mirror of https://github.com/adamdruppe/arsd.git
5160 lines
182 KiB
D
5160 lines
182 KiB
D
// Ogg Vorbis audio decoder - v1.10 - public domain
|
|
// http://nothings.org/stb_vorbis/
|
|
//
|
|
// Original version written by Sean Barrett in 2007.
|
|
//
|
|
// Originally sponsored by RAD Game Tools. Seeking sponsored
|
|
// by Phillip Bennefall, Marc Andersen, Aaron Baker, Elias Software,
|
|
// Aras Pranckevicius, and Sean Barrett.
|
|
//
|
|
// LICENSE
|
|
//
|
|
// See end of file for license information.
|
|
//
|
|
// Limitations:
|
|
//
|
|
// - floor 0 not supported (used in old ogg vorbis files pre-2004)
|
|
// - lossless sample-truncation at beginning ignored
|
|
// - cannot concatenate multiple vorbis streams
|
|
// - sample positions are 32-bit, limiting seekable 192Khz
|
|
// files to around 6 hours (Ogg supports 64-bit)
|
|
//
|
|
// Feature contributors:
|
|
// Dougall Johnson (sample-exact seeking)
|
|
//
|
|
// Bugfix/warning contributors:
|
|
// Terje Mathisen Niklas Frykholm Andy Hill
|
|
// Casey Muratori John Bolton Gargaj
|
|
// Laurent Gomila Marc LeBlanc Ronny Chevalier
|
|
// Bernhard Wodo Evan Balster alxprd@github
|
|
// Tom Beaumont Ingo Leitgeb Nicolas Guillemot
|
|
// Phillip Bennefall Rohit Thiago Goulart
|
|
// manxorist@github saga musix
|
|
//
|
|
// Partial history:
|
|
// 1.10 - 2017/03/03 - more robust seeking; fix negative ilog(); clear error in open_memory
|
|
// 1.09 - 2016/04/04 - back out 'avoid discarding last frame' fix from previous version
|
|
// 1.08 - 2016/04/02 - fixed multiple warnings; fix setup memory leaks;
|
|
// avoid discarding last frame of audio data
|
|
// 1.07 - 2015/01/16 - fixed some warnings, fix mingw, const-correct API
|
|
// some more crash fixes when out of memory or with corrupt files
|
|
// 1.06 - 2015/08/31 - full, correct support for seeking API (Dougall Johnson)
|
|
// some crash fixes when out of memory or with corrupt files
|
|
// fix some inappropriately signed shifts
|
|
// 1.05 - 2015/04/19 - don't define __forceinline if it's redundant
|
|
// 1.04 - 2014/08/27 - fix missing const-correct case in API
|
|
// 1.03 - 2014/08/07 - warning fixes
|
|
// 1.02 - 2014/07/09 - declare qsort comparison as explicitly _cdecl in Windows
|
|
// 1.01 - 2014/06/18 - fix stb_vorbis_get_samples_float (interleaved was correct)
|
|
// 1.0 - 2014/05/26 - fix memory leaks; fix warnings; fix bugs in >2-channel;
|
|
// (API change) report sample rate for decode-full-file funcs
|
|
// 0.99996 - - bracket #include <malloc.h> for macintosh compilation
|
|
// 0.99995 - - avoid alias-optimization issue in float-to-int conversion
|
|
//
|
|
// See end of file for full version history.
|
|
// D translation by Ketmar // Invisible Vector
|
|
// stolen by adam and module renamed.
|
|
/++
|
|
Port of stb_vorbis to D. Provides .ogg audio file reading capabilities. See [arsd.simpleaudio] for code that can use this to actually load and play the file.
|
|
+/
|
|
module arsd.vorbis;
|
|
|
|
import core.stdc.stdio : FILE;
|
|
|
|
version(Windows)
|
|
extern(C) int lrintf(float f) { return cast(int) f; }
|
|
|
|
@system:
|
|
|
|
nothrow /*@trusted*/:
|
|
@nogc { // code block, as c macro helper is not @nogc; yet it's CTFE-only
|
|
// import it here, as druntime has no `@nogc` on it (for a reason)
|
|
private extern(C) void qsort (void* base, size_t nmemb, size_t size, int function(const scope void*, const scope void*) compar);
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// HEADER BEGINS HERE
|
|
//
|
|
|
|
/////////// THREAD SAFETY
|
|
|
|
// Individual VorbisDecoder handles are not thread-safe; you cannot decode from
|
|
// them from multiple threads at the same time. However, you can have multiple
|
|
// VorbisDecoder handles and decode from them independently in multiple thrads.
|
|
|
|
|
|
/////////// MEMORY ALLOCATION
|
|
|
|
// normally stb_vorbis uses malloc() to allocate memory at startup,
|
|
// and alloca() to allocate temporary memory during a frame on the
|
|
// stack. (Memory consumption will depend on the amount of setup
|
|
// data in the file and how you set the compile flags for speed
|
|
// vs. size. In my test files the maximal-size usage is ~150KB.)
|
|
//
|
|
// You can modify the wrapper functions in the source (setup_malloc,
|
|
// setup_temp_malloc, temp_malloc) to change this behavior, or you
|
|
// can use a simpler allocation model: you pass in a buffer from
|
|
// which stb_vorbis will allocate _all_ its memory (including the
|
|
// temp memory). "open" may fail with a VORBIS_outofmem if you
|
|
// do not pass in enough data; there is no way to determine how
|
|
// much you do need except to succeed (at which point you can
|
|
// query get_info to find the exact amount required. yes I know
|
|
// this is lame).
|
|
//
|
|
// If you pass in a non-null buffer of the type below, allocation
|
|
// will occur from it as described above. Otherwise just pass null
|
|
// to use malloc()/alloca()
|
|
|
|
public struct stb_vorbis_alloc {
|
|
ubyte* alloc_buffer;
|
|
int alloc_buffer_length_in_bytes;
|
|
}
|
|
|
|
|
|
/////////// FUNCTIONS USEABLE WITH ALL INPUT MODES
|
|
|
|
/*
|
|
public struct stb_vorbis_info {
|
|
uint sample_rate;
|
|
int channels;
|
|
|
|
uint setup_memory_required;
|
|
uint setup_temp_memory_required;
|
|
uint temp_memory_required;
|
|
|
|
int max_frame_size;
|
|
}
|
|
*/
|
|
|
|
|
|
/* ************************************************************************** *
|
|
// get general information about the file
|
|
stb_vorbis_info stb_vorbis_get_info (VorbisDecoder f);
|
|
|
|
// get the last error detected (clears it, too)
|
|
int stb_vorbis_get_error (VorbisDecoder f);
|
|
|
|
// close an ogg vorbis file and free all memory in use
|
|
void stb_vorbis_close (VorbisDecoder f);
|
|
|
|
// this function returns the offset (in samples) from the beginning of the
|
|
// file that will be returned by the next decode, if it is known, or -1
|
|
// otherwise. after a flush_pushdata() call, this may take a while before
|
|
// it becomes valid again.
|
|
// NOT WORKING YET after a seek with PULLDATA API
|
|
int stb_vorbis_get_sample_offset (VorbisDecoder f);
|
|
|
|
// returns the current seek point within the file, or offset from the beginning
|
|
// of the memory buffer. In pushdata mode it returns 0.
|
|
uint stb_vorbis_get_file_offset (VorbisDecoder f);
|
|
|
|
|
|
/////////// PUSHDATA API
|
|
|
|
// this API allows you to get blocks of data from any source and hand
|
|
// them to stb_vorbis. you have to buffer them; stb_vorbis will tell
|
|
// you how much it used, and you have to give it the rest next time;
|
|
// and stb_vorbis may not have enough data to work with and you will
|
|
// need to give it the same data again PLUS more. Note that the Vorbis
|
|
// specification does not bound the size of an individual frame.
|
|
|
|
// create a vorbis decoder by passing in the initial data block containing
|
|
// the ogg&vorbis headers (you don't need to do parse them, just provide
|
|
// the first N bytes of the file--you're told if it's not enough, see below)
|
|
// on success, returns an VorbisDecoder, does not set error, returns the amount of
|
|
// data parsed/consumed on this call in *datablock_memory_consumed_in_bytes;
|
|
// on failure, returns null on error and sets *error, does not change *datablock_memory_consumed
|
|
// if returns null and *error is VORBIS_need_more_data, then the input block was
|
|
// incomplete and you need to pass in a larger block from the start of the file
|
|
VorbisDecoder stb_vorbis_open_pushdata (
|
|
ubyte* datablock, int datablock_length_in_bytes,
|
|
int* datablock_memory_consumed_in_bytes,
|
|
int* error,
|
|
stb_vorbis_alloc* alloc_buffer
|
|
);
|
|
|
|
// decode a frame of audio sample data if possible from the passed-in data block
|
|
//
|
|
// return value: number of bytes we used from datablock
|
|
//
|
|
// possible cases:
|
|
// 0 bytes used, 0 samples output (need more data)
|
|
// N bytes used, 0 samples output (resynching the stream, keep going)
|
|
// N bytes used, M samples output (one frame of data)
|
|
// note that after opening a file, you will ALWAYS get one N-bytes, 0-sample
|
|
// frame, because Vorbis always "discards" the first frame.
|
|
//
|
|
// Note that on resynch, stb_vorbis will rarely consume all of the buffer,
|
|
// instead only datablock_length_in_bytes-3 or less. This is because it wants
|
|
// to avoid missing parts of a page header if they cross a datablock boundary,
|
|
// without writing state-machiney code to record a partial detection.
|
|
//
|
|
// The number of channels returned are stored in *channels (which can be
|
|
// null--it is always the same as the number of channels reported by
|
|
// get_info). *output will contain an array of float* buffers, one per
|
|
// channel. In other words, (*output)[0][0] contains the first sample from
|
|
// the first channel, and (*output)[1][0] contains the first sample from
|
|
// the second channel.
