pStream = null;
readfn = null;
for (mem_block *b = m_pMem_blocks; b; ) {
mem_block* n = b.m_pNext;
jpgd_free(b);
b = n;
}
m_pMem_blocks = null;
}
// This method handles all errors. It will never return.
// It could easily be changed to use C++ exceptions.
/*JPGD_NORETURN*/ void stop_decoding (jpgd_status status, size_t line=__LINE__) {
m_error_code = status;
free_all_blocks();
//longjmp(m_jmp_state, status);
throw new Exception("jpeg decoding error", __FILE__, line);
}
void* alloc (size_t nSize, bool zero=false) {
nSize = (JPGD_MAX(nSize, 1) + 3) & ~3;
char *rv = null;
for (mem_block *b = m_pMem_blocks; b; b = b.m_pNext)
{
if ((b.m_used_count + nSize) <= b.m_size)
{
rv = b.m_data.ptr + b.m_used_count;
b.m_used_count += nSize;
break;
}
}
if (!rv)
{
size_t capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047);
mem_block *b = cast(mem_block*)jpgd_malloc(mem_block.sizeof + capacity);
if (!b) { stop_decoding(JPGD_NOTENOUGHMEM); }
b.m_pNext = m_pMem_blocks; m_pMem_blocks = b;
b.m_used_count = nSize;
b.m_size = capacity;
rv = b.m_data.ptr;
}
if (zero) memset(rv, 0, nSize);
return rv;
}
void word_clear (void *p, ushort c, uint n) {
ubyte *pD = cast(ubyte*)p;
immutable ubyte l = c & 0xFF, h = (c >> 8) & 0xFF;
while (n)
{
pD[0] = l; pD[1] = h; pD += 2;
n--;
}
}
// Refill the input buffer.
// This method will sit in a loop until (A) the buffer is full or (B)
// the stream's read() method reports and end of file condition.
void prep_in_buffer () {
m_in_buf_left = 0;
m_pIn_buf_ofs = m_in_buf.ptr;
if (m_eof_flag)
return;
do
{
int bytes_read = readfn(m_in_buf.ptr + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag);
if (bytes_read == -1)
stop_decoding(JPGD_STREAM_READ);
m_in_buf_left += bytes_read;
} while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag));
m_total_bytes_read += m_in_buf_left;
// Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid).
// (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.)
word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64);
}
// Read a Huffman code table.
void read_dht_marker () {
int i, index, count;
ubyte[17] huff_num;
ubyte[256] huff_val;
uint num_left = get_bits(16);
if (num_left < 2)
stop_decoding(JPGD_BAD_DHT_MARKER);
num_left -= 2;
while (num_left)
{
index = get_bits(8);
huff_num.ptr[0] = 0;
count = 0;
for (i = 1; i <= 16; i++)
{
huff_num.ptr[i] = cast(ubyte)(get_bits(8));
count += huff_num.ptr[i];
}
if (count > 255)
stop_decoding(JPGD_BAD_DHT_COUNTS);
for (i = 0; i < count; i++)
huff_val.ptr[i] = cast(ubyte)(get_bits(8));
i = 1 + 16 + count;
if (num_left < cast(uint)i)
stop_decoding(JPGD_BAD_DHT_MARKER);
num_left -= i;
if ((index & 0x10) > 0x10)
stop_decoding(JPGD_BAD_DHT_INDEX);
index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1);
if (index >= JPGD_MAX_HUFF_TABLES)
stop_decoding(JPGD_BAD_DHT_INDEX);
if (!m_huff_num.ptr[index])
m_huff_num.ptr[index] = cast(ubyte*)alloc(17);
if (!m_huff_val.ptr[index])
m_huff_val.ptr[index] = cast(ubyte*)alloc(256);
m_huff_ac.ptr[index] = (index & 0x10) != 0;
memcpy(m_huff_num.ptr[index], huff_num.ptr, 17);
memcpy(m_huff_val.ptr[index], huff_val.ptr, 256);
}
}
// Read a quantization table.
void read_dqt_marker () {
int n, i, prec;
uint num_left;
uint temp;
num_left = get_bits(16);
if (num_left < 2)
stop_decoding(JPGD_BAD_DQT_MARKER);
num_left -= 2;
while (num_left)
{
n = get_bits(8);
prec = n >> 4;
n &= 0x0F;
if (n >= JPGD_MAX_QUANT_TABLES)
stop_decoding(JPGD_BAD_DQT_TABLE);
if (!m_quant.ptr[n])
m_quant.ptr[n] = cast(jpgd_quant_t*)alloc(64 * jpgd_quant_t.sizeof);
// read quantization entries, in zag order
for (i = 0; i < 64; i++)
{
temp = get_bits(8);
if (prec)
temp = (temp << 8) + get_bits(8);
m_quant.ptr[n][i] = cast(jpgd_quant_t)(temp);
}
i = 64 + 1;
if (prec)
i += 64;
if (num_left < cast(uint)i)
stop_decoding(JPGD_BAD_DQT_LENGTH);
num_left -= i;
}
}
// Read the start of frame (SOF) marker.
void read_sof_marker () {
int i;
uint num_left;
num_left = get_bits(16);
if (get_bits(8) != 8) /* precision: sorry, only 8-bit precision is supported right now */
stop_decoding(JPGD_BAD_PRECISION);
m_image_y_size = get_bits(16);
if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT))
stop_decoding(JPGD_BAD_HEIGHT);
m_image_x_size = get_bits(16);
if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH))
stop_decoding(JPGD_BAD_WIDTH);
m_comps_in_frame = get_bits(8);
if (m_comps_in_frame > JPGD_MAX_COMPONENTS)
stop_decoding(JPGD_TOO_MANY_COMPONENTS);
if (num_left != cast(uint)(m_comps_in_frame * 3 + 8))
stop_decoding(JPGD_BAD_SOF_LENGTH);
for (i = 0; i < m_comps_in_frame; i++)
{
m_comp_ident.ptr[i] = get_bits(8);
m_comp_h_samp.ptr[i] = get_bits(4);
m_comp_v_samp.ptr[i] = get_bits(4);
m_comp_quant.ptr[i] = get_bits(8);
}
}
// Used to skip unrecognized markers.
void skip_variable_marker () {
uint num_left;
num_left = get_bits(16);
if (num_left < 2)
stop_decoding(JPGD_BAD_VARIABLE_MARKER);
num_left -= 2;
while (num_left)
{
get_bits(8);
num_left--;
}
}
// Read a define restart interval (DRI) marker.
void read_dri_marker () {
if (get_bits(16) != 4)
stop_decoding(JPGD_BAD_DRI_LENGTH);
m_restart_interval = get_bits(16);
}
// Read a start of scan (SOS) marker.
void read_sos_marker () {
uint num_left;
int i, ci, n, c, cc;
num_left = get_bits(16);
n = get_bits(8);
m_comps_in_scan = n;
num_left -= 3;
if ( (num_left != cast(uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) )
stop_decoding(JPGD_BAD_SOS_LENGTH);
for (i = 0; i < n; i++)
{
cc = get_bits(8);
c = get_bits(8);
num_left -= 2;
for (ci = 0; ci < m_comps_in_frame; ci++)
if (cc == m_comp_ident.ptr[ci])
break;
if (ci >= m_comps_in_frame)
stop_decoding(JPGD_BAD_SOS_COMP_ID);
m_comp_list.ptr[i] = ci;
m_comp_dc_tab.ptr[ci] = (c >> 4) & 15;
m_comp_ac_tab.ptr[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1);
}
m_spectral_start = get_bits(8);
m_spectral_end = get_bits(8);
m_successive_high = get_bits(4);
m_successive_low = get_bits(4);
if (!m_progressive_flag)
{
m_spectral_start = 0;
m_spectral_end = 63;
}
num_left -= 3;
/* read past whatever is num_left */
while (num_left)
{
get_bits(8);
num_left--;
}
}
// Finds the next marker.
int next_marker () {
uint c, bytes;
bytes = 0;
do
{
do
{
bytes++;
c = get_bits(8);
} while (c != 0xFF);
do
{
c = get_bits(8);
} while (c == 0xFF);
} while (c == 0);
// If bytes > 0 here, there where extra bytes before the marker (not good).
return c;
}
// Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is
// encountered.
int process_markers (bool allow_restarts = false) {
int c;
for ( ; ; ) {
c = next_marker();
switch (c)
{
case M_SOF0:
case M_SOF1:
case M_SOF2:
case M_SOF3:
case M_SOF5:
case M_SOF6:
case M_SOF7:
//case M_JPG:
case M_SOF9:
case M_SOF10:
case M_SOF11:
case M_SOF13:
case M_SOF14:
case M_SOF15:
case M_SOI:
case M_EOI:
case M_SOS:
return c;
case M_DHT:
read_dht_marker();
break;
// No arithmitic support - dumb patents!
case M_DAC:
stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT);
break;
case M_DQT:
read_dqt_marker();
break;
case M_DRI:
read_dri_marker();
break;
//case M_APP0: /* no need to read the JFIF marker */
case M_RST0: /* no parameters */
case M_RST1:
case M_RST2:
case M_RST3:
case M_RST4:
case M_RST5:
case M_RST6:
case M_RST7:
if(allow_restarts)
continue;
else
goto case;
case M_JPG:
case M_TEM:
stop_decoding(JPGD_UNEXPECTED_MARKER);
break;
default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */
skip_variable_marker();
break;
}
}
assert(0);
}
// Finds the start of image (SOI) marker.
// This code is rather defensive: it only checks the first 512 bytes to avoid
// false positives.
void locate_soi_marker () {
uint lastchar, thischar;
uint bytesleft;
lastchar = get_bits(8);
thischar = get_bits(8);
/* ok if it's a normal JPEG file without a special header */
if ((lastchar == 0xFF) && (thischar == M_SOI))
return;
bytesleft = 4096; //512;
for ( ; ; )
{
if (--bytesleft == 0)
stop_decoding(JPGD_NOT_JPEG);
lastchar = thischar;
thischar = get_bits(8);
if (lastchar == 0xFF)
{
if (thischar == M_SOI)
break;
else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end
stop_decoding(JPGD_NOT_JPEG);
}
}
// Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad.
thischar = (m_bit_buf >> 24) & 0xFF;
if (thischar != 0xFF)
stop_decoding(JPGD_NOT_JPEG);
}
// Find a start of frame (SOF) marker.
void locate_sof_marker () {
locate_soi_marker();
int c = process_markers();
switch (c)
{
case M_SOF2:
m_progressive_flag = true;
goto case;
case M_SOF0: /* baseline DCT */
case M_SOF1: /* extended sequential DCT */
read_sof_marker();
break;
case M_SOF9: /* Arithmitic coding */
stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT);
break;
default:
stop_decoding(JPGD_UNSUPPORTED_MARKER);
break;
}
}
// Find a start of scan (SOS) marker.
int locate_sos_marker () {
int c;
c = process_markers();
if (c == M_EOI)
return false;
else if (c != M_SOS)
stop_decoding(JPGD_UNEXPECTED_MARKER);
read_sos_marker();
return true;
}
// Reset everything to default/uninitialized state.
void initit (JpegStreamReadFunc rfn) {
m_pMem_blocks = null;
m_error_code = JPGD_SUCCESS;
m_ready_flag = false;
m_image_x_size = m_image_y_size = 0;
readfn = rfn;
m_progressive_flag = false;
memset(m_huff_ac.ptr, 0, m_huff_ac.sizeof);
memset(m_huff_num.ptr, 0, m_huff_num.sizeof);
memset(m_huff_val.ptr, 0, m_huff_val.sizeof);
memset(m_quant.ptr, 0, m_quant.sizeof);
m_scan_type = 0;
m_comps_in_frame = 0;
memset(m_comp_h_samp.ptr, 0, m_comp_h_samp.sizeof);
memset(m_comp_v_samp.ptr, 0, m_comp_v_samp.sizeof);
memset(m_comp_quant.ptr, 0, m_comp_quant.sizeof);
memset(m_comp_ident.ptr, 0, m_comp_ident.sizeof);
memset(m_comp_h_blocks.ptr, 0, m_comp_h_blocks.sizeof);
memset(m_comp_v_blocks.ptr, 0, m_comp_v_blocks.sizeof);
m_comps_in_scan = 0;
memset(m_comp_list.ptr, 0, m_comp_list.sizeof);
memset(m_comp_dc_tab.ptr, 0, m_comp_dc_tab.sizeof);
memset(m_comp_ac_tab.ptr, 0, m_comp_ac_tab.sizeof);
m_spectral_start = 0;
m_spectral_end = 0;
m_successive_low = 0;
m_successive_high = 0;
m_max_mcu_x_size = 0;
m_max_mcu_y_size = 0;
m_blocks_per_mcu = 0;
m_max_blocks_per_row = 0;
m_mcus_per_row = 0;
m_mcus_per_col = 0;
m_expanded_blocks_per_component = 0;
m_expanded_blocks_per_mcu = 0;
m_expanded_blocks_per_row = 0;
m_freq_domain_chroma_upsample = false;
memset(m_mcu_org.ptr, 0, m_mcu_org.sizeof);
m_total_lines_left = 0;
m_mcu_lines_left = 0;
m_real_dest_bytes_per_scan_line = 0;
m_dest_bytes_per_scan_line = 0;
m_dest_bytes_per_pixel = 0;
memset(m_pHuff_tabs.ptr, 0, m_pHuff_tabs.sizeof);
memset(m_dc_coeffs.ptr, 0, m_dc_coeffs.sizeof);
memset(m_ac_coeffs.ptr, 0, m_ac_coeffs.sizeof);
memset(m_block_y_mcu.ptr, 0, m_block_y_mcu.sizeof);
m_eob_run = 0;
memset(m_block_y_mcu.ptr, 0, m_block_y_mcu.sizeof);
m_pIn_buf_ofs = m_in_buf.ptr;
m_in_buf_left = 0;
m_eof_flag = false;
m_tem_flag = 0;
memset(m_in_buf_pad_start.ptr, 0, m_in_buf_pad_start.sizeof);
memset(m_in_buf.ptr, 0, m_in_buf.sizeof);
memset(m_in_buf_pad_end.ptr, 0, m_in_buf_pad_end.sizeof);
m_restart_interval = 0;
m_restarts_left = 0;
m_next_restart_num = 0;
m_max_mcus_per_row = 0;
m_max_blocks_per_mcu = 0;
m_max_mcus_per_col = 0;
memset(m_last_dc_val.ptr, 0, m_last_dc_val.sizeof);
m_pMCU_coefficients = null;
m_pSample_buf = null;
m_total_bytes_read = 0;
m_pScan_line_0 = null;
m_pScan_line_1 = null;
// Ready the input buffer.