|
|
int stb_vorbis_decode_frame_pushdata (
|
|
VorbisDecoder f, ubyte* datablock, int datablock_length_in_bytes,
|
|
int* channels, // place to write number of float * buffers
|
|
float*** output, // place to write float ** array of float * buffers
|
|
int* samples // place to write number of output samples
|
|
);
|
|
|
|
// inform stb_vorbis that your next datablock will not be contiguous with
|
|
// previous ones (e.g. you've seeked in the data); future attempts to decode
|
|
// frames will cause stb_vorbis to resynchronize (as noted above), and
|
|
// once it sees a valid Ogg page (typically 4-8KB, as large as 64KB), it
|
|
// will begin decoding the _next_ frame.
|
|
//
|
|
// if you want to seek using pushdata, you need to seek in your file, then
|
|
// call stb_vorbis_flush_pushdata(), then start calling decoding, then once
|
|
// decoding is returning you data, call stb_vorbis_get_sample_offset, and
|
|
// if you don't like the result, seek your file again and repeat.
|
|
void stb_vorbis_flush_pushdata (VorbisDecoder f);
|
|
|
|
|
|
////////// PULLING INPUT API
|
|
|
|
// This API assumes stb_vorbis is allowed to pull data from a source--
|
|
// either a block of memory containing the _entire_ vorbis stream, or a
|
|
// FILE* that you or it create, or possibly some other reading mechanism
|
|
// if you go modify the source to replace the FILE* case with some kind
|
|
// of callback to your code. (But if you don't support seeking, you may
|
|
// just want to go ahead and use pushdata.)
|
|
|
|
// decode an entire file and output the data interleaved into a malloc()ed
|
|
// buffer stored in *output. The return value is the number of samples
|
|
// decoded, or -1 if the file could not be opened or was not an ogg vorbis file.
|
|
// When you're done with it, just free() the pointer returned in *output.
|
|
int stb_vorbis_decode_filename (const(char)* filename, int* channels, int* sample_rate, short** output);
|
|
int stb_vorbis_decode_memory (const(ubyte)* mem, int len, int* channels, int* sample_rate, short** output);
|
|
|
|
// create an ogg vorbis decoder from an ogg vorbis stream in memory (note
|
|
// this must be the entire stream!). on failure, returns null and sets *error
|
|
VorbisDecoder stb_vorbis_open_memory (const(ubyte)* data, int len, int* error, stb_vorbis_alloc* alloc_buffer);
|
|
|
|
// create an ogg vorbis decoder from a filename via fopen(). on failure,
|
|
// returns null and sets *error (possibly to VORBIS_file_open_failure).
|
|
VorbisDecoder stb_vorbis_open_filename (const(char)* filename, int* error, stb_vorbis_alloc* alloc_buffer);
|
|
|
|
// create an ogg vorbis decoder from an open FILE*, looking for a stream at
|
|
// the _current_ seek point (ftell). on failure, returns null and sets *error.
|
|
// note that stb_vorbis must "own" this stream; if you seek it in between
|
|
// calls to stb_vorbis, it will become confused. Morever, if you attempt to
|
|
// perform stb_vorbis_seek_*() operations on this file, it will assume it
|
|
// owns the _entire_ rest of the file after the start point. Use the next
|
|
// function, stb_vorbis_open_file_section(), to limit it.
|
|
VorbisDecoder stb_vorbis_open_file (FILE* f, int close_handle_on_close, int* error, stb_vorbis_alloc* alloc_buffer);
|
|
|
|
// create an ogg vorbis decoder from an open FILE*, looking for a stream at
|
|
// the _current_ seek point (ftell); the stream will be of length 'len' bytes.
|
|
// on failure, returns null and sets *error. note that stb_vorbis must "own"
|
|
// this stream; if you seek it in between calls to stb_vorbis, it will become
|
|
// confused.
|
|
VorbisDecoder stb_vorbis_open_file_section (FILE* f, int close_handle_on_close, int* error, stb_vorbis_alloc* alloc_buffer, uint len);
|
|
|
|
// these functions seek in the Vorbis file to (approximately) 'sample_number'.
|
|
// after calling seek_frame(), the next call to get_frame_*() will include
|
|
// the specified sample. after calling stb_vorbis_seek(), the next call to
|
|
// stb_vorbis_get_samples_* will start with the specified sample. If you
|
|
// do not need to seek to EXACTLY the target sample when using get_samples_*,
|
|
// you can also use seek_frame().
|
|
int stb_vorbis_seek_frame (VorbisDecoder f, uint sample_number);
|
|
int stb_vorbis_seek (VorbisDecoder f, uint sample_number);
|
|
|
|
// this function is equivalent to stb_vorbis_seek(f, 0)
|
|
int stb_vorbis_seek_start (VorbisDecoder f);
|
|
|
|
// these functions return the total length of the vorbis stream
|
|
uint stb_vorbis_stream_length_in_samples (VorbisDecoder f);
|
|
float stb_vorbis_stream_length_in_seconds (VorbisDecoder f);
|
|
|
|
// decode the next frame and return the number of samples. the number of
|
|
// channels returned are stored in *channels (which can be null--it is always
|
|
// the same as the number of channels reported by get_info). *output will
|
|
// contain an array of float* buffers, one per channel. These outputs will
|
|
// be overwritten on the next call to stb_vorbis_get_frame_*.
|
|
//
|
|
// You generally should not intermix calls to stb_vorbis_get_frame_*()
|
|
// and stb_vorbis_get_samples_*(), since the latter calls the former.
|
|
int stb_vorbis_get_frame_float (VorbisDecoder f, int* channels, float*** output);
|
|
|
|
// decode the next frame and return the number of *samples* per channel.
|
|
// Note that for interleaved data, you pass in the number of shorts (the
|
|
// size of your array), but the return value is the number of samples per
|
|
// channel, not the total number of samples.
|
|
//
|
|
// The data is coerced to the number of channels you request according to the
|
|
// channel coercion rules (see below). You must pass in the size of your
|
|
// buffer(s) so that stb_vorbis will not overwrite the end of the buffer.
|
|
// The maximum buffer size needed can be gotten from get_info(); however,
|
|
// the Vorbis I specification implies an absolute maximum of 4096 samples
|
|
// per channel.
|
|
int stb_vorbis_get_frame_short_interleaved (VorbisDecoder f, int num_c, short* buffer, int num_shorts);
|
|
int stb_vorbis_get_frame_short (VorbisDecoder f, int num_c, short** buffer, int num_samples);
|
|
|
|
// Channel coercion rules:
|
|
// Let M be the number of channels requested, and N the number of channels present,
|
|
// and Cn be the nth channel; let stereo L be the sum of all L and center channels,
|
|
// and stereo R be the sum of all R and center channels (channel assignment from the
|
|
// vorbis spec).
|
|
// M N output
|
|
// 1 k sum(Ck) for all k
|
|
// 2 * stereo L, stereo R
|
|
// k l k > l, the first l channels, then 0s
|
|
// k l k <= l, the first k channels
|
|
// Note that this is not _good_ surround etc. mixing at all! It's just so
|
|
// you get something useful.
|
|
|
|
// gets num_samples samples, not necessarily on a frame boundary--this requires
|
|
// buffering so you have to supply the buffers. DOES NOT APPLY THE COERCION RULES.
|
|
// Returns the number of samples stored per channel; it may be less than requested
|
|
// at the end of the file. If there are no more samples in the file, returns 0.
|
|
int stb_vorbis_get_samples_float_interleaved (VorbisDecoder f, int channels, float* buffer, int num_floats);
|
|
int stb_vorbis_get_samples_float (VorbisDecoder f, int channels, float** buffer, int num_samples);
|
|
|
|
// gets num_samples samples, not necessarily on a frame boundary--this requires
|
|
// buffering so you have to supply the buffers. Applies the coercion rules above
|
|
// to produce 'channels' channels. Returns the number of samples stored per channel;
|
|
// it may be less than requested at the end of the file. If there are no more
|
|
// samples in the file, returns 0.
|
|
int stb_vorbis_get_samples_short_interleaved (VorbisDecoder f, int channels, short* buffer, int num_shorts);
|
|
int stb_vorbis_get_samples_short (VorbisDecoder f, int channels, short** buffer, int num_samples);
|
|
*/
|
|
|
|
//////// ERROR CODES
|
|
|
|
public enum STBVorbisError {
|
|
no_error,
|
|
|
|
need_more_data = 1, // not a real error
|
|
|
|
invalid_api_mixing, // can't mix API modes
|
|
outofmem, // not enough memory
|
|
feature_not_supported, // uses floor 0
|
|
too_many_channels, // STB_VORBIS_MAX_CHANNELS is too small
|
|
file_open_failure, // fopen() failed
|
|
seek_without_length, // can't seek in unknown-length file
|
|
|
|
unexpected_eof = 10, // file is truncated?
|
|
seek_invalid, // seek past EOF
|
|
|
|
// decoding errors (corrupt/invalid stream) -- you probably
|
|
// don't care about the exact details of these
|
|
|
|
// vorbis errors:
|
|
invalid_setup = 20,
|
|
invalid_stream,
|
|
|
|
// ogg errors:
|
|
missing_capture_pattern = 30,
|
|
invalid_stream_structure_version,
|
|
continued_packet_flag_invalid,
|
|
incorrect_stream_serial_number,
|
|
invalid_first_page,
|
|
bad_packet_type,
|
|
cant_find_last_page,
|
|
seek_failed,
|
|
}
|
|
//
|
|
// HEADER ENDS HERE
|
|
//
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// global configuration settings (e.g. set these in the project/makefile),
|
|
// or just set them in this file at the top (although ideally the first few
|
|
// should be visible when the header file is compiled too, although it's not
|
|
// crucial)
|
|
|
|
// STB_VORBIS_NO_INTEGER_CONVERSION
|
|
// does not compile the code for converting audio sample data from
|
|
// float to integer (implied by STB_VORBIS_NO_PULLDATA_API)
|
|
//version = STB_VORBIS_NO_INTEGER_CONVERSION;
|
|
|
|
// STB_VORBIS_NO_FAST_SCALED_FLOAT
|
|
// does not use a fast float-to-int trick to accelerate float-to-int on
|
|
// most platforms which requires endianness be defined correctly.