prep_in_buffer();
// Prime the bit buffer.
m_bits_left = 16;
m_bit_buf = 0;
get_bits(16);
get_bits(16);
for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++)
m_mcu_block_max_zag.ptr[i] = 64;
}
enum SCALEBITS = 16;
enum ONE_HALF = (cast(int) 1 << (SCALEBITS-1));
enum FIX(float x) = (cast(int)((x) * (1L<<SCALEBITS) + 0.5f));
// Create a few tables that allow us to quickly convert YCbCr to RGB.
void create_look_ups () {
for (int i = 0; i <= 255; i++)
{
int k = i - 128;
m_crr.ptr[i] = ( FIX!(1.40200f) * k + ONE_HALF) >> SCALEBITS;
m_cbb.ptr[i] = ( FIX!(1.77200f) * k + ONE_HALF) >> SCALEBITS;
m_crg.ptr[i] = (-FIX!(0.71414f)) * k;
m_cbg.ptr[i] = (-FIX!(0.34414f)) * k + ONE_HALF;
}
}
// This method throws back into the stream any bytes that where read
// into the bit buffer during initial marker scanning.
void fix_in_buffer () {
// In case any 0xFF's where pulled into the buffer during marker scanning.
assert((m_bits_left & 7) == 0);
if (m_bits_left == 16)
stuff_char(cast(ubyte)(m_bit_buf & 0xFF));
if (m_bits_left >= 8)
stuff_char(cast(ubyte)((m_bit_buf >> 8) & 0xFF));
stuff_char(cast(ubyte)((m_bit_buf >> 16) & 0xFF));
stuff_char(cast(ubyte)((m_bit_buf >> 24) & 0xFF));
m_bits_left = 16;
get_bits_no_markers(16);
get_bits_no_markers(16);
}
void transform_mcu (int mcu_row) {
jpgd_block_t* pSrc_ptr = m_pMCU_coefficients;
ubyte* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64;
for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++)
{
idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag.ptr[mcu_block]);
pSrc_ptr += 64;
pDst_ptr += 64;
}
}
static immutable ubyte[64] s_max_rc = [
17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86,
102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136,
136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136,
136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136
];
void transform_mcu_expand (int mcu_row) {
jpgd_block_t* pSrc_ptr = m_pMCU_coefficients;
ubyte* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64;
// Y IDCT
int mcu_block;
for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++)
{
idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag.ptr[mcu_block]);
pSrc_ptr += 64;
pDst_ptr += 64;
}
// Chroma IDCT, with upsampling
jpgd_block_t[64] temp_block;
for (int i = 0; i < 2; i++)
{
DCT_Upsample.Matrix44 P, Q, R, S;
assert(m_mcu_block_max_zag.ptr[mcu_block] >= 1);
assert(m_mcu_block_max_zag.ptr[mcu_block] <= 64);
int max_zag = m_mcu_block_max_zag.ptr[mcu_block++] - 1;
if (max_zag <= 0) max_zag = 0; // should never happen, only here to shut up static analysis
switch (s_max_rc.ptr[max_zag])
{
case 1*16+1:
DCT_Upsample.P_Q!(1, 1).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(1, 1).calc(R, S, pSrc_ptr);
break;
case 1*16+2:
DCT_Upsample.P_Q!(1, 2).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(1, 2).calc(R, S, pSrc_ptr);
break;
case 2*16+2:
DCT_Upsample.P_Q!(2, 2).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(2, 2).calc(R, S, pSrc_ptr);
break;
case 3*16+2:
DCT_Upsample.P_Q!(3, 2).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(3, 2).calc(R, S, pSrc_ptr);
break;
case 3*16+3:
DCT_Upsample.P_Q!(3, 3).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(3, 3).calc(R, S, pSrc_ptr);
break;
case 3*16+4:
DCT_Upsample.P_Q!(3, 4).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(3, 4).calc(R, S, pSrc_ptr);
break;
case 4*16+4:
DCT_Upsample.P_Q!(4, 4).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(4, 4).calc(R, S, pSrc_ptr);
break;
case 5*16+4:
DCT_Upsample.P_Q!(5, 4).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(5, 4).calc(R, S, pSrc_ptr);
break;
case 5*16+5:
DCT_Upsample.P_Q!(5, 5).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(5, 5).calc(R, S, pSrc_ptr);
break;
case 5*16+6:
DCT_Upsample.P_Q!(5, 6).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(5, 6).calc(R, S, pSrc_ptr);
break;
case 6*16+6:
DCT_Upsample.P_Q!(6, 6).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(6, 6).calc(R, S, pSrc_ptr);
break;
case 7*16+6:
DCT_Upsample.P_Q!(7, 6).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(7, 6).calc(R, S, pSrc_ptr);
break;
case 7*16+7:
DCT_Upsample.P_Q!(7, 7).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(7, 7).calc(R, S, pSrc_ptr);
break;
case 7*16+8:
DCT_Upsample.P_Q!(7, 8).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(7, 8).calc(R, S, pSrc_ptr);
break;
case 8*16+8:
DCT_Upsample.P_Q!(8, 8).calc(P, Q, pSrc_ptr);
DCT_Upsample.R_S!(8, 8).calc(R, S, pSrc_ptr);
break;
default:
assert(false);
}
auto a = DCT_Upsample.Matrix44(P + Q);
P -= Q;
DCT_Upsample.Matrix44* b = &P;
auto c = DCT_Upsample.Matrix44(R + S);
R -= S;
DCT_Upsample.Matrix44* d = &R;
DCT_Upsample.Matrix44.add_and_store(temp_block.ptr, a, c);
idct_4x4(temp_block.ptr, pDst_ptr);
pDst_ptr += 64;
DCT_Upsample.Matrix44.sub_and_store(temp_block.ptr, a, c);
idct_4x4(temp_block.ptr, pDst_ptr);
pDst_ptr += 64;
DCT_Upsample.Matrix44.add_and_store(temp_block.ptr, *b, *d);
idct_4x4(temp_block.ptr, pDst_ptr);
pDst_ptr += 64;
DCT_Upsample.Matrix44.sub_and_store(temp_block.ptr, *b, *d);
idct_4x4(temp_block.ptr, pDst_ptr);
pDst_ptr += 64;
pSrc_ptr += 64;
}
}
// Loads and dequantizes the next row of (already decoded) coefficients.
// Progressive images only.
void load_next_row () {
int i;
jpgd_block_t *p;
jpgd_quant_t *q;
int mcu_row, mcu_block, row_block = 0;
int component_num, component_id;
int[JPGD_MAX_COMPONENTS] block_x_mcu;
memset(block_x_mcu.ptr, 0, JPGD_MAX_COMPONENTS * int.sizeof);
for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++)
{
int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0;
for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++)
{
component_id = m_mcu_org.ptr[mcu_block];
q = m_quant.ptr[m_comp_quant.ptr[component_id]];
p = m_pMCU_coefficients + 64 * mcu_block;
jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs.ptr[component_id], block_x_mcu.ptr[component_id] + block_x_mcu_ofs, m_block_y_mcu.ptr[component_id] + block_y_mcu_ofs);
jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs.ptr[component_id], block_x_mcu.ptr[component_id] + block_x_mcu_ofs, m_block_y_mcu.ptr[component_id] + block_y_mcu_ofs);
p[0] = pDC[0];
memcpy(&p[1], &pAC[1], 63 * jpgd_block_t.sizeof);
for (i = 63; i > 0; i--)
if (p[g_ZAG[i]])
break;
m_mcu_block_max_zag.ptr[mcu_block] = i + 1;
for ( ; i >= 0; i--)
if (p[g_ZAG[i]])
p[g_ZAG[i]] = cast(jpgd_block_t)(p[g_ZAG[i]] * q[i]);
row_block++;
if (m_comps_in_scan == 1)
block_x_mcu.ptr[component_id]++;
else
{
if (++block_x_mcu_ofs == m_comp_h_samp.ptr[component_id])
{
block_x_mcu_ofs = 0;
if (++block_y_mcu_ofs == m_comp_v_samp.ptr[component_id])
{
block_y_mcu_ofs = 0;
block_x_mcu.ptr[component_id] += m_comp_h_samp.ptr[component_id];
}
}
}
}
if (m_freq_domain_chroma_upsample)
transform_mcu_expand(mcu_row);
else
transform_mcu(mcu_row);
}
if (m_comps_in_scan == 1)
m_block_y_mcu.ptr[m_comp_list.ptr[0]]++;
else
{
for (component_num = 0; component_num < m_comps_in_scan; component_num++)
{
component_id = m_comp_list.ptr[component_num];
m_block_y_mcu.ptr[component_id] += m_comp_v_samp.ptr[component_id];
}
}
}
// Restart interval processing.
void process_restart () {
int i;
int c = 0;
// Align to a byte boundry
// FIXME: Is this really necessary? get_bits_no_markers() never reads in markers!
//get_bits_no_markers(m_bits_left & 7);
// Let's scan a little bit to find the marker, but not _too_ far.
// 1536 is a "fudge factor" that determines how much to scan.
for (i = 1536; i > 0; i--)
if (get_char() == 0xFF)
break;
if (i == 0)
stop_decoding(JPGD_BAD_RESTART_MARKER);
for ( ; i > 0; i--)
if ((c = get_char()) != 0xFF)
break;
if (i == 0)
stop_decoding(JPGD_BAD_RESTART_MARKER);
// Is it the expected marker? If not, something bad happened.
if (c != (m_next_restart_num + M_RST0))
stop_decoding(JPGD_BAD_RESTART_MARKER);
// Reset each component's DC prediction values.
memset(&m_last_dc_val, 0, m_comps_in_frame * uint.sizeof);
m_eob_run = 0;
m_restarts_left = m_restart_interval;
m_next_restart_num = (m_next_restart_num + 1) & 7;
// Get the bit buffer going again...
m_bits_left = 16;
get_bits_no_markers(16);
get_bits_no_markers(16);
}
static int dequantize_ac (int c, int q) { pragma(inline, true); c *= q; return c; }
// Decodes and dequantizes the next row of coefficients.