|
|
//version = STB_VORBIS_NO_FAST_SCALED_FLOAT;
|
|
|
|
// STB_VORBIS_MAX_CHANNELS [number]
|
|
// globally define this to the maximum number of channels you need.
|
|
// The spec does not put a restriction on channels except that
|
|
// the count is stored in a byte, so 255 is the hard limit.
|
|
// Reducing this saves about 16 bytes per value, so using 16 saves
|
|
// (255-16)*16 or around 4KB. Plus anything other memory usage
|
|
// I forgot to account for. Can probably go as low as 8 (7.1 audio),
|
|
// 6 (5.1 audio), or 2 (stereo only).
|
|
enum STB_VORBIS_MAX_CHANNELS = 16; // enough for anyone?
|
|
|
|
// STB_VORBIS_PUSHDATA_CRC_COUNT [number]
|
|
// after a flush_pushdata(), stb_vorbis begins scanning for the
|
|
// next valid page, without backtracking. when it finds something
|
|
// that looks like a page, it streams through it and verifies its
|
|
// CRC32. Should that validation fail, it keeps scanning. But it's
|
|
// possible that _while_ streaming through to check the CRC32 of
|
|
// one candidate page, it sees another candidate page. This #define
|
|
// determines how many "overlapping" candidate pages it can search
|
|
// at once. Note that "real" pages are typically ~4KB to ~8KB, whereas
|
|
// garbage pages could be as big as 64KB, but probably average ~16KB.
|
|
// So don't hose ourselves by scanning an apparent 64KB page and
|
|
// missing a ton of real ones in the interim; so minimum of 2
|
|
enum STB_VORBIS_PUSHDATA_CRC_COUNT = 4;
|
|
|
|
// STB_VORBIS_FAST_HUFFMAN_LENGTH [number]
|
|
// sets the log size of the huffman-acceleration table. Maximum
|
|
// supported value is 24. with larger numbers, more decodings are O(1),
|
|
// but the table size is larger so worse cache missing, so you'll have
|
|
// to probe (and try multiple ogg vorbis files) to find the sweet spot.
|
|
enum STB_VORBIS_FAST_HUFFMAN_LENGTH = 10;
|
|
|
|
// STB_VORBIS_FAST_BINARY_LENGTH [number]
|
|
// sets the log size of the binary-search acceleration table. this
|
|
// is used in similar fashion to the fast-huffman size to set initial
|
|
// parameters for the binary search
|
|
|
|
// STB_VORBIS_FAST_HUFFMAN_INT
|
|
// The fast huffman tables are much more efficient if they can be
|
|
// stored as 16-bit results instead of 32-bit results. This restricts
|
|
// the codebooks to having only 65535 possible outcomes, though.
|
|
// (At least, accelerated by the huffman table.)
|
|
//version = STB_VORBIS_FAST_HUFFMAN_INT;
|
|
version(STB_VORBIS_FAST_HUFFMAN_INT) {} else version = STB_VORBIS_FAST_HUFFMAN_SHORT;
|
|
|
|
// STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH
|
|
// If the 'fast huffman' search doesn't succeed, then stb_vorbis falls
|
|
// back on binary searching for the correct one. This requires storing
|
|
// extra tables with the huffman codes in sorted order. Defining this
|
|
// symbol trades off space for speed by forcing a linear search in the
|
|
// non-fast case, except for "sparse" codebooks.
|
|
//version = STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH;
|
|
|
|
// STB_VORBIS_DIVIDES_IN_RESIDUE
|
|
// stb_vorbis precomputes the result of the scalar residue decoding
|
|
// that would otherwise require a divide per chunk. you can trade off
|
|
// space for time by defining this symbol.
|
|
//version = STB_VORBIS_DIVIDES_IN_RESIDUE;
|
|
|
|
// STB_VORBIS_DIVIDES_IN_CODEBOOK
|
|
// vorbis VQ codebooks can be encoded two ways: with every case explicitly
|
|
// stored, or with all elements being chosen from a small range of values,
|
|
// and all values possible in all elements. By default, stb_vorbis expands
|
|
// this latter kind out to look like the former kind for ease of decoding,
|
|
// because otherwise an integer divide-per-vector-element is required to
|
|
// unpack the index. If you define STB_VORBIS_DIVIDES_IN_CODEBOOK, you can
|
|
// trade off storage for speed.
|
|
//version = STB_VORBIS_DIVIDES_IN_CODEBOOK;
|
|
|
|
version(STB_VORBIS_CODEBOOK_SHORTS) static assert(0, "STB_VORBIS_CODEBOOK_SHORTS is no longer supported as it produced incorrect results for some input formats");
|
|
|
|
// STB_VORBIS_DIVIDE_TABLE
|
|
// this replaces small integer divides in the floor decode loop with
|
|
// table lookups. made less than 1% difference, so disabled by default.
|
|
//version = STB_VORBIS_DIVIDE_TABLE;
|
|
|
|
// STB_VORBIS_NO_DEFER_FLOOR
|
|
// Normally we only decode the floor without synthesizing the actual
|
|
// full curve. We can instead synthesize the curve immediately. This
|
|
// requires more memory and is very likely slower, so I don't think
|
|
// you'd ever want to do it except for debugging.
|
|
//version = STB_VORBIS_NO_DEFER_FLOOR;
|
|
//version(STB_VORBIS_CODEBOOK_FLOATS) static assert(0);
|
|
|
|
|
|
// ////////////////////////////////////////////////////////////////////////// //
|
|
private:
|
|
static assert(STB_VORBIS_MAX_CHANNELS <= 256, "Value of STB_VORBIS_MAX_CHANNELS outside of allowed range");
|
|
static assert(STB_VORBIS_FAST_HUFFMAN_LENGTH <= 24, "Value of STB_VORBIS_FAST_HUFFMAN_LENGTH outside of allowed range");
|
|
|
|
enum MAX_BLOCKSIZE_LOG = 13; // from specification
|
|
enum MAX_BLOCKSIZE = (1 << MAX_BLOCKSIZE_LOG);
|
|
|
|
|
|
alias codetype = float;
|
|
|
|
// @NOTE
|
|
//
|
|
// Some arrays below are tagged "//varies", which means it's actually
|
|
// a variable-sized piece of data, but rather than malloc I assume it's
|
|
// small enough it's better to just allocate it all together with the
|
|
// main thing
|
|
//
|
|
// Most of the variables are specified with the smallest size I could pack
|
|
// them into. It might give better performance to make them all full-sized
|
|
// integers. It should be safe to freely rearrange the structures or change
|
|
// the sizes larger--nothing relies on silently truncating etc., nor the
|
|
// order of variables.
|
|
|
|
enum FAST_HUFFMAN_TABLE_SIZE = (1<<STB_VORBIS_FAST_HUFFMAN_LENGTH);
|
|
enum FAST_HUFFMAN_TABLE_MASK = (FAST_HUFFMAN_TABLE_SIZE-1);
|
|
|
|
struct Codebook {
|
|
int dimensions, entries;
|
|
ubyte* codeword_lengths;
|
|
float minimum_value;
|
|
float delta_value;
|
|
ubyte value_bits;
|
|
ubyte lookup_type;
|
|
ubyte sequence_p;
|
|
ubyte sparse;
|
|
uint lookup_values;
|
|
codetype* multiplicands;
|
|
uint *codewords;
|
|
version(STB_VORBIS_FAST_HUFFMAN_SHORT) {
|
|
short[FAST_HUFFMAN_TABLE_SIZE] fast_huffman;
|
|
} else {
|
|
int[FAST_HUFFMAN_TABLE_SIZE] fast_huffman;
|
|
}
|
|
uint* sorted_codewords;
|
|
int* sorted_values;
|
|
int sorted_entries;
|
|
}
|
|
|
|
struct Floor0 {
|
|
ubyte order;
|
|
ushort rate;
|
|
ushort bark_map_size;
|
|
ubyte amplitude_bits;
|
|
ubyte amplitude_offset;
|
|
ubyte number_of_books;
|
|
ubyte[16] book_list; // varies
|
|
}
|
|
|
|
struct Floor1 {
|
|
ubyte partitions;
|
|
ubyte[32] partition_class_list; // varies
|
|
ubyte[16] class_dimensions; // varies
|
|
ubyte[16] class_subclasses; // varies
|
|
ubyte[16] class_masterbooks; // varies
|
|
short[8][16] subclass_books; // varies
|
|
ushort[31*8+2] Xlist; // varies
|
|
ubyte[31*8+2] sorted_order;
|
|
ubyte[2][31*8+2] neighbors;
|
|
ubyte floor1_multiplier;
|
|
ubyte rangebits;
|
|
int values;
|
|
}
|
|
|
|
union Floor {
|
|
Floor0 floor0;
|
|
Floor1 floor1;
|
|
}
|
|
|
|
struct Residue {
|
|
uint begin, end;
|
|
uint part_size;
|
|
ubyte classifications;
|
|
ubyte classbook;
|
|
ubyte** classdata;
|
|
//int16 (*residue_books)[8];
|
|
short[8]* residue_books;
|
|
}
|
|
|
|
struct MappingChannel {
|
|
ubyte magnitude;
|
|
ubyte angle;
|
|
ubyte mux;
|
|
}
|
|
|
|
struct Mapping {
|
|
ushort coupling_steps;
|
|
MappingChannel* chan;
|
|
ubyte submaps;
|
|
ubyte[15] submap_floor; // varies
|
|
ubyte[15] submap_residue; // varies
|
|
}
|
|
|
|
struct Mode {
|
|
ubyte blockflag;
|
|
ubyte mapping;
|
|
ushort windowtype;
|
|
ushort transformtype;
|
|
}
|
|
|
|
struct CRCscan {
|
|
uint goal_crc; // expected crc if match
|
|
int bytes_left; // bytes left in packet
|
|
uint crc_so_far; // running crc
|
|
int bytes_done; // bytes processed in _current_ chunk
|
|
uint sample_loc; // granule pos encoded in page
|
|
}
|
|
|
|
struct ProbedPage {
|
|
uint page_start, page_end;
|
|
uint last_decoded_sample;
|
|
}
|
|
|
|
private int error (VorbisDecoder f, STBVorbisError e) {
|
|
f.error = e;
|
|
if (!f.eof && e != STBVorbisError.need_more_data) {
|
|
// import std.stdio; debug writeln(e);
|
|
f.error = e; // breakpoint for debugging
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// these functions are used for allocating temporary memory
|
|
// while decoding. if you can afford the stack space, use
|
|
// alloca(); otherwise, provide a temp buffer and it will
|
|
// allocate out of those.