void decode_next_row () {
int row_block = 0;
for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++)
{
if ((m_restart_interval) && (m_restarts_left == 0))
process_restart();
jpgd_block_t* p = m_pMCU_coefficients;
for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64)
{
int component_id = m_mcu_org.ptr[mcu_block];
jpgd_quant_t* q = m_quant.ptr[m_comp_quant.ptr[component_id]];
int r, s;
s = huff_decode(m_pHuff_tabs.ptr[m_comp_dc_tab.ptr[component_id]], r);
s = JPGD_HUFF_EXTEND(r, s);
m_last_dc_val.ptr[component_id] = (s += m_last_dc_val.ptr[component_id]);
p[0] = cast(jpgd_block_t)(s * q[0]);
int prev_num_set = m_mcu_block_max_zag.ptr[mcu_block];
huff_tables *pH = m_pHuff_tabs.ptr[m_comp_ac_tab.ptr[component_id]];
int k;
for (k = 1; k < 64; k++)
{
int extra_bits;
s = huff_decode(pH, extra_bits);
r = s >> 4;
s &= 15;
if (s)
{
if (r)
{
if ((k + r) > 63)
stop_decoding(JPGD_DECODE_ERROR);
if (k < prev_num_set)
{
int n = JPGD_MIN(r, prev_num_set - k);
int kt = k;
while (n--)
p[g_ZAG[kt++]] = 0;
}
k += r;
}
s = JPGD_HUFF_EXTEND(extra_bits, s);
assert(k < 64);
p[g_ZAG[k]] = cast(jpgd_block_t)(dequantize_ac(s, q[k])); //s * q[k];
}
else
{
if (r == 15)
{
if ((k + 16) > 64)
stop_decoding(JPGD_DECODE_ERROR);
if (k < prev_num_set)
{
int n = JPGD_MIN(16, prev_num_set - k);
int kt = k;
while (n--)
{
assert(kt <= 63);
p[g_ZAG[kt++]] = 0;
}
}
k += 16 - 1; // - 1 because the loop counter is k
assert(p[g_ZAG[k]] == 0);
}
else
break;
}
}
if (k < prev_num_set)
{
int kt = k;
while (kt < prev_num_set)
p[g_ZAG[kt++]] = 0;
}
m_mcu_block_max_zag.ptr[mcu_block] = k;
row_block++;
}
if (m_freq_domain_chroma_upsample)
transform_mcu_expand(mcu_row);
else
transform_mcu(mcu_row);
m_restarts_left--;
}
}
// YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB
void H1V1Convert () {
int row = m_max_mcu_y_size - m_mcu_lines_left;
ubyte *d = m_pScan_line_0;
ubyte *s = m_pSample_buf + row * 8;
for (int i = m_max_mcus_per_row; i > 0; i--)
{
for (int j = 0; j < 8; j++)
{
int y = s[j];
int cb = s[64+j];
int cr = s[128+j];
d[0] = clamp(y + m_crr.ptr[cr]);
d[1] = clamp(y + ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16));
d[2] = clamp(y + m_cbb.ptr[cb]);
d[3] = 255;
d += 4;
}
s += 64*3;
}
}
// YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB
void H2V1Convert () {
int row = m_max_mcu_y_size - m_mcu_lines_left;
ubyte *d0 = m_pScan_line_0;
ubyte *y = m_pSample_buf + row * 8;
ubyte *c = m_pSample_buf + 2*64 + row * 8;
for (int i = m_max_mcus_per_row; i > 0; i--)
{
for (int l = 0; l < 2; l++)
{
for (int j = 0; j < 4; j++)
{
int cb = c[0];
int cr = c[64];
int rc = m_crr.ptr[cr];
int gc = ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16);
int bc = m_cbb.ptr[cb];
int yy = y[j<<1];
d0[0] = clamp(yy+rc);
d0[1] = clamp(yy+gc);
d0[2] = clamp(yy+bc);
d0[3] = 255;
yy = y[(j<<1)+1];
d0[4] = clamp(yy+rc);
d0[5] = clamp(yy+gc);
d0[6] = clamp(yy+bc);
d0[7] = 255;
d0 += 8;
c++;
}
y += 64;
}
y += 64*4 - 64*2;
c += 64*4 - 8;
}
}
// YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB
void H1V2Convert () {
int row = m_max_mcu_y_size - m_mcu_lines_left;
ubyte *d0 = m_pScan_line_0;
ubyte *d1 = m_pScan_line_1;
ubyte *y;
ubyte *c;
if (row < 8)
y = m_pSample_buf + row * 8;
else
y = m_pSample_buf + 64*1 + (row & 7) * 8;
c = m_pSample_buf + 64*2 + (row >> 1) * 8;
for (int i = m_max_mcus_per_row; i > 0; i--)
{
for (int j = 0; j < 8; j++)
{
int cb = c[0+j];
int cr = c[64+j];
int rc = m_crr.ptr[cr];
int gc = ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16);
int bc = m_cbb.ptr[cb];
int yy = y[j];
d0[0] = clamp(yy+rc);
d0[1] = clamp(yy+gc);
d0[2] = clamp(yy+bc);
d0[3] = 255;
yy = y[8+j];
d1[0] = clamp(yy+rc);
d1[1] = clamp(yy+gc);
d1[2] = clamp(yy+bc);
d1[3] = 255;
d0 += 4;
d1 += 4;
}
y += 64*4;
c += 64*4;
}
}
// YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB
void H2V2Convert () {
int row = m_max_mcu_y_size - m_mcu_lines_left;
ubyte *d0 = m_pScan_line_0;
ubyte *d1 = m_pScan_line_1;
ubyte *y;
ubyte *c;
if (row < 8)
y = m_pSample_buf + row * 8;
else
y = m_pSample_buf + 64*2 + (row & 7) * 8;
c = m_pSample_buf + 64*4 + (row >> 1) * 8;
for (int i = m_max_mcus_per_row; i > 0; i--)
{
for (int l = 0; l < 2; l++)
{
for (int j = 0; j < 8; j += 2)
{
int cb = c[0];
int cr = c[64];
int rc = m_crr.ptr[cr];
int gc = ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16);
int bc = m_cbb.ptr[cb];
int yy = y[j];
d0[0] = clamp(yy+rc);
d0[1] = clamp(yy+gc);
d0[2] = clamp(yy+bc);
d0[3] = 255;
yy = y[j+1];
d0[4] = clamp(yy+rc);
d0[5] = clamp(yy+gc);
d0[6] = clamp(yy+bc);
d0[7] = 255;
yy = y[j+8];
d1[0] = clamp(yy+rc);
d1[1] = clamp(yy+gc);
d1[2] = clamp(yy+bc);
d1[3] = 255;
yy = y[j+8+1];
d1[4] = clamp(yy+rc);
d1[5] = clamp(yy+gc);
d1[6] = clamp(yy+bc);
d1[7] = 255;
d0 += 8;
d1 += 8;
c++;
}
y += 64;
}
y += 64*6 - 64*2;
c += 64*6 - 8;
}
}
// Y (1 block per MCU) to 8-bit grayscale
void gray_convert () {
int row = m_max_mcu_y_size - m_mcu_lines_left;
ubyte *d = m_pScan_line_0;
ubyte *s = m_pSample_buf + row * 8;
for (int i = m_max_mcus_per_row; i > 0; i--)
{
*cast(uint*)d = *cast(uint*)s;
*cast(uint*)(&d[4]) = *cast(uint*)(&s[4]);
s += 64;
d += 8;
}
}
void expanded_convert () {
int row = m_max_mcu_y_size - m_mcu_lines_left;
ubyte* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp.ptr[0] + (row & 7) * 8;
ubyte* d = m_pScan_line_0;
for (int i = m_max_mcus_per_row; i > 0; i--)
{
for (int k = 0; k < m_max_mcu_x_size; k += 8)
{
immutable int Y_ofs = k * 8;
immutable int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component;
immutable int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2;
for (int j = 0; j < 8; j++)
{
int y = Py[Y_ofs + j];
int cb = Py[Cb_ofs + j];
int cr = Py[Cr_ofs + j];
d[0] = clamp(y + m_crr.ptr[cr]);
d[1] = clamp(y + ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16));
d[2] = clamp(y + m_cbb.ptr[cb]);
d[3] = 255;
d += 4;
}
}
Py += 64 * m_expanded_blocks_per_mcu;
}
}
// Find end of image (EOI) marker, so we can return to the user the exact size of the input stream.
void find_eoi () {
if (!m_progressive_flag)
{
// Attempt to read the EOI marker.
//get_bits_no_markers(m_bits_left & 7);
// Prime the bit buffer
m_bits_left = 16;
get_bits(16);
get_bits(16);
// The next marker _should_ be EOI
process_markers(true); // but restarts are allowed as we can harmlessly skip them at the end of the stream
}
m_total_bytes_read -= m_in_buf_left;
}
// Creates the tables needed for efficient Huffman decoding.
void make_huff_table (int index, huff_tables *pH) {
int p, i, l, si;
ubyte[257] huffsize;
uint[257] huffcode;
uint code;
uint subtree;
int code_size;
int lastp;
int nextfreeentry;
int currententry;
pH.ac_table = m_huff_ac.ptr[index] != 0;
p = 0;
for (l = 1; l <= 16; l++)
{
for (i = 1; i <= m_huff_num.ptr[index][l]; i++)
huffsize.ptr[p++] = cast(ubyte)(l);
}
huffsize.ptr[p] = 0;
lastp = p;
code = 0;
si = huffsize.ptr[0];
p = 0;
while (huffsize.ptr[p])
{
while (huffsize.ptr[p] == si)
{
huffcode.ptr[p++] = code;
code++;
}
code <<= 1;
si++;
}
memset(pH.look_up.ptr, 0, pH.look_up.sizeof);
memset(pH.look_up2.ptr, 0, pH.look_up2.sizeof);
memset(pH.tree.ptr, 0, pH.tree.sizeof);
memset(pH.code_size.ptr, 0, pH.code_size.sizeof);
nextfreeentry = -1;
p = 0;
while (p < lastp)
{
i = m_huff_val.ptr[index][p];
code = huffcode.ptr[p];
code_size = huffsize.ptr[p];
pH.code_size.ptr[i] = cast(ubyte)(code_size);
if (code_size <= 8)
{
code <<= (8 - code_size);
for (l = 1 << (8 - code_size); l > 0; l--)
{
assert(i < 256);
pH.look_up.ptr[code] = i;
bool has_extrabits = false;
int extra_bits = 0;
int num_extra_bits = i & 15;
int bits_to_fetch = code_size;
if (num_extra_bits)
{
int total_codesize = code_size + num_extra_bits;
if (total_codesize <= 8)
{
has_extrabits = true;
extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize));
assert(extra_bits <= 0x7FFF);
bits_to_fetch += num_extra_bits;
}
}
if (!has_extrabits)
pH.look_up2.ptr[code] = i | (bits_to_fetch << 8);
else
pH.look_up2.ptr[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8);
code++;
}
}
else
{
subtree = (code >> (code_size - 8)) & 0xFF;
currententry = pH.look_up.ptr[subtree];
if (currententry == 0)
{
pH.look_up.ptr[subtree] = currententry = nextfreeentry;
pH.look_up2.ptr[subtree] = currententry = nextfreeentry;
nextfreeentry -= 2;
}
code <<= (16 - (code_size - 8));
for (l = code_size; l > 9; l--)
{
if ((code & 0x8000) == 0)
currententry--;
if (pH.tree.ptr[-currententry - 1] == 0)
{
pH.tree.ptr[-currententry - 1] = nextfreeentry;
currententry = nextfreeentry;
nextfreeentry -= 2;
}
else
currententry = pH.tree.ptr[-currententry - 1];
code <<= 1;
}
if ((code & 0x8000) == 0)
currententry--;
pH.tree.ptr[-currententry - 1] = i;
}
p++;
}
}
// Verifies the quantization tables needed for this scan are available.
void check_quant_tables () {
for (int i = 0; i < m_comps_in_scan; i++)
if (m_quant.ptr[m_comp_quant.ptr[m_comp_list.ptr[i]]] == null)
stop_decoding(JPGD_UNDEFINED_QUANT_TABLE);
}
// Verifies that all the Huffman tables needed for this scan are available.
void check_huff_tables () {
for (int i = 0; i < m_comps_in_scan; i++)
{
if ((m_spectral_start == 0) && (m_huff_num.ptr[m_comp_dc_tab.ptr[m_comp_list.ptr[i]]] == null))
stop_decoding(JPGD_UNDEFINED_HUFF_TABLE);
if ((m_spectral_end > 0) && (m_huff_num.ptr[m_comp_ac_tab.ptr[m_comp_list.ptr[i]]] == null))
stop_decoding(JPGD_UNDEFINED_HUFF_TABLE);
}
for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++)
if (m_huff_num.ptr[i])
{
if (!m_pHuff_tabs.ptr[i])
m_pHuff_tabs.ptr[i] = cast(huff_tables*)alloc(huff_tables.sizeof);
make_huff_table(i, m_pHuff_tabs.ptr[i]);
}
}
// Determines the component order inside each MCU.
// Also calcs how many MCU's are on each row, etc.
void calc_mcu_block_order () {
int component_num, component_id;
int max_h_samp = 0, max_v_samp = 0;
for (component_id = 0; component_id < m_comps_in_frame; component_id++)
{
if (m_comp_h_samp.ptr[component_id] > max_h_samp)
max_h_samp = m_comp_h_samp.ptr[component_id];
if (m_comp_v_samp.ptr[component_id] > max_v_samp)
max_v_samp = m_comp_v_samp.ptr[component_id];
}
for (component_id = 0; component_id < m_comps_in_frame; component_id++)
{
m_comp_h_blocks.ptr[component_id] = ((((m_image_x_size * m_comp_h_samp.ptr[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8;
m_comp_v_blocks.ptr[component_id] = ((((m_image_y_size * m_comp_v_samp.ptr[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8;
}
if (m_comps_in_scan == 1)
{
m_mcus_per_row = m_comp_h_blocks.ptr[m_comp_list.ptr[0]];
m_mcus_per_col = m_comp_v_blocks.ptr[m_comp_list.ptr[0]];
}
else
{
m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp;
m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp;
}
if (m_comps_in_scan == 1)
{
m_mcu_org.ptr[0] = m_comp_list.ptr[0];
m_blocks_per_mcu = 1;
}
else
{
m_blocks_per_mcu = 0;
for (component_num = 0; component_num < m_comps_in_scan; component_num++)
{
int num_blocks;
component_id = m_comp_list.ptr[component_num];
num_blocks = m_comp_h_samp.ptr[component_id] * m_comp_v_samp.ptr[component_id];
while (num_blocks--)
m_mcu_org.ptr[m_blocks_per_mcu++] = component_id;
}
}
}
// Starts a new scan.
int init_scan () {
if (!locate_sos_marker())
return false;
calc_mcu_block_order();
check_huff_tables();
check_quant_tables();
memset(m_last_dc_val.ptr, 0, m_comps_in_frame * uint.sizeof);
m_eob_run = 0;
if (m_restart_interval)
{
m_restarts_left = m_restart_interval;
m_next_restart_num = 0;
}
fix_in_buffer();
return true;
}
// Starts a frame. Determines if the number of components or sampling factors
// are supported.
void init_frame () {
int i;
if (m_comps_in_frame == 1)
{
version(jpegd_test) {{ import std.stdio; stderr.writeln("m_comp_h_samp=", m_comp_h_samp.ptr[0], "; m_comp_v_samp=", m_comp_v_samp.ptr[0]); }}
//if ((m_comp_h_samp.ptr[0] != 1) || (m_comp_v_samp.ptr[0] != 1))
// stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
if ((m_comp_h_samp.ptr[0] == 1) && (m_comp_v_samp.ptr[0] == 1))
{
m_scan_type = JPGD_GRAYSCALE;
m_max_blocks_per_mcu = 1;
m_max_mcu_x_size = 8;
m_max_mcu_y_size = 8;
}
else if ((m_comp_h_samp.ptr[0] == 2) && (m_comp_v_samp.ptr[0] == 2))
{
//k8: i added this, and i absolutely don't know what it means; but it decoded two sample images i found
m_scan_type = JPGD_GRAYSCALE;
m_max_blocks_per_mcu = 4;
m_max_mcu_x_size = 8;
m_max_mcu_y_size = 8;
}
else if ((m_comp_h_samp.ptr[0] == 2) && (m_comp_v_samp.ptr[0] == 1))
{
// adr added this. idk if it is right seems wrong since it the same as above but..... meh ship it.