|
|
uint temp_alloc_save (VorbisDecoder f) nothrow @nogc { static if (__VERSION__ > 2067) pragma(inline, true); return f.alloc.tempSave(f); }
|
|
void temp_alloc_restore (VorbisDecoder f, uint p) nothrow @nogc { static if (__VERSION__ > 2067) pragma(inline, true); f.alloc.tempRestore(p, f); }
|
|
void temp_free (VorbisDecoder f, void* p) nothrow @nogc {}
|
|
/*
|
|
T* temp_alloc(T) (VorbisDecoder f, uint count) nothrow @nogc {
|
|
auto res = f.alloc.alloc(count*T.sizeof, f);
|
|
return cast(T*)res;
|
|
}
|
|
*/
|
|
|
|
/+
|
|
enum array_size_required(string count, string size) = q{((${count})*((void*).sizeof+(${size})))}.cmacroFixVars!("count", "size")(count, size);
|
|
|
|
// has to be a mixin, due to `alloca`
|
|
template temp_alloc(string size) {
|
|
enum temp_alloc = q{(f.alloc.alloc_buffer ? setup_temp_malloc(f, (${size})) : alloca(${size}))}.cmacroFixVars!("size")(size);
|
|
}
|
|
|
|
// has to be a mixin, due to `alloca`
|
|
template temp_block_array(string count, string size) {
|
|
enum temp_block_array = q{(make_block_array(${tam}, (${count}), (${size})))}
|
|
.cmacroFixVars!("count", "size", "tam")(count, size, temp_alloc!(array_size_required!(count, size)));
|
|
}
|
|
+/
|
|
enum array_size_required(string count, string size) = q{((${count})*((void*).sizeof+(${size})))}.cmacroFixVars!("count", "size")(count, size);
|
|
|
|
template temp_alloc(string size) {
|
|
enum temp_alloc = q{alloca(${size})}.cmacroFixVars!("size")(size);
|
|
}
|
|
|
|
template temp_block_array(string count, string size) {
|
|
enum temp_block_array = q{(make_block_array(${tam}, (${count}), (${size})))}
|
|
.cmacroFixVars!("count", "size", "tam")(count, size, temp_alloc!(array_size_required!(count, size)));
|
|
}
|
|
|
|
/*
|
|
T** temp_block_array(T) (VorbisDecoder f, uint count, uint size) {
|
|
size *= T.sizeof;
|
|
auto mem = f.alloc.alloc(count*(void*).sizeof+size, f);
|
|
if (mem !is null) make_block_array(mem, count, size);
|
|
return cast(T**)mem;
|
|
}
|
|
*/
|
|
|
|
// given a sufficiently large block of memory, make an array of pointers to subblocks of it
|
|
private void* make_block_array (void* mem, int count, int size) {
|
|
void** p = cast(void**)mem;
|
|
char* q = cast(char*)(p+count);
|
|
foreach (immutable i; 0..count) {
|
|
p[i] = q;
|
|
q += size;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
private T* setup_malloc(T) (VorbisDecoder f, uint sz) {
|
|
sz *= T.sizeof;
|
|
/*
|
|
f.setup_memory_required += sz;
|
|
if (f.alloc.alloc_buffer) {
|
|
void* p = cast(char*)f.alloc.alloc_buffer+f.setup_offset;
|
|
if (f.setup_offset+sz > f.temp_offset) return null;
|
|
f.setup_offset += sz;
|
|
return cast(T*)p;
|
|
}
|
|
*/
|
|
auto res = f.alloc.alloc(sz+8, f); // +8 to compensate dmd codegen bug: it can read dword(qword?) when told to read only byte
|
|
if (res !is null) {
|
|
import core.stdc.string : memset;
|
|
memset(res, 0, sz+8);
|
|
}
|
|
return cast(T*)res;
|
|
}
|
|
|
|
private void setup_free (VorbisDecoder f, void* p) {
|
|
//if (f.alloc.alloc_buffer) return; // do nothing; setup mem is a stack
|
|
if (p !is null) f.alloc.free(p, f);
|
|
}
|
|
|
|
private void* setup_temp_malloc (VorbisDecoder f, uint sz) {
|
|
auto res = f.alloc.allocTemp(sz+8, f); // +8 to compensate dmd codegen bug: it can read dword(qword?) when told to read only byte
|
|
if (res !is null) {
|
|
import core.stdc.string : memset;
|
|
memset(res, 0, sz+8);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
private void setup_temp_free (VorbisDecoder f, void* p, uint sz) {
|
|
if (p !is null) f.alloc.freeTemp(p, (sz ? sz : 1)+8, f); // +8 to compensate dmd codegen bug: it can read dword(qword?) when told to read only byte
|
|
}
|
|
|
|
immutable uint[256] crc_table;
|
|
shared static this () {
|
|
enum CRC32_POLY = 0x04c11db7; // from spec
|
|
// init crc32 table
|
|
foreach (uint i; 0..256) {
|
|
uint s = i<<24;
|
|
foreach (immutable _; 0..8) s = (s<<1)^(s >= (1U<<31) ? CRC32_POLY : 0);
|
|
crc_table[i] = s;
|
|
}
|
|
}
|
|
|
|
uint crc32_update (uint crc, ubyte b) {
|
|
static if (__VERSION__ > 2067) pragma(inline, true);
|
|
return (crc<<8)^crc_table[b^(crc>>24)];
|
|
}
|
|
|
|
// used in setup, and for huffman that doesn't go fast path
|
|
private uint bit_reverse (uint n) {
|
|
static if (__VERSION__ > 2067) pragma(inline, true);
|
|
n = ((n&0xAAAAAAAA)>>1)|((n&0x55555555)<<1);
|
|
n = ((n&0xCCCCCCCC)>>2)|((n&0x33333333)<<2);
|
|
n = ((n&0xF0F0F0F0)>>4)|((n&0x0F0F0F0F)<<4);
|
|
n = ((n&0xFF00FF00)>>8)|((n&0x00FF00FF)<<8);
|
|
return (n>>16)|(n<<16);
|
|
}
|
|
|
|
private float square (float x) {
|
|
static if (__VERSION__ > 2067) pragma(inline, true);
|
|
return x*x;
|
|
}
|
|
|
|
// this is a weird definition of log2() for which log2(1) = 1, log2(2) = 2, log2(4) = 3
|
|
// as required by the specification. fast(?) implementation from stb.h
|
|
// @OPTIMIZE: called multiple times per-packet with "constants"; move to setup
|
|
immutable byte[16] log2_4 = [0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4];
|
|
private int ilog (int n) {
|
|
//static if (__VERSION__ > 2067) pragma(inline, true);
|
|
if (n < 0) return 0; // signed n returns 0
|
|
// 2 compares if n < 16, 3 compares otherwise (4 if signed or n > 1<<29)
|
|
if (n < (1<<14)) {
|
|
if (n < (1<<4)) return 0+log2_4[n];
|
|
if (n < (1<<9)) return 5+log2_4[n>>5];
|
|
return 10+log2_4[n>>10];
|
|
} else if (n < (1<<24)) {
|
|
if (n < (1<<19)) return 15+log2_4[n>>15];
|
|
return 20+log2_4[n>>20];
|
|
} else {
|
|
if (n < (1<<29)) return 25+log2_4[n>>25];
|
|
return 30+log2_4[n>>30];
|
|
}
|
|
}
|
|
|
|
|
|
// code length assigned to a value with no huffman encoding
|
|
enum NO_CODE = 255;
|
|
|
|
/////////////////////// LEAF SETUP FUNCTIONS //////////////////////////
|
|
//
|
|
// these functions are only called at setup, and only a few times per file
|
|
private float float32_unpack (uint x) {
|
|
import core.math : ldexp;
|
|
//static if (__VERSION__ > 2067) pragma(inline, true);
|
|
// from the specification
|
|
uint mantissa = x&0x1fffff;
|
|
uint sign = x&0x80000000;
|
|
uint exp = (x&0x7fe00000)>>21;
|
|
double res = (sign ? -cast(double)mantissa : cast(double)mantissa);
|
|
return cast(float)ldexp(cast(float)res, cast(int)exp-788);
|
|
}
|
|
|
|
// zlib & jpeg huffman tables assume that the output symbols
|
|
// can either be arbitrarily arranged, or have monotonically
|
|
// increasing frequencies--they rely on the lengths being sorted;
|
|
// this makes for a very simple generation algorithm.
|
|
// vorbis allows a huffman table with non-sorted lengths. This
|
|
// requires a more sophisticated construction, since symbols in
|
|
// order do not map to huffman codes "in order".
|
|
private void add_entry (Codebook* c, uint huff_code, int symbol, int count, ubyte len, uint* values) {
|
|
if (!c.sparse) {
|
|
c.codewords[symbol] = huff_code;
|
|
} else {
|
|
c.codewords[count] = huff_code;
|
|
c.codeword_lengths[count] = len;
|
|
values[count] = symbol;
|
|
}
|
|
}
|
|
|
|
private int compute_codewords (Codebook* c, ubyte* len, int n, uint* values) {
|
|
import core.stdc.string : memset;
|
|
|
|
int i, k, m = 0;
|
|
uint[32] available;
|
|
|
|
memset(available.ptr, 0, available.sizeof);
|
|
// find the first entry
|
|
for (k = 0; k < n; ++k) if (len[k] < NO_CODE) break;
|
|
if (k == n) { assert(c.sorted_entries == 0); return true; }
|
|
// add to the list
|
|
add_entry(c, 0, k, m++, len[k], values);
|
|
// add all available leaves
|
|
for (i = 1; i <= len[k]; ++i) available[i] = 1U<<(32-i);
|
|
// note that the above code treats the first case specially,
|
|
// but it's really the same as the following code, so they
|
|
// could probably be combined (except the initial code is 0,
|
|
// and I use 0 in available[] to mean 'empty')
|
|
for (i = k+1; i < n; ++i) {
|
|
uint res;
|
|
int z = len[i];
|
|
if (z == NO_CODE) continue;
|
|
// find lowest available leaf (should always be earliest,
|
|
// which is what the specification calls for)
|
|
// note that this property, and the fact we can never have
|
|
// more than one free leaf at a given level, isn't totally
|
|
// trivial to prove, but it seems true and the assert never
|
|
// fires, so!
|
|
while (z > 0 && !available[z]) --z;
|
|
if (z == 0) return false;
|
|
res = available[z];
|
|
assert(z >= 0 && z < 32);
|
|
available[z] = 0;
|
|
ubyte xxx = len[i];
|
|
add_entry(c,
|
|
bit_reverse(res),
|
|
i,
|
|
m++,
|
|
xxx, // dmd bug: it reads 4 bytes without temp
|
|
values);
|
|
// propogate availability up the tree
|
|
if (z != len[i]) {
|
|
assert(len[i] >= 0 && len[i] < 32);
|
|
for (int y = len[i]; y > z; --y) {
|
|
assert(available[y] == 0);
|
|
available[y] = res+(1<<(32-y));
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// accelerated huffman table allows fast O(1) match of all symbols
|
|
// of length <= STB_VORBIS_FAST_HUFFMAN_LENGTH
|
|
private void compute_accelerated_huffman (Codebook* c) {
|
|
//for (i=0; i < FAST_HUFFMAN_TABLE_SIZE; ++i) c.fast_huffman.ptr[i] = -1;
|
|
c.fast_huffman.ptr[0..FAST_HUFFMAN_TABLE_SIZE] = -1;
|
|
auto len = (c.sparse ? c.sorted_entries : c.entries);
|
|
version(STB_VORBIS_FAST_HUFFMAN_SHORT) {
|
|
if (len > 32767) len = 32767; // largest possible value we can encode!
|
|
}
|
|
foreach (uint i; 0..len) {
|
|
if (c.codeword_lengths[i] <= STB_VORBIS_FAST_HUFFMAN_LENGTH) {
|
|
uint z = (c.sparse ? bit_reverse(c.sorted_codewords[i]) : c.codewords[i]);
|
|
// set table entries for all bit combinations in the higher bits
|
|
while (z < FAST_HUFFMAN_TABLE_SIZE) {
|
|
c.fast_huffman.ptr[z] = cast(typeof(c.fast_huffman[0]))i; //k8
|
|
z += 1<<c.codeword_lengths[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
extern(C) int uint32_compare (const scope void* p, const scope void* q) {
|
|
uint x = *cast(uint*)p;
|
|
uint y = *cast(uint*)q;
|
|
return (x < y ? -1 : x > y);
|
|
}
|
|
|
|
private int include_in_sort (Codebook* c, uint len) {
|
|
if (c.sparse) { assert(len != NO_CODE); return true; }
|
|
if (len == NO_CODE) return false;
|
|
if (len > STB_VORBIS_FAST_HUFFMAN_LENGTH) return true;
|
|
return false;
|
|
}
|
|
|
|
// if the fast table above doesn't work, we want to binary
|
|
// search them... need to reverse the bits
|
|
private void compute_sorted_huffman (Codebook* c, ubyte* lengths, uint* values) {
|
|
// build a list of all the entries
|
|
// OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN.
|
|
// this is kind of a frivolous optimization--I don't see any performance improvement,
|
|
// but it's like 4 extra lines of code, so.
|
|
if (!c.sparse) {
|
|
int k = 0;
|
|
foreach (uint i; 0..c.entries) if (include_in_sort(c, lengths[i])) c.sorted_codewords[k++] = bit_reverse(c.codewords[i]);
|
|
assert(k == c.sorted_entries);
|
|
} else {
|
|
foreach (uint i; 0..c.sorted_entries) c.sorted_codewords[i] = bit_reverse(c.codewords[i]);
|
|
}
|
|
|
|
qsort(c.sorted_codewords, c.sorted_entries, (c.sorted_codewords[0]).sizeof, &uint32_compare);
|
|
c.sorted_codewords[c.sorted_entries] = 0xffffffff;
|
|
|
|
auto len = (c.sparse ? c.sorted_entries : c.entries);
|
|
// now we need to indicate how they correspond; we could either
|
|
// #1: sort a different data structure that says who they correspond to
|
|
// #2: for each sorted entry, search the original list to find who corresponds
|
|
// #3: for each original entry, find the sorted entry
|
|
// #1 requires extra storage, #2 is slow, #3 can use binary search!
|
|
foreach (uint i; 0..len) {
|
|
auto huff_len = (c.sparse ? lengths[values[i]] : lengths[i]);
|
|
if (include_in_sort(c, huff_len)) {
|
|
uint code = bit_reverse(c.codewords[i]);
|
|
int x = 0, n = c.sorted_entries;
|
|
while (n > 1) {
|
|
// invariant: sc[x] <= code < sc[x+n]
|
|
int m = x+(n>>1);
|
|
if (c.sorted_codewords[m] <= code) {
|
|
x = m;
|
|
n -= (n>>1);
|
|
} else {
|
|
n >>= 1;
|
|
}
|
|
}
|
|
assert(c.sorted_codewords[x] == code);
|
|
if (c.sparse) {
|
|
c.sorted_values[x] = values[i];
|
|
c.codeword_lengths[x] = huff_len;
|
|
} else {
|
|
c.sorted_values[x] = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// only run while parsing the header (3 times)
|
|
private int vorbis_validate (const(void)* data) {
|
|
static if (__VERSION__ > 2067) pragma(inline, true);
|
|
immutable char[6] vorbis = "vorbis";
|
|
return ((cast(char*)data)[0..6] == vorbis[]);
|
|
}
|
|
|
|
// called from setup only, once per code book
|
|
// (formula implied by specification)
|
|
private int lookup1_values (int entries, int dim) {
|
|
import core.stdc.math : lrintf;
|
|
import std.math : floor, exp, pow, log;
|
|
int r = cast(int)lrintf(floor(exp(cast(float)log(cast(float)entries)/dim)));
|
|
if (lrintf(floor(pow(cast(float)r+1, dim))) <= entries) ++r; // (int) cast for MinGW warning; floor() to avoid _ftol() when non-CRT
|
|
assert(pow(cast(float)r+1, dim) > entries);
|
|
assert(lrintf(floor(pow(cast(float)r, dim))) <= entries); // (int), floor() as above
|
|
return r;
|
|
}
|
|
|
|
// called twice per file
|
|
private void compute_twiddle_factors (int n, float* A, float* B, float* C) {
|
|
import std.math : cos, sin, PI;
|
|
int n4 = n>>2, n8 = n>>3;
|
|
int k, k2;
|
|
for (k = k2 = 0; k < n4; ++k, k2 += 2) {
|
|
A[k2 ] = cast(float) cos(4*k*PI/n);
|
|
A[k2+1] = cast(float)-sin(4*k*PI/n);
|
|
B[k2 ] = cast(float) cos((k2+1)*PI/n/2)*0.5f;
|
|
B[k2+1] = cast(float) sin((k2+1)*PI/n/2)*0.5f;
|
|
}
|
|
for (k = k2 = 0; k < n8; ++k, k2 += 2) {
|
|
C[k2 ] = cast(float) cos(2*(k2+1)*PI/n);
|
|
C[k2+1] = cast(float)-sin(2*(k2+1)*PI/n);
|
|
}
|
|
}
|
|
|
|
private void compute_window (int n, float* window) {
|
|
import std.math : sin, PI;
|
|
int n2 = n>>1;
|
|
foreach (int i; 0..n2) *window++ = cast(float)sin(0.5*PI*square(cast(float)sin((i-0+0.5)/n2*0.5*PI)));
|
|
}
|
|
|
|
private void compute_bitreverse (int n, ushort* rev) {
|
|
int ld = ilog(n)-1; // ilog is off-by-one from normal definitions
|
|
int n8 = n>>3;
|
|
foreach (int i; 0..n8) *rev++ = cast(ushort)((bit_reverse(i)>>(32-ld+3))<<2); //k8
|
|
}
|
|
|
|
private int init_blocksize (VorbisDecoder f, int b, int n) {
|
|
int n2 = n>>1, n4 = n>>2, n8 = n>>3;
|
|
f.A[b] = setup_malloc!float(f, n2);
|
|
f.B[b] = setup_malloc!float(f, n2);
|
|
f.C[b] = setup_malloc!float(f, n4);
|
|
if (f.A[b] is null || f.B[b] is null || f.C[b] is null) return error(f, STBVorbisError.outofmem);