m_scan_type = JPGD_GRAYSCALE;
m_max_blocks_per_mcu = 4;
m_max_mcu_x_size = 8;
m_max_mcu_y_size = 8;
}
else {
// code -231 brings us here
//import std.conv;
//assert(0, to!string(m_comp_h_samp) ~ to!string(m_comp_v_samp));
stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
}
}
else if (m_comps_in_frame == 3)
{
if ( ((m_comp_h_samp.ptr[1] != 1) || (m_comp_v_samp.ptr[1] != 1)) ||
((m_comp_h_samp.ptr[2] != 1) || (m_comp_v_samp.ptr[2] != 1)) )
stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
if ((m_comp_h_samp.ptr[0] == 1) && (m_comp_v_samp.ptr[0] == 1))
{
m_scan_type = JPGD_YH1V1;
m_max_blocks_per_mcu = 3;
m_max_mcu_x_size = 8;
m_max_mcu_y_size = 8;
}
else if ((m_comp_h_samp.ptr[0] == 2) && (m_comp_v_samp.ptr[0] == 1))
{
m_scan_type = JPGD_YH2V1;
m_max_blocks_per_mcu = 4;
m_max_mcu_x_size = 16;
m_max_mcu_y_size = 8;
}
else if ((m_comp_h_samp.ptr[0] == 1) && (m_comp_v_samp.ptr[0] == 2))
{
m_scan_type = JPGD_YH1V2;
m_max_blocks_per_mcu = 4;
m_max_mcu_x_size = 8;
m_max_mcu_y_size = 16;
}
else if ((m_comp_h_samp.ptr[0] == 2) && (m_comp_v_samp.ptr[0] == 2))
{
m_scan_type = JPGD_YH2V2;
m_max_blocks_per_mcu = 6;
m_max_mcu_x_size = 16;
m_max_mcu_y_size = 16;
}
else
stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
}
else
stop_decoding(JPGD_UNSUPPORTED_COLORSPACE);
m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size;
m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size;
// These values are for the *destination* pixels: after conversion.
if (m_scan_type == JPGD_GRAYSCALE)
m_dest_bytes_per_pixel = 1;
else
m_dest_bytes_per_pixel = 4;
m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel;
m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel);
// Initialize two scan line buffers.
m_pScan_line_0 = cast(ubyte*)alloc(m_dest_bytes_per_scan_line, true);
if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2))
m_pScan_line_1 = cast(ubyte*)alloc(m_dest_bytes_per_scan_line, true);
m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu;
// Should never happen
if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW)
stop_decoding(JPGD_ASSERTION_ERROR);
// Allocate the coefficient buffer, enough for one MCU
m_pMCU_coefficients = cast(jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * jpgd_block_t.sizeof);
for (i = 0; i < m_max_blocks_per_mcu; i++)
m_mcu_block_max_zag.ptr[i] = 64;
m_expanded_blocks_per_component = m_comp_h_samp.ptr[0] * m_comp_v_samp.ptr[0];
m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame;
m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu;
// Freq. domain chroma upsampling is only supported for H2V2 subsampling factor (the most common one I've seen).
m_freq_domain_chroma_upsample = false;
version(JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING) {
m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3);
}
if (m_freq_domain_chroma_upsample)
m_pSample_buf = cast(ubyte*)alloc(m_expanded_blocks_per_row * 64);
else
m_pSample_buf = cast(ubyte*)alloc(m_max_blocks_per_row * 64);
m_total_lines_left = m_image_y_size;
m_mcu_lines_left = 0;
create_look_ups();
}
// The coeff_buf series of methods originally stored the coefficients
// into a "virtual" file which was located in EMS, XMS, or a disk file. A cache
// was used to make this process more efficient. Now, we can store the entire
// thing in RAM.
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y) {
coeff_buf* cb = cast(coeff_buf*)alloc(coeff_buf.sizeof);
cb.block_num_x = block_num_x;
cb.block_num_y = block_num_y;
cb.block_len_x = block_len_x;
cb.block_len_y = block_len_y;
cb.block_size = cast(int)((block_len_x * block_len_y) * jpgd_block_t.sizeof);
cb.pData = cast(ubyte*)alloc(cb.block_size * block_num_x * block_num_y, true);
return cb;
}
jpgd_block_t* coeff_buf_getp (coeff_buf *cb, int block_x, int block_y) {
assert((block_x < cb.block_num_x) && (block_y < cb.block_num_y));
return cast(jpgd_block_t*)(cb.pData + block_x * cb.block_size + block_y * (cb.block_size * cb.block_num_x));
}
// The following methods decode the various types of m_blocks encountered
// in progressively encoded images.
static void decode_block_dc_first (ref jpeg_decoder pD, int component_id, int block_x, int block_y) {
int s, r;
jpgd_block_t *p = pD.coeff_buf_getp(pD.m_dc_coeffs.ptr[component_id], block_x, block_y);
if ((s = pD.huff_decode(pD.m_pHuff_tabs.ptr[pD.m_comp_dc_tab.ptr[component_id]])) != 0)
{
r = pD.get_bits_no_markers(s);
s = JPGD_HUFF_EXTEND(r, s);
}
pD.m_last_dc_val.ptr[component_id] = (s += pD.m_last_dc_val.ptr[component_id]);
p[0] = cast(jpgd_block_t)(s << pD.m_successive_low);
}
static void decode_block_dc_refine (ref jpeg_decoder pD, int component_id, int block_x, int block_y) {
if (pD.get_bits_no_markers(1))
{
jpgd_block_t *p = pD.coeff_buf_getp(pD.m_dc_coeffs.ptr[component_id], block_x, block_y);
p[0] |= (1 << pD.m_successive_low);
}
}
static void decode_block_ac_first (ref jpeg_decoder pD, int component_id, int block_x, int block_y) {
int k, s, r;
if (pD.m_eob_run)
{
pD.m_eob_run--;
return;
}
jpgd_block_t *p = pD.coeff_buf_getp(pD.m_ac_coeffs.ptr[component_id], block_x, block_y);
for (k = pD.m_spectral_start; k <= pD.m_spectral_end; k++)
{
s = pD.huff_decode(pD.m_pHuff_tabs.ptr[pD.m_comp_ac_tab.ptr[component_id]]);
r = s >> 4;
s &= 15;
if (s)
{
if ((k += r) > 63)
pD.stop_decoding(JPGD_DECODE_ERROR);
r = pD.get_bits_no_markers(s);
s = JPGD_HUFF_EXTEND(r, s);
p[g_ZAG[k]] = cast(jpgd_block_t)(s << pD.m_successive_low);
}
else
{
if (r == 15)
{
if ((k += 15) > 63)
pD.stop_decoding(JPGD_DECODE_ERROR);
}
else
{
pD.m_eob_run = 1 << r;
if (r)
pD.m_eob_run += pD.get_bits_no_markers(r);
pD.m_eob_run--;
break;
}
}
}
}
static void decode_block_ac_refine (ref jpeg_decoder pD, int component_id, int block_x, int block_y) {
int s, k, r;
int p1 = 1 << pD.m_successive_low;
int m1 = (-1) << pD.m_successive_low;
jpgd_block_t *p = pD.coeff_buf_getp(pD.m_ac_coeffs.ptr[component_id], block_x, block_y);
assert(pD.m_spectral_end <= 63);
k = pD.m_spectral_start;
if (pD.m_eob_run == 0)
{
for ( ; k <= pD.m_spectral_end; k++)
{
s = pD.huff_decode(pD.m_pHuff_tabs.ptr[pD.m_comp_ac_tab.ptr[component_id]]);
r = s >> 4;
s &= 15;
if (s)
{
if (s != 1)
pD.stop_decoding(JPGD_DECODE_ERROR);
if (pD.get_bits_no_markers(1))
s = p1;
else
s = m1;
}
else
{
if (r != 15)
{
pD.m_eob_run = 1 << r;
if (r)
pD.m_eob_run += pD.get_bits_no_markers(r);
break;
}
}
do
{
jpgd_block_t *this_coef = p + g_ZAG[k & 63];
if (*this_coef != 0)
{
if (pD.get_bits_no_markers(1))
{
if ((*this_coef & p1) == 0)
{
if (*this_coef >= 0)
*this_coef = cast(jpgd_block_t)(*this_coef + p1);
else
*this_coef = cast(jpgd_block_t)(*this_coef + m1);
}
}
}
else
{
if (--r < 0)
break;
}
k++;
} while (k <= pD.m_spectral_end);
if ((s) && (k < 64))
{
p[g_ZAG[k]] = cast(jpgd_block_t)(s);
}
}
}
if (pD.m_eob_run > 0)
{
for ( ; k <= pD.m_spectral_end; k++)
{
jpgd_block_t *this_coef = p + g_ZAG[k & 63]; // logical AND to shut up static code analysis
if (*this_coef != 0)
{
if (pD.get_bits_no_markers(1))
{
if ((*this_coef & p1) == 0)
{
if (*this_coef >= 0)
*this_coef = cast(jpgd_block_t)(*this_coef + p1);
else
*this_coef = cast(jpgd_block_t)(*this_coef + m1);
}
}
}
}
pD.m_eob_run--;
}
}
// Decode a scan in a progressively encoded image.
void decode_scan (pDecode_block_func decode_block_func) {
int mcu_row, mcu_col, mcu_block;
int[JPGD_MAX_COMPONENTS] block_x_mcu;
int[JPGD_MAX_COMPONENTS] m_block_y_mcu;
memset(m_block_y_mcu.ptr, 0, m_block_y_mcu.sizeof);
for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++)
{
int component_num, component_id;
memset(block_x_mcu.ptr, 0, block_x_mcu.sizeof);
for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++)
{
int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0;
if ((m_restart_interval) && (m_restarts_left == 0))
process_restart();
for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++)
{
component_id = m_mcu_org.ptr[mcu_block];
decode_block_func(this, component_id, block_x_mcu.ptr[component_id] + block_x_mcu_ofs, m_block_y_mcu.ptr[component_id] + block_y_mcu_ofs);
if (m_comps_in_scan == 1)
block_x_mcu.ptr[component_id]++;
else
{
if (++block_x_mcu_ofs == m_comp_h_samp.ptr[component_id])
{
block_x_mcu_ofs = 0;
if (++block_y_mcu_ofs == m_comp_v_samp.ptr[component_id])
{
block_y_mcu_ofs = 0;
block_x_mcu.ptr[component_id] += m_comp_h_samp.ptr[component_id];
}
}
}
}
m_restarts_left--;
}
if (m_comps_in_scan == 1)
m_block_y_mcu.ptr[m_comp_list.ptr[0]]++;
else
{
for (component_num = 0; component_num < m_comps_in_scan; component_num++)
{
component_id = m_comp_list.ptr[component_num];
m_block_y_mcu.ptr[component_id] += m_comp_v_samp.ptr[component_id];
}
}
}
}
// Decode a progressively encoded image.
void init_progressive () {
int i;
if (m_comps_in_frame == 4)
stop_decoding(JPGD_UNSUPPORTED_COLORSPACE);
// Allocate the coefficient buffers.
for (i = 0; i < m_comps_in_frame; i++)
{
m_dc_coeffs.ptr[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp.ptr[i], m_max_mcus_per_col * m_comp_v_samp.ptr[i], 1, 1);
m_ac_coeffs.ptr[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp.ptr[i], m_max_mcus_per_col * m_comp_v_samp.ptr[i], 8, 8);
}
for ( ; ; )
{
int dc_only_scan, refinement_scan;
pDecode_block_func decode_block_func;
if (!init_scan())
break;
dc_only_scan = (m_spectral_start == 0);
refinement_scan = (m_successive_high != 0);
if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63))
stop_decoding(JPGD_BAD_SOS_SPECTRAL);
if (dc_only_scan)
{
if (m_spectral_end)
stop_decoding(JPGD_BAD_SOS_SPECTRAL);
}
else if (m_comps_in_scan != 1) /* AC scans can only contain one component */
stop_decoding(JPGD_BAD_SOS_SPECTRAL);
if ((refinement_scan) && (m_successive_low != m_successive_high - 1))
stop_decoding(JPGD_BAD_SOS_SUCCESSIVE);
if (dc_only_scan)
{
if (refinement_scan)
decode_block_func = &decode_block_dc_refine;
else
decode_block_func = &decode_block_dc_first;
}
else
{
if (refinement_scan)
decode_block_func = &decode_block_ac_refine;
else
decode_block_func = &decode_block_ac_first;
}
decode_scan(decode_block_func);
m_bits_left = 16;
get_bits(16);
get_bits(16);
}
m_comps_in_scan = m_comps_in_frame;
for (i = 0; i < m_comps_in_frame; i++)
m_comp_list.ptr[i] = i;
calc_mcu_block_order();
}
void init_sequential () {
if (!init_scan())
stop_decoding(JPGD_UNEXPECTED_MARKER);
}
void decode_start () {
init_frame();
if (m_progressive_flag)
init_progressive();
else
init_sequential();
}
void decode_init (JpegStreamReadFunc rfn) {
initit(rfn);
locate_sof_marker();
}
}
// ////////////////////////////////////////////////////////////////////////// //
/// read JPEG image header, determine dimensions and number of components.
/// return `false` if image is not JPEG (i hope).
public bool detect_jpeg_image_from_stream (scope JpegStreamReadFunc rfn, out int width, out int height, out int actual_comps) {
if (rfn is null) return false;
auto decoder = jpeg_decoder(rfn);
version(jpegd_test) { import core.stdc.stdio : printf; printf("%u bytes read.\n", cast(uint)decoder.total_bytes_read); }
if (decoder.error_code != JPGD_SUCCESS) return false;
width = decoder.width;
height = decoder.height;
actual_comps = decoder.num_components;
return true;
}
// ////////////////////////////////////////////////////////////////////////// //
/// read JPEG image header, determine dimensions and number of components.