|
|
compute_twiddle_factors(n, f.A[b], f.B[b], f.C[b]);
|
|
f.window[b] = setup_malloc!float(f, n2);
|
|
if (f.window[b] is null) return error(f, STBVorbisError.outofmem);
|
|
compute_window(n, f.window[b]);
|
|
f.bit_reverse[b] = setup_malloc!ushort(f, n8);
|
|
if (f.bit_reverse[b] is null) return error(f, STBVorbisError.outofmem);
|
|
compute_bitreverse(n, f.bit_reverse[b]);
|
|
return true;
|
|
}
|
|
|
|
private void neighbors (ushort* x, int n, ushort* plow, ushort* phigh) {
|
|
int low = -1;
|
|
int high = 65536;
|
|
assert(n >= 0 && n <= ushort.max);
|
|
foreach (ushort i; 0..cast(ushort)n) {
|
|
if (x[i] > low && x[i] < x[n]) { *plow = i; low = x[i]; }
|
|
if (x[i] < high && x[i] > x[n]) { *phigh = i; high = x[i]; }
|
|
}
|
|
}
|
|
|
|
// this has been repurposed so y is now the original index instead of y
|
|
struct Point {
|
|
ushort x, y;
|
|
}
|
|
|
|
extern(C) int point_compare (const scope void *p, const scope void *q) {
|
|
auto a = cast(const(Point)*)p;
|
|
auto b = cast(const(Point)*)q;
|
|
return (a.x < b.x ? -1 : a.x > b.x);
|
|
}
|
|
/////////////////////// END LEAF SETUP FUNCTIONS //////////////////////////
|
|
|
|
// ///////////////////////////////////////////////////////////////////// //
|
|
private ubyte get8 (VorbisDecoder f) {
|
|
ubyte b = void;
|
|
if (!f.eof) {
|
|
if (f.rawRead((&b)[0..1]) != 1) { f.eof = true; b = 0; }
|
|
}
|
|
return b;
|
|
}
|
|
|
|
private uint get32 (VorbisDecoder f) {
|
|
uint x = 0;
|
|
if (!f.eof) {
|
|
version(LittleEndian) {
|
|
if (f.rawRead((&x)[0..1]) != x.sizeof) { f.eof = true; x = 0; }
|
|
} else {
|
|
x = get8(f);
|
|
x |= cast(uint)get8(f)<<8;
|
|
x |= cast(uint)get8(f)<<16;
|
|
x |= cast(uint)get8(f)<<24;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
private bool getn (VorbisDecoder f, void* data, int n) {
|
|
if (f.eof || n < 0) return false;
|
|
if (n == 0) return true;
|
|
if (f.rawRead(data[0..n]) != n) { f.eof = true; return false; }
|
|
return true;
|
|
}
|
|
|
|
private void skip (VorbisDecoder f, int n) {
|
|
if (f.eof || n == 0) return;
|
|
f.rawSkip(n);
|
|
}
|
|
|
|
private void set_file_offset (VorbisDecoder f, uint loc) {
|
|
/+if (f.push_mode) return;+/
|
|
f.eof = false;
|
|
if (loc >= 0x80000000) { f.eof = true; return; }
|
|
f.rawSeek(loc);
|
|
}
|
|
|
|
|
|
immutable char[4] ogg_page_header = "OggS"; //[ 0x4f, 0x67, 0x67, 0x53 ];
|
|
|
|
private bool capture_pattern (VorbisDecoder f) {
|
|
static if (__VERSION__ > 2067) pragma(inline, true);
|
|
char[4] sign = void;
|
|
if (!getn(f, sign.ptr, 4)) return false;
|
|
return (sign == "OggS");
|
|
}
|
|
|
|
enum PAGEFLAG_continued_packet = 1;
|
|
enum PAGEFLAG_first_page = 2;
|
|
enum PAGEFLAG_last_page = 4;
|
|
|
|
private int start_page_no_capturepattern (VorbisDecoder f) {
|
|
uint loc0, loc1, n;
|
|
// stream structure version
|
|
if (get8(f) != 0) return error(f, STBVorbisError.invalid_stream_structure_version);
|
|
// header flag
|
|
f.page_flag = get8(f);
|
|
// absolute granule position
|
|
loc0 = get32(f);
|
|
loc1 = get32(f);
|
|
// @TODO: validate loc0, loc1 as valid positions?
|
|
// stream serial number -- vorbis doesn't interleave, so discard
|
|
get32(f);
|
|
//if (f.serial != get32(f)) return error(f, STBVorbisError.incorrect_stream_serial_number);
|
|
// page sequence number
|
|
n = get32(f);
|
|
f.last_page = n;
|
|
// CRC32
|
|
get32(f);
|
|
// page_segments
|
|
f.segment_count = get8(f);
|
|
if (!getn(f, f.segments.ptr, f.segment_count)) return error(f, STBVorbisError.unexpected_eof);
|
|
// assume we _don't_ know any the sample position of any segments
|
|
f.end_seg_with_known_loc = -2;
|
|
if (loc0 != ~0U || loc1 != ~0U) {
|
|
int i;
|
|
// determine which packet is the last one that will complete
|
|
for (i = f.segment_count-1; i >= 0; --i) if (f.segments.ptr[i] < 255) break;
|
|
// 'i' is now the index of the _last_ segment of a packet that ends
|
|
if (i >= 0) {
|
|
f.end_seg_with_known_loc = i;
|
|
f.known_loc_for_packet = loc0;
|
|
}
|
|
}
|
|
if (f.first_decode) {
|
|
int len;
|
|
ProbedPage p;
|
|
len = 0;
|
|
foreach (int i; 0..f.segment_count) len += f.segments.ptr[i];
|
|
len += 27+f.segment_count;
|
|
p.page_start = f.first_audio_page_offset;
|
|
p.page_end = p.page_start+len;
|
|
p.last_decoded_sample = loc0;
|
|
f.p_first = p;
|
|
}
|
|
f.next_seg = 0;
|
|
return true;
|
|
}
|
|
|
|
private int start_page (VorbisDecoder f) {
|
|
if (!capture_pattern(f)) return error(f, STBVorbisError.missing_capture_pattern);
|
|
return start_page_no_capturepattern(f);
|
|
}
|
|
|
|
private int start_packet (VorbisDecoder f) {
|
|
while (f.next_seg == -1) {
|
|
if (!start_page(f)) return false;
|
|
if (f.page_flag&PAGEFLAG_continued_packet) return error(f, STBVorbisError.continued_packet_flag_invalid);
|
|
}
|
|
f.last_seg = false;
|
|
f.valid_bits = 0;
|
|
f.packet_bytes = 0;
|
|
f.bytes_in_seg = 0;
|
|
// f.next_seg is now valid
|
|
return true;
|
|
}
|
|
|
|
private int maybe_start_packet (VorbisDecoder f) {
|
|
if (f.next_seg == -1) {
|
|
auto x = get8(f);
|
|
if (f.eof) return false; // EOF at page boundary is not an error!
|
|
// import std.stdio; debug writefln("CAPTURE %x %x", x, f.stpos);
|
|
if (0x4f != x ) return error(f, STBVorbisError.missing_capture_pattern);
|
|
if (0x67 != get8(f)) return error(f, STBVorbisError.missing_capture_pattern);
|
|
if (0x67 != get8(f)) return error(f, STBVorbisError.missing_capture_pattern);
|
|
if (0x53 != get8(f)) return error(f, STBVorbisError.missing_capture_pattern);
|
|
if (!start_page_no_capturepattern(f)) return false;
|
|
if (f.page_flag&PAGEFLAG_continued_packet) {
|
|
// set up enough state that we can read this packet if we want,
|
|
// e.g. during recovery
|
|
f.last_seg = false;
|
|
f.bytes_in_seg = 0;
|
|
return error(f, STBVorbisError.continued_packet_flag_invalid);
|
|
}
|
|
}
|
|
return start_packet(f);
|
|
}
|
|
|
|
private int next_segment (VorbisDecoder f) {
|
|
if (f.last_seg) return 0;
|
|
if (f.next_seg == -1) {
|
|
f.last_seg_which = f.segment_count-1; // in case start_page fails
|
|
if (!start_page(f)) { f.last_seg = 1; return 0; }
|
|
if (!(f.page_flag&PAGEFLAG_continued_packet)) return error(f, STBVorbisError.continued_packet_flag_invalid);
|
|
}
|
|
auto len = f.segments.ptr[f.next_seg++];
|
|
if (len < 255) {
|
|
f.last_seg = true;
|
|
f.last_seg_which = f.next_seg-1;
|
|
}
|
|
if (f.next_seg >= f.segment_count) f.next_seg = -1;
|
|
debug(stb_vorbis) assert(f.bytes_in_seg == 0);
|
|
f.bytes_in_seg = len;
|
|
return len;
|
|
}
|
|
|
|
enum EOP = (-1);
|
|
enum INVALID_BITS = (-1);
|
|
|
|
private int get8_packet_raw (VorbisDecoder f) {
|
|
if (!f.bytes_in_seg) { // CLANG!
|
|
if (f.last_seg) return EOP;
|
|
else if (!next_segment(f)) return EOP;
|
|
}
|
|
debug(stb_vorbis) assert(f.bytes_in_seg > 0);
|
|
--f.bytes_in_seg;
|
|
++f.packet_bytes;
|
|
return get8(f);
|
|
}
|
|
|
|
private int get8_packet (VorbisDecoder f) {
|
|
int x = get8_packet_raw(f);
|
|
f.valid_bits = 0;
|
|
return x;
|
|
}
|
|
|
|
private uint get32_packet (VorbisDecoder f) {
|
|
uint x = get8_packet(f), b;
|
|
if (x == EOP) return EOP;
|
|
if ((b = get8_packet(f)) == EOP) return EOP;
|
|
x += b<<8;
|
|
if ((b = get8_packet(f)) == EOP) return EOP;
|
|
x += b<<16;
|
|
if ((b = get8_packet(f)) == EOP) return EOP;
|
|
x += b<<24;
|
|
return x;
|
|
}
|
|
|
|
private void flush_packet (VorbisDecoder f) {
|
|
while (get8_packet_raw(f) != EOP) {}
|
|
}
|
|
|
|
// @OPTIMIZE: this is the secondary bit decoder, so it's probably not as important
|
|
// as the huffman decoder?