/// return `false` if image is not JPEG (i hope).
public bool detect_jpeg_image_from_file (const(char)[] filename, out int width, out int height, out int actual_comps) {
import core.stdc.stdio;
FILE* m_pFile;
bool m_eof_flag, m_error_flag;
if (filename.length == 0) throw new Exception("cannot open unnamed file");
if (filename.length < 512) {
char[513] buffer;
//import core.stdc.stdlib : alloca;
auto tfn = buffer[0 .. filename.length + 1]; // (cast(char*)alloca(filename.length+1))[0..filename.length+1];
tfn[0..filename.length] = filename[];
tfn[filename.length] = 0;
m_pFile = fopen(tfn.ptr, "rb");
} else {
import core.stdc.stdlib : malloc, free;
auto tfn = (cast(char*)malloc(filename.length+1))[0..filename.length+1];
if (tfn !is null) {
scope(exit) free(tfn.ptr);
m_pFile = fopen(tfn.ptr, "rb");
}
}
if (m_pFile is null) throw new Exception("cannot open file '"~filename.idup~"'");
scope(exit) if (m_pFile) fclose(m_pFile);
return detect_jpeg_image_from_stream(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
if (m_pFile is null) return -1;
if (m_eof_flag) {
*pEOF_flag = true;
return 0;
}
if (m_error_flag) return -1;
int bytes_read = cast(int)(fread(pBuf, 1, max_bytes_to_read, m_pFile));
if (bytes_read < max_bytes_to_read) {
if (ferror(m_pFile)) {
m_error_flag = true;
return -1;
}
m_eof_flag = true;
*pEOF_flag = true;
}
return bytes_read;
},
width, height, actual_comps);
}
// ////////////////////////////////////////////////////////////////////////// //
/// read JPEG image header, determine dimensions and number of components.
/// return `false` if image is not JPEG (i hope).
public bool detect_jpeg_image_from_memory (const(void)[] buf, out int width, out int height, out int actual_comps) {
size_t bufpos;
return detect_jpeg_image_from_stream(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
import core.stdc.string : memcpy;
if (bufpos >= buf.length) {
*pEOF_flag = true;
return 0;
}
if (buf.length-bufpos < max_bytes_to_read) max_bytes_to_read = cast(int)(buf.length-bufpos);
memcpy(pBuf, (cast(const(ubyte)*)buf.ptr)+bufpos, max_bytes_to_read);
bufpos += max_bytes_to_read;
return max_bytes_to_read;
},
width, height, actual_comps);
}
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image, what else?
/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value.
public ubyte[] decompress_jpeg_image_from_stream(bool useMalloc=false) (scope JpegStreamReadFunc rfn, out int width, out int height, out int actual_comps, int req_comps=-1) {
import core.stdc.string : memcpy;
//actual_comps = 0;
if (rfn is null) return null;
if (req_comps != -1 && req_comps != 1 && req_comps != 3 && req_comps != 4) return null;
auto decoder = jpeg_decoder(rfn);
if (decoder.error_code != JPGD_SUCCESS) return null;
version(jpegd_test) scope(exit) { import core.stdc.stdio : printf; printf("%u bytes read.\n", cast(uint)decoder.total_bytes_read); }
immutable int image_width = decoder.width;
immutable int image_height = decoder.height;
width = image_width;
height = image_height;
actual_comps = decoder.num_components;
if (req_comps < 0) req_comps = decoder.num_components;
if (decoder.begin_decoding() != JPGD_SUCCESS) return null;
immutable int dst_bpl = image_width*req_comps;
static if (useMalloc) {
ubyte* pImage_data = cast(ubyte*)jpgd_malloc(dst_bpl*image_height);
if (pImage_data is null) return null;
auto idata = pImage_data[0..dst_bpl*image_height];
} else {
auto idata = new ubyte[](dst_bpl*image_height);
auto pImage_data = idata.ptr;
}
scope(failure) {
static if (useMalloc) {
jpgd_free(pImage_data);
} else {
import core.memory : GC;
GC.free(idata.ptr);
idata = null;
}
}
for (int y = 0; y < image_height; ++y) {
const(ubyte)* pScan_line;
uint scan_line_len;
if (decoder.decode(/*(const void**)*/cast(void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) {
static if (useMalloc) {
jpgd_free(pImage_data);
} else {
import core.memory : GC;
GC.free(idata.ptr);
idata = null;
}
return null;
}
ubyte* pDst = pImage_data+y*dst_bpl;
if ((req_comps == 1 && decoder.num_components == 1) || (req_comps == 4 && decoder.num_components == 3)) {
memcpy(pDst, pScan_line, dst_bpl);
} else if (decoder.num_components == 1) {
if (req_comps == 3) {
for (int x = 0; x < image_width; ++x) {
ubyte luma = pScan_line[x];
pDst[0] = luma;
pDst[1] = luma;
pDst[2] = luma;
pDst += 3;
}
} else {
for (int x = 0; x < image_width; ++x) {
ubyte luma = pScan_line[x];
pDst[0] = luma;
pDst[1] = luma;
pDst[2] = luma;
pDst[3] = 255;
pDst += 4;
}
}
} else if (decoder.num_components == 3) {
if (req_comps == 1) {
immutable int YR = 19595, YG = 38470, YB = 7471;
for (int x = 0; x < image_width; ++x) {
int r = pScan_line[x*4+0];
int g = pScan_line[x*4+1];
int b = pScan_line[x*4+2];
*pDst++ = cast(ubyte)((r * YR + g * YG + b * YB + 32768) >> 16);
}
} else {
for (int x = 0; x < image_width; ++x) {
pDst[0] = pScan_line[x*4+0];
pDst[1] = pScan_line[x*4+1];
pDst[2] = pScan_line[x*4+2];
pDst += 3;
}
}
}
}
return idata;
}
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image from disk file.
/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value.
public ubyte[] decompress_jpeg_image_from_file(bool useMalloc=false) (const(char)[] filename, out int width, out int height, out int actual_comps, int req_comps=-1) {
import core.stdc.stdio;
FILE* m_pFile;
bool m_eof_flag, m_error_flag;
if (filename.length == 0) throw new Exception("cannot open unnamed file");
if (filename.length < 512) {
char[513] buffer;
//import core.stdc.stdlib : alloca;
auto tfn = buffer[0 .. filename.length + 1]; // (cast(char*)alloca(filename.length+1))[0..filename.length+1];
tfn[0..filename.length] = filename[];
tfn[filename.length] = 0;
m_pFile = fopen(tfn.ptr, "rb");
} else {
import core.stdc.stdlib : malloc, free;
auto tfn = (cast(char*)malloc(filename.length+1))[0..filename.length+1];
if (tfn !is null) {
scope(exit) free(tfn.ptr);
m_pFile = fopen(tfn.ptr, "rb");
}
}
if (m_pFile is null) throw new Exception("cannot open file '"~filename.idup~"'");
scope(exit) if (m_pFile) fclose(m_pFile);
return decompress_jpeg_image_from_stream!useMalloc(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
if (m_pFile is null) return -1;
if (m_eof_flag) {
*pEOF_flag = true;
return 0;
}
if (m_error_flag) return -1;
int bytes_read = cast(int)(fread(pBuf, 1, max_bytes_to_read, m_pFile));
if (bytes_read < max_bytes_to_read) {
if (ferror(m_pFile)) {
m_error_flag = true;
return -1;
}
m_eof_flag = true;
*pEOF_flag = true;
}
return bytes_read;
},
width, height, actual_comps, req_comps);
}
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image from memory buffer.
/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value.
public ubyte[] decompress_jpeg_image_from_memory(bool useMalloc=false) (const(void)[] buf, out int width, out int height, out int actual_comps, int req_comps=-1) {
size_t bufpos;
return decompress_jpeg_image_from_stream!useMalloc(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
import core.stdc.string : memcpy;
if (bufpos >= buf.length) {
*pEOF_flag = true;
return 0;
}
if (buf.length-bufpos < max_bytes_to_read) max_bytes_to_read = cast(int)(buf.length-bufpos);
memcpy(pBuf, (cast(const(ubyte)*)buf.ptr)+bufpos, max_bytes_to_read);
bufpos += max_bytes_to_read;
return max_bytes_to_read;
},
width, height, actual_comps, req_comps);
}
// ////////////////////////////////////////////////////////////////////////// //
// if we have access "iv.vfs", add some handy API
static if (__traits(compiles, { import iv.vfs; })) enum JpegHasIVVFS = true; else enum JpegHasIVVFS = false;
static if (JpegHasIVVFS) {
import iv.vfs;
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image from disk file.
/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value.
public ubyte[] decompress_jpeg_image_from_file(bool useMalloc=false) (VFile fl, out int width, out int height, out int actual_comps, int req_comps=-1) {
return decompress_jpeg_image_from_stream!useMalloc(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
if (!fl.isOpen) return -1;
if (fl.eof) {
*pEOF_flag = true;
return 0;
}
auto rd = fl.rawRead(pBuf[0..max_bytes_to_read]);
if (fl.eof) *pEOF_flag = true;
return cast(int)rd.length;
},
width, height, actual_comps, req_comps);
}
// vfs API
}
// ////////////////////////////////////////////////////////////////////////// //
// if we have access "arsd.color", add some handy API
static if (__traits(compiles, { import arsd.color; })) enum JpegHasArsd = true; else enum JpegHasArsd = false;
public struct LastJpegError {
int stage;
int code;
int details;
}
public LastJpegError lastJpegError;
static if (JpegHasArsd) {
import arsd.color;
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image, what else?
public MemoryImage readJpegFromStream (scope JpegStreamReadFunc rfn) {
import core.stdc.string : memcpy;
enum req_comps = 4;
if (rfn is null) return null;
auto decoder = jpeg_decoder(rfn);
if (decoder.error_code != JPGD_SUCCESS) { lastJpegError = LastJpegError(1, decoder.error_code); return null; }
version(jpegd_test) scope(exit) { import core.stdc.stdio : printf; printf("%u bytes read.\n", cast(uint)decoder.total_bytes_read); }
immutable int image_width = decoder.width;
immutable int image_height = decoder.height;
//width = image_width;
//height = image_height;
//actual_comps = decoder.num_components;
version(jpegd_test) {{ import core.stdc.stdio; stderr.fprintf("starting (%dx%d)...\n", image_width, image_height); }}
auto err = decoder.begin_decoding();
if (err != JPGD_SUCCESS || image_width < 1 || image_height < 1) {
lastJpegError = LastJpegError(2, err, decoder.m_error_code);
return null;
}
immutable int dst_bpl = image_width*req_comps;
auto img = new TrueColorImage(image_width, image_height);
scope(failure) { img.clearInternal(); img = null; }
ubyte* pImage_data = img.imageData.bytes.ptr;
for (int y = 0; y < image_height; ++y) {
//version(jpegd_test) {{ import core.stdc.stdio; stderr.fprintf("loading line %d...\n", y); }}
const(ubyte)* pScan_line;
uint scan_line_len;
err = decoder.decode(/*(const void**)*/cast(void**)&pScan_line, &scan_line_len);
if (err != JPGD_SUCCESS) {
lastJpegError = LastJpegError(3, err);
img.clearInternal();
img = null;
//jpgd_free(pImage_data);
return null;
}
ubyte* pDst = pImage_data+y*dst_bpl;
if ((req_comps == 1 && decoder.num_components == 1) || (req_comps == 4 && decoder.num_components == 3)) {
memcpy(pDst, pScan_line, dst_bpl);
} else if (decoder.num_components == 1) {
if (req_comps == 3) {
for (int x = 0; x < image_width; ++x) {
ubyte luma = pScan_line[x];
pDst[0] = luma;
pDst[1] = luma;
pDst[2] = luma;
pDst += 3;
}
} else {
for (int x = 0; x < image_width; ++x) {
ubyte luma = pScan_line[x];
pDst[0] = luma;
pDst[1] = luma;
pDst[2] = luma;
pDst[3] = 255;
pDst += 4;
}
}
} else if (decoder.num_components == 3) {
if (req_comps == 1) {
immutable int YR = 19595, YG = 38470, YB = 7471;
for (int x = 0; x < image_width; ++x) {
int r = pScan_line[x*4+0];
int g = pScan_line[x*4+1];
int b = pScan_line[x*4+2];
*pDst++ = cast(ubyte)((r * YR + g * YG + b * YB + 32768) >> 16);
}
} else {
for (int x = 0; x < image_width; ++x) {
pDst[0] = pScan_line[x*4+0];
pDst[1] = pScan_line[x*4+1];
pDst[2] = pScan_line[x*4+2];
pDst += 3;
}
}
}
}
return img;
}
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image from disk file.
/// Returns null if loading failed for any reason.
public MemoryImage readJpeg (const(char)[] filename) {
import core.stdc.stdio;
FILE* m_pFile;
bool m_eof_flag, m_error_flag;
if (filename.length == 0) throw new Exception("cannot open unnamed file");
if (filename.length < 512) {
char[513] buffer;
//import core.stdc.stdlib : alloca;
auto tfn = buffer[0 .. filename.length + 1]; // (cast(char*)alloca(filename.length+1))[0..filename.length+1];
tfn[0..filename.length] = filename[];
tfn[filename.length] = 0;
m_pFile = fopen(tfn.ptr, "rb");
} else {
import core.stdc.stdlib : malloc, free;
auto tfn = (cast(char*)malloc(filename.length+1))[0..filename.length+1];
if (tfn !is null) {
scope(exit) free(tfn.ptr);
m_pFile = fopen(tfn.ptr, "rb");
}
}
if (m_pFile is null) throw new Exception("cannot open file '"~filename.idup~"'");
scope(exit) if (m_pFile) fclose(m_pFile);
return readJpegFromStream(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
if (m_pFile is null) return -1;
if (m_eof_flag) {
*pEOF_flag = true;
return 0;
}
if (m_error_flag) return -1;
int bytes_read = cast(int)(fread(pBuf, 1, max_bytes_to_read, m_pFile));
if (bytes_read < max_bytes_to_read) {
if (ferror(m_pFile)) {
m_error_flag = true;
return -1;
}
m_eof_flag = true;
*pEOF_flag = true;
}
return bytes_read;
}
);
}
/++
History:
Added January 22, 2021 (release version 9.2)
+/
public void writeJpeg(const(char)[] filename, TrueColorImage img, JpegParams params = JpegParams.init) {
if(!compress_image_to_jpeg_file(filename, img.width, img.height, 4, img.imageData.bytes, params))
throw new Exception("jpeg write failed"); // FIXME: check errno?
}
/++
Encodes an image as jpeg in memory.
History:
Added January 22, 2021 (release version 9.2)
+/
public ubyte[] encodeJpeg(TrueColorImage img, JpegParams params = JpegParams.init) {
ubyte[] data;
encodeJpeg((const scope ubyte[] i) {
data ~= i;
return true;
}, img, params);
return data;
}
/// ditto
public void encodeJpeg(scope bool delegate(const scope ubyte[]) dg, TrueColorImage img, JpegParams params = JpegParams.init) {
if(!compress_image_to_jpeg_stream(
dg,
img.width, img.height, 4, img.imageData.bytes, params))
throw new Exception("encode");
}
// ////////////////////////////////////////////////////////////////////////// //
/// decompress JPEG image from memory buffer.
public MemoryImage readJpegFromMemory (const(void)[] buf) {
size_t bufpos;
return readJpegFromStream(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
import core.stdc.string : memcpy;
if (bufpos >= buf.length) {
*pEOF_flag = true;
return 0;
}
if (buf.length-bufpos < max_bytes_to_read) max_bytes_to_read = cast(int)(buf.length-bufpos);
memcpy(pBuf, (cast(const(ubyte)*)buf.ptr)+bufpos, max_bytes_to_read);
bufpos += max_bytes_to_read;
return max_bytes_to_read;
}
);
}
// done with arsd API
}
static if (JpegHasIVVFS) {
public MemoryImage readJpeg (VFile fl) {
return readJpegFromStream(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
if (!fl.isOpen) return -1;
if (fl.eof) {
*pEOF_flag = true;
return 0;
}
auto rd = fl.rawRead(pBuf[0..max_bytes_to_read]);
if (fl.eof) *pEOF_flag = true;
return cast(int)rd.length;
}
);
}
public bool detectJpeg (VFile fl, out int width, out int height, out int actual_comps) {
return detect_jpeg_image_from_stream(
delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) {
if (!fl.isOpen) return -1;
if (fl.eof) {
*pEOF_flag = true;
return 0;
}
auto rd = fl.rawRead(pBuf[0..max_bytes_to_read]);
if (fl.eof) *pEOF_flag = true;
return cast(int)rd.length;
},
width, height, actual_comps);
}
// vfs API
}
// ////////////////////////////////////////////////////////////////////////// //
version(jpegd_test) {
import arsd.color;
import arsd.png;
void main (string[] args) {
import std.stdio;
int width, height, comps;
{
assert(detect_jpeg_image_from_file((args.length > 1 ? args[1] : "image.jpg"), width, height, comps));
writeln(width, "x", height, "x", comps);
auto img = readJpeg((args.length > 1 ? args[1] : "image.jpg"));
writeln(img.width, "x", img.height);
writePng("z00.png", img);
}
{
ubyte[] file;
{
auto fl = File(args.length > 1 ? args[1] : "image.jpg");
file.length = cast(int)fl.size;
fl.rawRead(file[]);
}
assert(detect_jpeg_image_from_memory(file[], width, height, comps));
writeln(width, "x", height, "x", comps);
auto img = readJpegFromMemory(file[]);
writeln(img.width, "x", img.height);
writePng("z01.png", img);
}
}
}
// jpge.cpp - C++ class for JPEG compression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// Alex Evans: Added RGBA support, linear memory allocator.
// v1.01, Dec. 18, 2010 - Initial release
// v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
// v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
// Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
// v1.04, May. 19, 2012: Forgot to set m_pFile ptr to null in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
// Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
// Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
// D translation by Ketmar // Invisible Vector
//
// This is free and unencumbered software released into the public domain.
//
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
//
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// For more information, please refer to <http://unlicense.org/>
/**
* Writes a JPEG image to a file or stream.
* num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
* note that alpha will not be stored in jpeg file.
*/
public:
// ////////////////////////////////////////////////////////////////////////// //
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
enum JpegSubsampling { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 }
/// JPEG compression parameters structure.
public struct JpegParams {
/// Quality: 1-100, higher is better. Typical values are around 50-95.
int quality = 85;
/// subsampling:
/// 0 = Y (grayscale) only
/// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
/// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
/// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
JpegSubsampling subsampling = JpegSubsampling.H2V2;
/// Disables CbCr discrimination - only intended for testing.
/// If true, the Y quantization table is also used for the CbCr channels.
bool noChromaDiscrimFlag = false;
///
bool twoPass = true;
///
bool check () const pure nothrow @safe @nogc {
if (quality < 1 || quality > 100) return false;
if (cast(uint)subsampling > cast(uint)JpegSubsampling.H2V2) return false;
return true;
}
}
// ////////////////////////////////////////////////////////////////////////// //
/// Writes JPEG image to file.
/// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
/// note that alpha will not be stored in jpeg file.
bool compress_image_to_jpeg_stream (scope jpeg_encoder.WriteFunc wfn, int width, int height, int num_channels, const(ubyte)[] pImage_data) { return compress_image_to_jpeg_stream(wfn, width, height, num_channels, pImage_data, JpegParams()); }
/// Writes JPEG image to file.
/// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
/// note that alpha will not be stored in jpeg file.
bool compress_image_to_jpeg_stream (scope jpeg_encoder.WriteFunc wfn, int width, int height, int num_channels, const(ubyte)[] pImage_data, in JpegParams comp_params) {
jpeg_encoder dst_image;
if (!dst_image.setup(wfn, width, height, num_channels, comp_params)) return false;
for (uint pass_index = 0; pass_index < dst_image.total_passes(); pass_index++) {
for (int i = 0; i < height; i++) {
const(ubyte)* pBuf = pImage_data.ptr+i*width*num_channels;
if (!dst_image.process_scanline(pBuf)) return false;
}
if (!dst_image.process_scanline(null)) return false;
}
dst_image.deinit();
//return dst_stream.close();
return true;
}
/// Writes JPEG image to file.
/// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
/// note that alpha will not be stored in jpeg file.
bool compress_image_to_jpeg_file (const(char)[] fname, int width, int height, int num_channels, const(ubyte)[] pImage_data) { return compress_image_to_jpeg_file(fname, width, height, num_channels, pImage_data, JpegParams()); }
/// Writes JPEG image to file.
/// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
/// note that alpha will not be stored in jpeg file.
bool compress_image_to_jpeg_file() (const(char)[] fname, int width, int height, int num_channels, const(ubyte)[] pImage_data, in auto ref JpegParams comp_params) {
import std.internal.cstring;
import core.stdc.stdio : FILE, fopen, fclose, fwrite;
FILE* fl = fopen(fname.tempCString, "wb");
if (fl is null) return false;
scope(exit) if (fl !is null) fclose(fl);
auto res = compress_image_to_jpeg_stream(
delegate bool (scope const(ubyte)[] buf) {
if (fwrite(buf.ptr, 1, buf.length, fl) != buf.length) return false;
return true;
}, width, height, num_channels, pImage_data, comp_params);
if (res) {
if (fclose(fl) != 0) res = false;
fl = null;
}
return res;
}
// ////////////////////////////////////////////////////////////////////////// //
private:
nothrow @trusted @nogc {
auto JPGE_MIN(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a < b ? a : b); }
auto JPGE_MAX(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a > b ? a : b); }
void *jpge_malloc (size_t nSize) { import core.stdc.stdlib : malloc; return malloc(nSize); }
void jpge_free (void *p) { import core.stdc.stdlib : free; if (p !is null) free(p); }
// Various JPEG enums and tables.
enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 }
static immutable ubyte[64] s_zag = [ 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 ];
static immutable short[64] s_std_lum_quant = [ 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 ];
static immutable short[64] s_std_croma_quant = [ 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 ];
static immutable ubyte[17] s_dc_lum_bits = [ 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 ];
static immutable ubyte[DC_LUM_CODES] s_dc_lum_val = [ 0,1,2,3,4,5,6,7,8,9,10,11 ];
static immutable ubyte[17] s_ac_lum_bits = [ 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d ];
static immutable ubyte[AC_LUM_CODES] s_ac_lum_val = [
0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
0xf9,0xfa
];
static immutable ubyte[17] s_dc_chroma_bits = [ 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 ];
static immutable ubyte[DC_CHROMA_CODES] s_dc_chroma_val = [ 0,1,2,3,4,5,6,7,8,9,10,11 ];
static immutable ubyte[17] s_ac_chroma_bits = [ 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 ];
static immutable ubyte[AC_CHROMA_CODES] s_ac_chroma_val = [
0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
0xf9,0xfa
];
// Low-level helper functions.
//template <class T> inline void clear_obj(T &obj) { memset(&obj, 0, sizeof(obj)); }
enum YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329; // int
//ubyte clamp (int i) { if (cast(uint)(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return cast(ubyte)(i); }
ubyte clamp() (int i) { pragma(inline, true); return cast(ubyte)(cast(uint)i > 255 ? (((~i)>>31)&0xFF) : i); }
void RGB_to_YCC (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
for (; num_pixels; pDst += 3, pSrc += 3, --num_pixels) {
immutable int r = pSrc[0], g = pSrc[1], b = pSrc[2];
pDst[0] = cast(ubyte)((r*YR+g*YG+b*YB+32768)>>16);
pDst[1] = clamp(128+((r*CB_R+g*CB_G+b*CB_B+32768)>>16));
pDst[2] = clamp(128+((r*CR_R+g*CR_G+b*CR_B+32768)>>16));
}
}
void RGB_to_Y (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
for (; num_pixels; ++pDst, pSrc += 3, --num_pixels) {
pDst[0] = cast(ubyte)((pSrc[0]*YR+pSrc[1]*YG+pSrc[2]*YB+32768)>>16);
}
}
void RGBA_to_YCC (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
for (; num_pixels; pDst += 3, pSrc += 4, --num_pixels) {
immutable int r = pSrc[0], g = pSrc[1], b = pSrc[2];
pDst[0] = cast(ubyte)((r*YR+g*YG+b*YB+32768)>>16);
pDst[1] = clamp(128+((r*CB_R+g*CB_G+b*CB_B+32768)>>16));
pDst[2] = clamp(128+((r*CR_R+g*CR_G+b*CR_B+32768)>>16));
}
}
void RGBA_to_Y (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
for (; num_pixels; ++pDst, pSrc += 4, --num_pixels) {
pDst[0] = cast(ubyte)((pSrc[0]*YR+pSrc[1]*YG+pSrc[2]*YB+32768)>>16);
}
}
void Y_to_YCC (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
for (; num_pixels; pDst += 3, ++pSrc, --num_pixels) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; }
}
// Forward DCT - DCT derived from jfdctint.
enum { ROW_BITS = 2 }
//#define DCT_DESCALE(x, n) (((x)+(((int)1)<<((n)-1)))>>(n))
int DCT_DESCALE() (int x, int n) { pragma(inline, true); return (((x)+((cast(int)1)<<((n)-1)))>>(n)); }
//#define DCT_MUL(var, c) (cast(short)(var)*cast(int)(c))
//#define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7)
enum DCT1D = q{{
int t0 = s0+s7, t7 = s0-s7, t1 = s1+s6, t6 = s1-s6, t2 = s2+s5, t5 = s2-s5, t3 = s3+s4, t4 = s3-s4;
int t10 = t0+t3, t13 = t0-t3, t11 = t1+t2, t12 = t1-t2;
int u1 = (cast(short)(t12+t13)*cast(int)(4433));
s2 = u1+(cast(short)(t13)*cast(int)(6270));
s6 = u1+(cast(short)(t12)*cast(int)(-15137));
u1 = t4+t7;
int u2 = t5+t6, u3 = t4+t6, u4 = t5+t7;
int z5 = (cast(short)(u3+u4)*cast(int)(9633));
t4 = (cast(short)(t4)*cast(int)(2446)); t5 = (cast(short)(t5)*cast(int)(16819));
t6 = (cast(short)(t6)*cast(int)(25172)); t7 = (cast(short)(t7)*cast(int)(12299));
u1 = (cast(short)(u1)*cast(int)(-7373)); u2 = (cast(short)(u2)*cast(int)(-20995));
u3 = (cast(short)(u3)*cast(int)(-16069)); u4 = (cast(short)(u4)*cast(int)(-3196));
u3 += z5; u4 += z5;
s0 = t10+t11; s1 = t7+u1+u4; s3 = t6+u2+u3; s4 = t10-t11; s5 = t5+u2+u4; s7 = t4+u1+u3;
}};
void DCT2D (int* p) {
int c;
int* q = p;
for (c = 7; c >= 0; --c, q += 8) {
int s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
//DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
mixin(DCT1D);
q[0] = s0<<ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS);
q[4] = s4<<ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS);
}
for (q = p, c = 7; c >= 0; --c, ++q) {
int s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8];
//DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
mixin(DCT1D);
q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3);
q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3);
}
}
struct sym_freq { uint m_key, m_sym_index; }
// Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values.