|
|
private uint get_bits_main (VorbisDecoder f, int n) {
|
|
uint z;
|
|
if (f.valid_bits < 0) return 0;
|
|
if (f.valid_bits < n) {
|
|
if (n > 24) {
|
|
// the accumulator technique below would not work correctly in this case
|
|
z = get_bits_main(f, 24);
|
|
z += get_bits_main(f, n-24)<<24;
|
|
return z;
|
|
}
|
|
if (f.valid_bits == 0) f.acc = 0;
|
|
while (f.valid_bits < n) {
|
|
z = get8_packet_raw(f);
|
|
if (z == EOP) {
|
|
f.valid_bits = INVALID_BITS;
|
|
return 0;
|
|
}
|
|
f.acc += z<<f.valid_bits;
|
|
f.valid_bits += 8;
|
|
}
|
|
}
|
|
if (f.valid_bits < 0) return 0;
|
|
z = f.acc&((1<<n)-1);
|
|
f.acc >>= n;
|
|
f.valid_bits -= n;
|
|
return z;
|
|
}
|
|
|
|
// chooses minimal possible integer type
|
|
private auto get_bits(ubyte n) (VorbisDecoder f) if (n >= 1 && n <= 64) {
|
|
static if (n <= 8) return cast(ubyte)get_bits_main(f, n);
|
|
else static if (n <= 16) return cast(ushort)get_bits_main(f, n);
|
|
else static if (n <= 32) return cast(uint)get_bits_main(f, n);
|
|
else static if (n <= 64) return cast(ulong)get_bits_main(f, n);
|
|
else static assert(0, "wtf?!");
|
|
}
|
|
|
|
// chooses minimal possible integer type, assume no overflow
|
|
private auto get_bits_add_no(ubyte n) (VorbisDecoder f, ubyte add) if (n >= 1 && n <= 64) {
|
|
static if (n <= 8) return cast(ubyte)(get_bits_main(f, n)+add);
|
|
else static if (n <= 16) return cast(ushort)(get_bits_main(f, n)+add);
|
|
else static if (n <= 32) return cast(uint)(get_bits_main(f, n)+add);
|
|
else static if (n <= 64) return cast(ulong)(get_bits_main(f, n)+add);
|
|
else static assert(0, "wtf?!");
|
|
}
|
|
|
|
// @OPTIMIZE: primary accumulator for huffman
|
|
// expand the buffer to as many bits as possible without reading off end of packet
|
|
// it might be nice to allow f.valid_bits and f.acc to be stored in registers,
|
|
// e.g. cache them locally and decode locally
|
|
//private /*__forceinline*/ void prep_huffman (VorbisDecoder f)
|
|
enum PrepHuffmanMixin = q{
|
|
if (f.valid_bits <= 24) {
|
|
if (f.valid_bits == 0) f.acc = 0;
|
|
int phmz = void;
|
|
do {
|
|
if (f.last_seg && !f.bytes_in_seg) break;
|
|
phmz = get8_packet_raw(f);
|
|
if (phmz == EOP) break;
|
|
f.acc += cast(uint)phmz<<f.valid_bits;
|
|
f.valid_bits += 8;
|
|
} while (f.valid_bits <= 24);
|
|
}
|
|
};
|
|
|
|
enum VorbisPacket {
|
|
id = 1,
|
|
comment = 3,
|
|
setup = 5,
|
|
}
|
|
|
|
private int codebook_decode_scalar_raw (VorbisDecoder f, Codebook *c) {
|
|
mixin(PrepHuffmanMixin);
|
|
|
|
if (c.codewords is null && c.sorted_codewords is null) return -1;
|
|
// cases to use binary search: sorted_codewords && !c.codewords
|
|
// sorted_codewords && c.entries > 8
|
|
auto cond = (c.entries > 8 ? c.sorted_codewords !is null : !c.codewords);
|
|
if (cond) {
|
|
// binary search
|
|
uint code = bit_reverse(f.acc);
|
|
int x = 0, n = c.sorted_entries, len;
|
|
while (n > 1) {
|
|
// invariant: sc[x] <= code < sc[x+n]
|
|
int m = x+(n>>1);
|
|
if (c.sorted_codewords[m] <= code) {
|
|
x = m;
|
|
n -= (n>>1);
|
|
} else {
|
|
n >>= 1;
|
|
}
|
|
}
|
|
// x is now the sorted index
|
|
if (!c.sparse) x = c.sorted_values[x];
|
|
// x is now sorted index if sparse, or symbol otherwise
|
|
len = c.codeword_lengths[x];
|
|
if (f.valid_bits >= len) {
|
|
f.acc >>= len;
|
|
f.valid_bits -= len;
|
|
return x;
|
|
}
|
|
f.valid_bits = 0;
|
|
return -1;
|
|
}
|
|
// if small, linear search
|
|
debug(stb_vorbis) assert(!c.sparse);
|
|
foreach (uint i; 0..c.entries) {
|
|
if (c.codeword_lengths[i] == NO_CODE) continue;
|
|
if (c.codewords[i] == (f.acc&((1<<c.codeword_lengths[i])-1))) {
|
|
if (f.valid_bits >= c.codeword_lengths[i]) {
|
|
f.acc >>= c.codeword_lengths[i];
|
|
f.valid_bits -= c.codeword_lengths[i];
|
|
return i;
|
|
}
|
|
f.valid_bits = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
error(f, STBVorbisError.invalid_stream);
|
|
f.valid_bits = 0;
|
|
return -1;
|
|
}
|
|
|
|
|
|
template DECODE_RAW(string var, string c) {
|
|
enum DECODE_RAW = q{
|
|
if (f.valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH) { mixin(PrepHuffmanMixin); }
|
|
// fast huffman table lookup
|
|
${i} = f.acc&FAST_HUFFMAN_TABLE_MASK;
|
|
${i} = ${c}.fast_huffman.ptr[${i}];
|
|
if (${i} >= 0) {
|
|
auto ${__temp_prefix__}n = ${c}.codeword_lengths[${i}];
|
|
f.acc >>= ${__temp_prefix__}n;
|
|
f.valid_bits -= ${__temp_prefix__}n;
|
|
if (f.valid_bits < 0) { f.valid_bits = 0; ${i} = -1; }
|
|
} else {
|
|
${i} = codebook_decode_scalar_raw(f, ${c});
|
|
}
|
|
}.cmacroFixVars!("i", "c")(var, c);
|
|
}
|
|
|
|
enum DECODE(string var, string c) = q{
|
|
${DECODE_RAW}
|
|
if (${c}.sparse) ${var} = ${c}.sorted_values[${var}];
|
|
}.cmacroFixVars!("var", "c", "DECODE_RAW")(var, c, DECODE_RAW!(var, c));
|
|
|
|
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {
|
|
alias DECODE_VQ = DECODE;
|
|
} else {
|
|
alias DECODE_VQ = DECODE_RAW;
|
|
}
|
|
|
|
|
|
|
|
// CODEBOOK_ELEMENT_FAST is an optimization for the CODEBOOK_FLOATS case
|
|
// where we avoid one addition
|
|
enum CODEBOOK_ELEMENT(string c, string off) = "("~c~".multiplicands["~off~"])";
|
|
enum CODEBOOK_ELEMENT_FAST(string c, string off) = "("~c~".multiplicands["~off~"])";
|
|
enum CODEBOOK_ELEMENT_BASE(string c) = "(0)";
|
|
|
|
|
|
private int codebook_decode_start (VorbisDecoder f, Codebook* c) {
|
|
int z = -1;
|
|
// type 0 is only legal in a scalar context
|
|
if (c.lookup_type == 0) {
|
|
error(f, STBVorbisError.invalid_stream);
|
|
} else {
|
|
mixin(DECODE_VQ!("z", "c"));
|
|
debug(stb_vorbis) if (c.sparse) assert(z < c.sorted_entries);
|
|
if (z < 0) { // check for EOP
|
|
if (!f.bytes_in_seg && f.last_seg) return z;
|
|
error(f, STBVorbisError.invalid_stream);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
private int codebook_decode (VorbisDecoder f, Codebook* c, float* output, int len) {
|
|
int z = codebook_decode_start(f, c);
|
|
if (z < 0) return false;
|
|
if (len > c.dimensions) len = c.dimensions;
|
|
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {
|
|
if (c.lookup_type == 1) {
|
|
float last = mixin(CODEBOOK_ELEMENT_BASE!"c");
|
|
int div = 1;
|
|
foreach (immutable i; 0..len) {
|
|
int off = (z/div)%c.lookup_values;
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c", "off"))+last;
|
|
output[i] += val;
|
|
if (c.sequence_p) last = val+c.minimum_value;
|
|
div *= c.lookup_values;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
z *= c.dimensions;
|
|
if (c.sequence_p) {
|
|
float last = mixin(CODEBOOK_ELEMENT_BASE!"c");
|
|
foreach (immutable i; 0..len) {
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c", "z+i"))+last;
|
|
output[i] += val;
|
|
last = val+c.minimum_value;
|
|
}
|
|
} else {
|
|
float last = mixin(CODEBOOK_ELEMENT_BASE!"c");
|
|
foreach (immutable i; 0..len) output[i] += mixin(CODEBOOK_ELEMENT_FAST!("c", "z+i"))+last;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private int codebook_decode_step (VorbisDecoder f, Codebook* c, float* output, int len, int step) {
|
|
int z = codebook_decode_start(f, c);
|
|
float last = mixin(CODEBOOK_ELEMENT_BASE!"c");
|
|
if (z < 0) return false;
|
|
if (len > c.dimensions) len = c.dimensions;
|
|
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {
|
|
if (c.lookup_type == 1) {
|
|
int div = 1;
|
|
foreach (immutable i; 0..len) {
|
|
int off = (z/div)%c.lookup_values;
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c", "off"))+last;
|
|
output[i*step] += val;
|
|
if (c.sequence_p) last = val;
|
|
div *= c.lookup_values;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
z *= c.dimensions;
|
|
foreach (immutable i; 0..len) {
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c", "z+i"))+last;
|
|
output[i*step] += val;
|
|
if (c.sequence_p) last = val;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private int codebook_decode_deinterleave_repeat (VorbisDecoder f, Codebook* c, ref float*[STB_VORBIS_MAX_CHANNELS] outputs, int ch, int* c_inter_p, int* p_inter_p, int len, int total_decode) {
|
|
int c_inter = *c_inter_p;
|
|
int p_inter = *p_inter_p;
|
|
int z, effective = c.dimensions;
|
|
|
|
// type 0 is only legal in a scalar context
|
|
if (c.lookup_type == 0) return error(f, STBVorbisError.invalid_stream);
|
|
|
|
while (total_decode > 0) {
|
|
float last = mixin(CODEBOOK_ELEMENT_BASE!"c");
|
|
mixin(DECODE_VQ!("z", "c"));
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {} else {
|
|
debug(stb_vorbis) assert(!c.sparse || z < c.sorted_entries);
|
|
}
|
|
if (z < 0) {
|
|
if (!f.bytes_in_seg && f.last_seg) return false;
|
|
return error(f, STBVorbisError.invalid_stream);
|
|
}
|
|
|
|
// if this will take us off the end of the buffers, stop short!