sym_freq* radix_sort_syms (uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1) {
const uint cMaxPasses = 4;
uint[256*cMaxPasses] hist;
//clear_obj(hist);
for (uint i = 0; i < num_syms; i++) {
uint freq = pSyms0[i].m_key;
++hist[freq&0xFF];
++hist[256+((freq>>8)&0xFF)];
++hist[256*2+((freq>>16)&0xFF)];
++hist[256*3+((freq>>24)&0xFF)];
}
sym_freq* pCur_syms = pSyms0;
sym_freq* pNew_syms = pSyms1;
uint total_passes = cMaxPasses; while (total_passes > 1 && num_syms == hist[(total_passes-1)*256]) --total_passes;
uint[256] offsets;
for (uint pass_shift = 0, pass = 0; pass < total_passes; ++pass, pass_shift += 8) {
const(uint)* pHist = &hist[pass<<8];
uint cur_ofs = 0;
for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
for (uint i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key>>pass_shift)&0xFF]++] = pCur_syms[i];
sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t;
}
return pCur_syms;
}
// calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
void calculate_minimum_redundancy (sym_freq* A, int n) {
int root, leaf, next, avbl, used, dpth;
if (n == 0) return;
if (n == 1) { A[0].m_key = 1; return; }
A[0].m_key += A[1].m_key; root = 0; leaf = 2;
for (next=1; next < n-1; next++)
{
if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } else A[next].m_key = A[leaf++].m_key;
if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } else A[next].m_key += A[leaf++].m_key;
}
A[n-2].m_key = 0;
for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;
avbl = 1; used = dpth = 0; root = n-2; next = n-1;
while (avbl>0)
{
while (root >= 0 && cast(int)A[root].m_key == dpth) { used++; root--; }
while (avbl>used) { A[next--].m_key = dpth; avbl--; }
avbl = 2*used; dpth++; used = 0;
}
}
// Limits canonical Huffman code table's max code size to max_code_size.
void huffman_enforce_max_code_size (int* pNum_codes, int code_list_len, int max_code_size) {
if (code_list_len <= 1) return;
for (int i = max_code_size+1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
uint total = 0;
for (int i = max_code_size; i > 0; i--) total += ((cast(uint)pNum_codes[i])<<(max_code_size-i));
while (total != (1UL<<max_code_size)) {
pNum_codes[max_code_size]--;
for (int i = max_code_size-1; i > 0; i--) {
if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i+1] += 2; break; }
}
total--;
}
}
}
// ////////////////////////////////////////////////////////////////////////// //
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
struct jpeg_encoder {
public:
alias WriteFunc = bool delegate (scope const(ubyte)[] buf);
nothrow /*@trusted @nogc*/:
private:
alias sample_array_t = int;
WriteFunc m_pStream;
JpegParams m_params;
ubyte m_num_components;
ubyte[3] m_comp_h_samp;
ubyte[3] m_comp_v_samp;
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
int m_image_x_mcu, m_image_y_mcu;
int m_image_bpl_xlt, m_image_bpl_mcu;
int m_mcus_per_row;
int m_mcu_x, m_mcu_y;
ubyte*[16] m_mcu_lines;
ubyte m_mcu_y_ofs;
sample_array_t[64] m_sample_array;
short[64] m_coefficient_array;
int[64][2] m_quantization_tables;
uint[256][4] m_huff_codes;
ubyte[256][4] m_huff_code_sizes;
ubyte[17][4] m_huff_bits;
ubyte[256][4] m_huff_val;
uint[256][4] m_huff_count;
int[3] m_last_dc_val;
enum JPGE_OUT_BUF_SIZE = 2048;
ubyte[JPGE_OUT_BUF_SIZE] m_out_buf;
ubyte* m_pOut_buf;
uint m_out_buf_left;
uint m_bit_buffer;
uint m_bits_in;
ubyte m_pass_num;
bool m_all_stream_writes_succeeded = true;
private:
// Generates an optimized offman table.
void optimize_huffman_table (int table_num, int table_len) {
sym_freq[MAX_HUFF_SYMBOLS] syms0;
sym_freq[MAX_HUFF_SYMBOLS] syms1;
syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's
int num_used_syms = 1;
const uint *pSym_count = &m_huff_count[table_num][0];
for (int i = 0; i < table_len; i++) {
if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i+1; }
}
sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0.ptr, syms1.ptr);
calculate_minimum_redundancy(pSyms, num_used_syms);
// Count the # of symbols of each code size.
int[1+MAX_HUFF_CODESIZE] num_codes;
//clear_obj(num_codes);
for (int i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;
enum JPGE_CODE_SIZE_LIMIT = 16u; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol)
huffman_enforce_max_code_size(num_codes.ptr, num_used_syms, JPGE_CODE_SIZE_LIMIT);
// Compute m_huff_bits array, which contains the # of symbols per code size.
//clear_obj(m_huff_bits[table_num]);
m_huff_bits[table_num][] = 0;
for (int i = 1; i <= cast(int)JPGE_CODE_SIZE_LIMIT; i++) m_huff_bits[table_num][i] = cast(ubyte)(num_codes[i]);
// Remove the dummy symbol added above, which must be in largest bucket.
for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--) {
if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; }
}
// Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest).
for (int i = num_used_syms-1; i >= 1; i--) m_huff_val[table_num][num_used_syms-1-i] = cast(ubyte)(pSyms[i].m_sym_index-1);
}
bool put_obj(T) (T v) {
try {
return (m_pStream !is null && m_pStream((&v)[0..1]));
} catch (Exception) {}
return false;
}
bool put_buf() (const(void)* v, uint len) {
try {
return (m_pStream !is null && m_pStream((cast(ubyte*)v)[0..len]));
} catch (Exception) {}
return false;
}
// JPEG marker generation.
void emit_byte (ubyte i) {
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && put_obj(i);
}
void emit_word(uint i) {
emit_byte(cast(ubyte)(i>>8));
emit_byte(cast(ubyte)(i&0xFF));
}
void emit_marker (int marker) {
emit_byte(cast(ubyte)(0xFF));
emit_byte(cast(ubyte)(marker));
}
// Emit JFIF marker
void emit_jfif_app0 () {
emit_marker(M_APP0);
emit_word(2+4+1+2+1+2+2+1+1);
emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
emit_byte(0);
emit_byte(1); /* Major version */
emit_byte(1); /* Minor version */
emit_byte(0); /* Density unit */
emit_word(1);
emit_word(1);
emit_byte(0); /* No thumbnail image */
emit_byte(0);
}
// Emit quantization tables
void emit_dqt () {
for (int i = 0; i < (m_num_components == 3 ? 2 : 1); i++) {
emit_marker(M_DQT);
emit_word(64+1+2);
emit_byte(cast(ubyte)(i));
for (int j = 0; j < 64; j++) emit_byte(cast(ubyte)(m_quantization_tables[i][j]));
}
}
// Emit start of frame marker
void emit_sof () {
emit_marker(M_SOF0); /* baseline */
emit_word(3*m_num_components+2+5+1);
emit_byte(8); /* precision */
emit_word(m_image_y);
emit_word(m_image_x);
emit_byte(m_num_components);
for (int i = 0; i < m_num_components; i++) {
emit_byte(cast(ubyte)(i+1)); /* component ID */
emit_byte(cast(ubyte)((m_comp_h_samp[i]<<4)+m_comp_v_samp[i])); /* h and v sampling */
emit_byte(i > 0); /* quant. table num */
}
}
// Emit Huffman table.
void emit_dht (ubyte* bits, ubyte* val, int index, bool ac_flag) {
emit_marker(M_DHT);
int length = 0;
for (int i = 1; i <= 16; i++) length += bits[i];
emit_word(length+2+1+16);
emit_byte(cast(ubyte)(index+(ac_flag<<4)));
for (int i = 1; i <= 16; i++) emit_byte(bits[i]);
for (int i = 0; i < length; i++) emit_byte(val[i]);
}
// Emit all Huffman tables.
void emit_dhts () {
emit_dht(m_huff_bits[0+0].ptr, m_huff_val[0+0].ptr, 0, false);
emit_dht(m_huff_bits[2+0].ptr, m_huff_val[2+0].ptr, 0, true);
if (m_num_components == 3) {
emit_dht(m_huff_bits[0+1].ptr, m_huff_val[0+1].ptr, 1, false);
emit_dht(m_huff_bits[2+1].ptr, m_huff_val[2+1].ptr, 1, true);
}
}
// emit start of scan
void emit_sos () {
emit_marker(M_SOS);
emit_word(2*m_num_components+2+1+3);
emit_byte(m_num_components);
for (int i = 0; i < m_num_components; i++) {
emit_byte(cast(ubyte)(i+1));
if (i == 0)
emit_byte((0<<4)+0);
else
emit_byte((1<<4)+1);
}
emit_byte(0); /* spectral selection */
emit_byte(63);
emit_byte(0);
}
// Emit all markers at beginning of image file.
void emit_markers () {
emit_marker(M_SOI);
emit_jfif_app0();
emit_dqt();
emit_sof();
emit_dhts();
emit_sos();
}
// Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
void compute_huffman_table (uint* codes, ubyte* code_sizes, ubyte* bits, ubyte* val) {
import core.stdc.string : memset;
int i, l, last_p, si;
ubyte[257] huff_size;
uint[257] huff_code;
uint code;
int p = 0;
for (l = 1; l <= 16; l++)
for (i = 1; i <= bits[l]; i++)
huff_size[p++] = cast(ubyte)l;
huff_size[p] = 0; last_p = p; // write sentinel
code = 0; si = huff_size[0]; p = 0;
while (huff_size[p])
{
while (huff_size[p] == si)
huff_code[p++] = code++;
code <<= 1;
si++;
}
memset(codes, 0, codes[0].sizeof*256);
memset(code_sizes, 0, code_sizes[0].sizeof*256);
for (p = 0; p < last_p; p++)
{
codes[val[p]] = huff_code[p];
code_sizes[val[p]] = huff_size[p];
}
}
// Quantization table generation.
void compute_quant_table (int* pDst, const(short)* pSrc) {
int q;
if (m_params.quality < 50)
q = 5000/m_params.quality;
else
q = 200-m_params.quality*2;
for (int i = 0; i < 64; i++) {
int j = *pSrc++; j = (j*q+50L)/100L;
*pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
}
}
// Higher-level methods.
void first_pass_init () {
import core.stdc.string : memset;
m_bit_buffer = 0; m_bits_in = 0;
memset(m_last_dc_val.ptr, 0, 3*m_last_dc_val[0].sizeof);
m_mcu_y_ofs = 0;
m_pass_num = 1;
}
bool second_pass_init () {
compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0].ptr, m_huff_val[0+0].ptr);
compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0].ptr, m_huff_val[2+0].ptr);
if (m_num_components > 1)
{
compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1].ptr, m_huff_val[0+1].ptr);
compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1].ptr, m_huff_val[2+1].ptr);
}
first_pass_init();
emit_markers();
m_pass_num = 2;
return true;
}
bool jpg_open (int p_x_res, int p_y_res, int src_channels) {
m_num_components = 3;
switch (m_params.subsampling) {
case JpegSubsampling.Y_ONLY:
m_num_components = 1;
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
m_mcu_x = 8; m_mcu_y = 8;
break;
case JpegSubsampling.H1V1:
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 8; m_mcu_y = 8;
break;
case JpegSubsampling.H2V1:
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 16; m_mcu_y = 8;
break;
case JpegSubsampling.H2V2:
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 16; m_mcu_y = 16;
break;
default: assert(0);
}
m_image_x = p_x_res; m_image_y = p_y_res;
m_image_bpp = src_channels;
m_image_bpl = m_image_x*src_channels;
m_image_x_mcu = (m_image_x+m_mcu_x-1)&(~(m_mcu_x-1));
m_image_y_mcu = (m_image_y+m_mcu_y-1)&(~(m_mcu_y-1));
m_image_bpl_xlt = m_image_x*m_num_components;
m_image_bpl_mcu = m_image_x_mcu*m_num_components;
m_mcus_per_row = m_image_x_mcu/m_mcu_x;
if ((m_mcu_lines[0] = cast(ubyte*)(jpge_malloc(m_image_bpl_mcu*m_mcu_y))) is null) return false;
for (int i = 1; i < m_mcu_y; i++)
m_mcu_lines[i] = m_mcu_lines[i-1]+m_image_bpl_mcu;
compute_quant_table(m_quantization_tables[0].ptr, s_std_lum_quant.ptr);
compute_quant_table(m_quantization_tables[1].ptr, (m_params.noChromaDiscrimFlag ? s_std_lum_quant.ptr : s_std_croma_quant.ptr));
m_out_buf_left = JPGE_OUT_BUF_SIZE;
m_pOut_buf = m_out_buf.ptr;
if (m_params.twoPass)
{
//clear_obj(m_huff_count);
import core.stdc.string : memset;
memset(m_huff_count.ptr, 0, m_huff_count.sizeof);
first_pass_init();
}
else
{
import core.stdc.string : memcpy;
memcpy(m_huff_bits[0+0].ptr, s_dc_lum_bits.ptr, 17); memcpy(m_huff_val[0+0].ptr, s_dc_lum_val.ptr, DC_LUM_CODES);
memcpy(m_huff_bits[2+0].ptr, s_ac_lum_bits.ptr, 17); memcpy(m_huff_val[2+0].ptr, s_ac_lum_val.ptr, AC_LUM_CODES);
memcpy(m_huff_bits[0+1].ptr, s_dc_chroma_bits.ptr, 17); memcpy(m_huff_val[0+1].ptr, s_dc_chroma_val.ptr, DC_CHROMA_CODES);
memcpy(m_huff_bits[2+1].ptr, s_ac_chroma_bits.ptr, 17); memcpy(m_huff_val[2+1].ptr, s_ac_chroma_val.ptr, AC_CHROMA_CODES);
if (!second_pass_init()) return false; // in effect, skip over the first pass
}
return m_all_stream_writes_succeeded;
}
void load_block_8_8_grey (int x) {
ubyte *pSrc;
sample_array_t *pDst = m_sample_array.ptr;
x <<= 3;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc = m_mcu_lines[i]+x;
pDst[0] = pSrc[0]-128; pDst[1] = pSrc[1]-128; pDst[2] = pSrc[2]-128; pDst[3] = pSrc[3]-128;
pDst[4] = pSrc[4]-128; pDst[5] = pSrc[5]-128; pDst[6] = pSrc[6]-128; pDst[7] = pSrc[7]-128;
}
}
void load_block_8_8 (int x, int y, int c) {
ubyte *pSrc;
sample_array_t *pDst = m_sample_array.ptr;
x = (x*(8*3))+c;
y <<= 3;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc = m_mcu_lines[y+i]+x;
pDst[0] = pSrc[0*3]-128; pDst[1] = pSrc[1*3]-128; pDst[2] = pSrc[2*3]-128; pDst[3] = pSrc[3*3]-128;
pDst[4] = pSrc[4*3]-128; pDst[5] = pSrc[5*3]-128; pDst[6] = pSrc[6*3]-128; pDst[7] = pSrc[7*3]-128;
}
}
void load_block_16_8 (int x, int c) {
ubyte* pSrc1;
ubyte* pSrc2;
sample_array_t *pDst = m_sample_array.ptr;
x = (x*(16*3))+c;
int a = 0, b = 2;
for (int i = 0; i < 16; i += 2, pDst += 8)
{
pSrc1 = m_mcu_lines[i+0]+x;
pSrc2 = m_mcu_lines[i+1]+x;
pDst[0] = ((pSrc1[ 0*3]+pSrc1[ 1*3]+pSrc2[ 0*3]+pSrc2[ 1*3]+a)>>2)-128; pDst[1] = ((pSrc1[ 2*3]+pSrc1[ 3*3]+pSrc2[ 2*3]+pSrc2[ 3*3]+b)>>2)-128;
pDst[2] = ((pSrc1[ 4*3]+pSrc1[ 5*3]+pSrc2[ 4*3]+pSrc2[ 5*3]+a)>>2)-128; pDst[3] = ((pSrc1[ 6*3]+pSrc1[ 7*3]+pSrc2[ 6*3]+pSrc2[ 7*3]+b)>>2)-128;
pDst[4] = ((pSrc1[ 8*3]+pSrc1[ 9*3]+pSrc2[ 8*3]+pSrc2[ 9*3]+a)>>2)-128; pDst[5] = ((pSrc1[10*3]+pSrc1[11*3]+pSrc2[10*3]+pSrc2[11*3]+b)>>2)-128;
pDst[6] = ((pSrc1[12*3]+pSrc1[13*3]+pSrc2[12*3]+pSrc2[13*3]+a)>>2)-128; pDst[7] = ((pSrc1[14*3]+pSrc1[15*3]+pSrc2[14*3]+pSrc2[15*3]+b)>>2)-128;
int temp = a; a = b; b = temp;
}
}
void load_block_16_8_8 (int x, int c) {
ubyte *pSrc1;
sample_array_t *pDst = m_sample_array.ptr;
x = (x*(16*3))+c;
for (int i = 0; i < 8; i++, pDst += 8) {
pSrc1 = m_mcu_lines[i+0]+x;
pDst[0] = ((pSrc1[ 0*3]+pSrc1[ 1*3])>>1)-128; pDst[1] = ((pSrc1[ 2*3]+pSrc1[ 3*3])>>1)-128;
pDst[2] = ((pSrc1[ 4*3]+pSrc1[ 5*3])>>1)-128; pDst[3] = ((pSrc1[ 6*3]+pSrc1[ 7*3])>>1)-128;
pDst[4] = ((pSrc1[ 8*3]+pSrc1[ 9*3])>>1)-128; pDst[5] = ((pSrc1[10*3]+pSrc1[11*3])>>1)-128;
pDst[6] = ((pSrc1[12*3]+pSrc1[13*3])>>1)-128; pDst[7] = ((pSrc1[14*3]+pSrc1[15*3])>>1)-128;
}
}
void load_quantized_coefficients (int component_num) {
int *q = m_quantization_tables[component_num > 0].ptr;
short *pDst = m_coefficient_array.ptr;
for (int i = 0; i < 64; i++)
{
sample_array_t j = m_sample_array[s_zag[i]];
if (j < 0)
{
if ((j = -j+(*q>>1)) < *q)
*pDst++ = 0;
else
*pDst++ = cast(short)(-(j/ *q));
}
else
{
if ((j = j+(*q>>1)) < *q)
*pDst++ = 0;
else
*pDst++ = cast(short)((j/ *q));
}
q++;
}
}
void flush_output_buffer () {
if (m_out_buf_left != JPGE_OUT_BUF_SIZE) m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && put_buf(m_out_buf.ptr, JPGE_OUT_BUF_SIZE-m_out_buf_left);
m_pOut_buf = m_out_buf.ptr;
m_out_buf_left = JPGE_OUT_BUF_SIZE;
}
void put_bits (uint bits, uint len) {
m_bit_buffer |= (cast(uint)bits<<(24-(m_bits_in += len)));
while (m_bits_in >= 8) {
ubyte c;
//#define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); }
//JPGE_PUT_BYTE(c = (ubyte)((m_bit_buffer>>16)&0xFF));
//if (c == 0xFF) JPGE_PUT_BYTE(0);
c = cast(ubyte)((m_bit_buffer>>16)&0xFF);
*m_pOut_buf++ = c;
if (--m_out_buf_left == 0) flush_output_buffer();
if (c == 0xFF) {
*m_pOut_buf++ = 0;
if (--m_out_buf_left == 0) flush_output_buffer();
}
m_bit_buffer <<= 8;
m_bits_in -= 8;
}
}
void code_coefficients_pass_one (int component_num) {
if (component_num >= 3) return; // just to shut up static analysis
int i, run_len, nbits, temp1;
short *src = m_coefficient_array.ptr;
uint *dc_count = (component_num ? m_huff_count[0+1].ptr : m_huff_count[0+0].ptr);
uint *ac_count = (component_num ? m_huff_count[2+1].ptr : m_huff_count[2+0].ptr);
temp1 = src[0]-m_last_dc_val[component_num];
m_last_dc_val[component_num] = src[0];
if (temp1 < 0) temp1 = -temp1;
nbits = 0;
while (temp1)
{
nbits++; temp1 >>= 1;
}
dc_count[nbits]++;
for (run_len = 0, i = 1; i < 64; i++)
{
if ((temp1 = m_coefficient_array[i]) == 0)
run_len++;
else
{
while (run_len >= 16)
{
ac_count[0xF0]++;
run_len -= 16;
}
if (temp1 < 0) temp1 = -temp1;
nbits = 1;
while (temp1 >>= 1) nbits++;
ac_count[(run_len<<4)+nbits]++;
run_len = 0;
}
}
if (run_len) ac_count[0]++;
}
void code_coefficients_pass_two (int component_num) {
int i, j, run_len, nbits, temp1, temp2;
short *pSrc = m_coefficient_array.ptr;
uint*[2] codes;
ubyte*[2] code_sizes;
if (component_num == 0)
{
codes[0] = m_huff_codes[0+0].ptr; codes[1] = m_huff_codes[2+0].ptr;
code_sizes[0] = m_huff_code_sizes[0+0].ptr; code_sizes[1] = m_huff_code_sizes[2+0].ptr;
}
else
{
codes[0] = m_huff_codes[0+1].ptr; codes[1] = m_huff_codes[2+1].ptr;
code_sizes[0] = m_huff_code_sizes[0+1].ptr; code_sizes[1] = m_huff_code_sizes[2+1].ptr;
}
temp1 = temp2 = pSrc[0]-m_last_dc_val[component_num];
m_last_dc_val[component_num] = pSrc[0];
if (temp1 < 0)
{
temp1 = -temp1; temp2--;
}
nbits = 0;
while (temp1)
{
nbits++; temp1 >>= 1;
}
put_bits(codes[0][nbits], code_sizes[0][nbits]);
if (nbits) put_bits(temp2&((1<<nbits)-1), nbits);
for (run_len = 0, i = 1; i < 64; i++)
{
if ((temp1 = m_coefficient_array[i]) == 0)
run_len++;
else
{
while (run_len >= 16)
{
put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
run_len -= 16;
}
if ((temp2 = temp1) < 0)
{
temp1 = -temp1;
temp2--;
}
nbits = 1;
while (temp1 >>= 1)
nbits++;
j = (run_len<<4)+nbits;
put_bits(codes[1][j], code_sizes[1][j]);
put_bits(temp2&((1<<nbits)-1), nbits);
run_len = 0;
}
}
if (run_len)
put_bits(codes[1][0], code_sizes[1][0]);
}
void code_block (int component_num) {
DCT2D(m_sample_array.ptr);
load_quantized_coefficients(component_num);
if (m_pass_num == 1)
code_coefficients_pass_one(component_num);
else
code_coefficients_pass_two(component_num);
}
void process_mcu_row () {
if (m_num_components == 1)
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8_grey(i); code_block(0);
}
}
else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
}
}
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i*2+0, 0, 0); code_block(0); load_block_8_8(i*2+1, 0, 0); code_block(0);
load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
}
}
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i*2+0, 0, 0); code_block(0); load_block_8_8(i*2+1, 0, 0); code_block(0);
load_block_8_8(i*2+0, 1, 0); code_block(0); load_block_8_8(i*2+1, 1, 0); code_block(0);
load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
}
}
}
bool terminate_pass_one () {
optimize_huffman_table(0+0, DC_LUM_CODES); optimize_huffman_table(2+0, AC_LUM_CODES);
if (m_num_components > 1)
{
optimize_huffman_table(0+1, DC_CHROMA_CODES); optimize_huffman_table(2+1, AC_CHROMA_CODES);
}
return second_pass_init();
}
bool terminate_pass_two () {
put_bits(0x7F, 7);
flush_output_buffer();
emit_marker(M_EOI);
m_pass_num++; // purposely bump up m_pass_num, for debugging
return true;
}
bool process_end_of_image () {
if (m_mcu_y_ofs)
{
if (m_mcu_y_ofs < 16) // check here just to shut up static analysis
{
for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) {
import core.stdc.string : memcpy;
memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs-1], m_image_bpl_mcu);
}
}
process_mcu_row();
}
if (m_pass_num == 1)
return terminate_pass_one();
else
return terminate_pass_two();
}
void load_mcu (const(void)* pSrc) {
import core.stdc.string : memcpy;
const(ubyte)* Psrc = cast(const(ubyte)*)(pSrc);
ubyte* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
if (m_num_components == 1)
{
if (m_image_bpp == 4)
RGBA_to_Y(pDst, Psrc, m_image_x);
else if (m_image_bpp == 3)
RGB_to_Y(pDst, Psrc, m_image_x);
else
memcpy(pDst, Psrc, m_image_x);
}
else
{
if (m_image_bpp == 4)
RGBA_to_YCC(pDst, Psrc, m_image_x);
else if (m_image_bpp == 3)
RGB_to_YCC(pDst, Psrc, m_image_x);
else
Y_to_YCC(pDst, Psrc, m_image_x);
}
// Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
if (m_num_components == 1) {
import core.stdc.string : memset;
memset(m_mcu_lines[m_mcu_y_ofs]+m_image_bpl_xlt, pDst[m_image_bpl_xlt-1], m_image_x_mcu-m_image_x);
} else
{
const ubyte y = pDst[m_image_bpl_xlt-3+0], cb = pDst[m_image_bpl_xlt-3+1], cr = pDst[m_image_bpl_xlt-3+2];
ubyte *q = m_mcu_lines[m_mcu_y_ofs]+m_image_bpl_xlt;
for (int i = m_image_x; i < m_image_x_mcu; i++)
{
*q++ = y; *q++ = cb; *q++ = cr;
}
}
if (++m_mcu_y_ofs == m_mcu_y)
{
process_mcu_row();
m_mcu_y_ofs = 0;
}
}
void clear() {
m_mcu_lines[0] = null;
m_pass_num = 0;
m_all_stream_writes_succeeded = true;
}
public:
//this () { clear(); }
~this () { deinit(); }
@disable this (this); // no copies
// Initializes the compressor.
// pStream: The stream object to use for writing compressed data.
// comp_params - Compression parameters structure, defined above.
// width, height - Image dimensions.
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
// Returns false on out of memory or if a stream write fails.
bool setup() (WriteFunc pStream, int width, int height, int src_channels, in auto ref JpegParams comp_params) {
deinit();
if ((pStream is null || width < 1 || height < 1) || (src_channels != 1 && src_channels != 3 && src_channels != 4) || !comp_params.check()) return false;
m_pStream = pStream;
m_params = comp_params;
return jpg_open(width, height, src_channels);
}
bool setup() (WriteFunc pStream, int width, int height, int src_channels) { return setup(pStream, width, height, src_channels, JpegParams()); }
@property ref inout(JpegParams) params () return inout pure nothrow @safe @nogc { pragma(inline, true); return m_params; }
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
void deinit () {
jpge_free(m_mcu_lines[0]);
clear();
}
@property uint total_passes () const pure nothrow @safe @nogc { pragma(inline, true); return (m_params.twoPass ? 2 : 1); }
@property uint cur_pass () const pure nothrow @safe @nogc { pragma(inline, true); return m_pass_num; }
// Call this method with each source scanline.
// width*src_channels bytes per scanline is expected (RGB or Y format).
// You must call with null after all scanlines are processed to finish compression.
// Returns false on out of memory or if a stream write fails.
bool process_scanline (const(void)* pScanline) {
if (m_pass_num < 1 || m_pass_num > 2) return false;
if (m_all_stream_writes_succeeded) {
if (pScanline is null) {
if (!process_end_of_image()) return false;
} else {
load_mcu(pScanline);
}
}
return m_all_stream_writes_succeeded;
}
}