|
|
// we check by computing the length of the virtual interleaved
|
|
// buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter),
|
|
// and the length we'll be using (effective)
|
|
if (c_inter+p_inter*ch+effective > len*ch) effective = len*ch-(p_inter*ch-c_inter);
|
|
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {
|
|
if (c.lookup_type == 1) {
|
|
int div = 1;
|
|
foreach (immutable i; 0..effective) {
|
|
int off = (z/div)%c.lookup_values;
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c", "off"))+last;
|
|
if (outputs.ptr[c_inter]) outputs.ptr[c_inter].ptr[p_inter] += val;
|
|
if (++c_inter == ch) { c_inter = 0; ++p_inter; }
|
|
if (c.sequence_p) last = val;
|
|
div *= c.lookup_values;
|
|
}
|
|
goto skipit;
|
|
}
|
|
}
|
|
z *= c.dimensions;
|
|
if (c.sequence_p) {
|
|
foreach (immutable i; 0..effective) {
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c", "z+i"))+last;
|
|
if (outputs.ptr[c_inter]) outputs.ptr[c_inter][p_inter] += val;
|
|
if (++c_inter == ch) { c_inter = 0; ++p_inter; }
|
|
last = val;
|
|
}
|
|
} else {
|
|
foreach (immutable i; 0..effective) {
|
|
float val = mixin(CODEBOOK_ELEMENT_FAST!("c","z+i"))+last;
|
|
if (outputs.ptr[c_inter]) outputs.ptr[c_inter][p_inter] += val;
|
|
if (++c_inter == ch) { c_inter = 0; ++p_inter; }
|
|
}
|
|
}
|
|
skipit:
|
|
total_decode -= effective;
|
|
}
|
|
*c_inter_p = c_inter;
|
|
*p_inter_p = p_inter;
|
|
return true;
|
|
}
|
|
|
|
//private int predict_point (int x, int x0, int x1, int y0, int y1)
|
|
enum predict_point(string dest, string x, string x0, string x1, string y0, string y1) = q{{
|
|
//import std.math : abs;
|
|
int dy = ${y1}-${y0};
|
|
int adx = ${x1}-${x0};
|
|
// @OPTIMIZE: force int division to round in the right direction... is this necessary on x86?
|
|
int err = /*abs(dy)*/(dy < 0 ? -dy : dy)*(${x}-${x0});
|
|
int off = err/adx;
|
|
/*return*/${dest} = (dy < 0 ? ${y0}-off : ${y0}+off);
|
|
}}.cmacroFixVars!("dest", "x", "x0", "x1", "y0", "y1")(dest, x, x0, x1, y0, y1);
|
|
|
|
// the following table is block-copied from the specification
|
|
immutable float[256] inverse_db_table = [
|
|
1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f,
|
|
1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f,
|
|
1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f,
|
|
2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f,
|
|
2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f,
|
|
3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f,
|
|
4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f,
|
|
6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f,
|
|
7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f,
|
|
1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f,
|
|
1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f,
|
|
1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f,
|
|
2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f,
|
|
2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f,
|
|
3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f,
|
|
4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f,
|
|
5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f,
|
|
7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f,
|
|
9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f,
|
|
1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f,
|
|
1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f,
|
|
2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f,
|
|
2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f,
|
|
3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f,
|
|
4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f,
|
|
5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f,
|
|
7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f,
|
|
9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f,
|
|
0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f,
|
|
0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f,
|
|
0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f,
|
|
0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f,
|
|
0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f,
|
|
0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f,
|
|
0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f,
|
|
0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f,
|
|
0.00092223983f, 0.00098217216f, 0.0010459992f, 0.0011139742f,
|
|
0.0011863665f, 0.0012634633f, 0.0013455702f, 0.0014330129f,
|
|
0.0015261382f, 0.0016253153f, 0.0017309374f, 0.0018434235f,
|
|
0.0019632195f, 0.0020908006f, 0.0022266726f, 0.0023713743f,
|
|
0.0025254795f, 0.0026895994f, 0.0028643847f, 0.0030505286f,
|
|
0.0032487691f, 0.0034598925f, 0.0036847358f, 0.0039241906f,
|
|
0.0041792066f, 0.0044507950f, 0.0047400328f, 0.0050480668f,
|
|
0.0053761186f, 0.0057254891f, 0.0060975636f, 0.0064938176f,
|
|
0.0069158225f, 0.0073652516f, 0.0078438871f, 0.0083536271f,
|
|
0.0088964928f, 0.009474637f, 0.010090352f, 0.010746080f,
|
|
0.011444421f, 0.012188144f, 0.012980198f, 0.013823725f,
|
|
0.014722068f, 0.015678791f, 0.016697687f, 0.017782797f,
|
|
0.018938423f, 0.020169149f, 0.021479854f, 0.022875735f,
|
|
0.024362330f, 0.025945531f, 0.027631618f, 0.029427276f,
|
|
0.031339626f, 0.033376252f, 0.035545228f, 0.037855157f,
|
|
0.040315199f, 0.042935108f, 0.045725273f, 0.048696758f,
|
|
0.051861348f, 0.055231591f, 0.058820850f, 0.062643361f,
|
|
0.066714279f, 0.071049749f, 0.075666962f, 0.080584227f,
|
|
0.085821044f, 0.091398179f, 0.097337747f, 0.10366330f,
|
|
0.11039993f, 0.11757434f, 0.12521498f, 0.13335215f,
|
|
0.14201813f, 0.15124727f, 0.16107617f, 0.17154380f,
|
|
0.18269168f, 0.19456402f, 0.20720788f, 0.22067342f,
|
|
0.23501402f, 0.25028656f, 0.26655159f, 0.28387361f,
|
|
0.30232132f, 0.32196786f, 0.34289114f, 0.36517414f,
|
|
0.38890521f, 0.41417847f, 0.44109412f, 0.46975890f,
|
|
0.50028648f, 0.53279791f, 0.56742212f, 0.60429640f,
|
|
0.64356699f, 0.68538959f, 0.72993007f, 0.77736504f,
|
|
0.82788260f, 0.88168307f, 0.9389798f, 1.0f
|
|
];
|
|
|
|
|
|
// @OPTIMIZE: if you want to replace this bresenham line-drawing routine,
|
|
// note that you must produce bit-identical output to decode correctly;
|
|
// this specific sequence of operations is specified in the spec (it's
|
|
// drawing integer-quantized frequency-space lines that the encoder
|
|
// expects to be exactly the same)
|
|
// ... also, isn't the whole point of Bresenham's algorithm to NOT
|
|
// have to divide in the setup? sigh.
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
enum LINE_OP(string a, string b) = a~" = "~b~";";
|
|
} else {
|
|
enum LINE_OP(string a, string b) = a~" *= "~b~";";
|
|
}
|
|
|
|
version(STB_VORBIS_DIVIDE_TABLE) {
|
|
enum DIVTAB_NUMER = 32;
|
|
enum DIVTAB_DENOM = 64;
|
|
byte[DIVTAB_DENOM][DIVTAB_NUMER] integer_divide_table; // 2KB
|
|
}
|
|
|
|
// nobranch abs trick
|
|
enum ABS(string v) = q{(((${v})+((${v})>>31))^((${v})>>31))}.cmacroFixVars!"v"(v);
|
|
|
|
// this is forceinline, but dmd inliner sux
|
|
// but hey, i have my k00l macrosystem!
|
|
//void draw_line (float* ${output}, int ${x0}, int ${y0}, int ${x1}, int ${y1}, int ${n})
|
|
enum draw_line(string output, string x0, string y0, string x1, string y1, string n) = q{{
|
|
int ${__temp_prefix__}dy = ${y1}-${y0};
|
|
int ${__temp_prefix__}adx = ${x1}-${x0};
|
|
int ${__temp_prefix__}ady = mixin(ABS!"${__temp_prefix__}dy");
|
|
int ${__temp_prefix__}base;
|
|
int ${__temp_prefix__}x = ${x0}, ${__temp_prefix__}y = ${y0};
|
|
int ${__temp_prefix__}err = 0;
|
|
int ${__temp_prefix__}sy;
|
|
|
|
version(STB_VORBIS_DIVIDE_TABLE) {
|
|
if (${__temp_prefix__}adx < DIVTAB_DENOM && ${__temp_prefix__}ady < DIVTAB_NUMER) {
|
|
if (${__temp_prefix__}dy < 0) {
|
|
${__temp_prefix__}base = -integer_divide_table[${__temp_prefix__}ady].ptr[${__temp_prefix__}adx];
|
|
${__temp_prefix__}sy = ${__temp_prefix__}base-1;
|
|
} else {
|
|
${__temp_prefix__}base = integer_divide_table[${__temp_prefix__}ady].ptr[${__temp_prefix__}adx];
|
|
${__temp_prefix__}sy = ${__temp_prefix__}base+1;
|
|
}
|
|
} else {
|
|
${__temp_prefix__}base = ${__temp_prefix__}dy/${__temp_prefix__}adx;
|
|
${__temp_prefix__}sy = ${__temp_prefix__}base+(${__temp_prefix__}dy < 0 ? -1 : 1);
|
|
}
|
|
} else {
|
|
${__temp_prefix__}base = ${__temp_prefix__}dy/${__temp_prefix__}adx;
|
|
${__temp_prefix__}sy = ${__temp_prefix__}base+(${__temp_prefix__}dy < 0 ? -1 : 1);
|
|
}
|
|
${__temp_prefix__}ady -= mixin(ABS!"${__temp_prefix__}base")*${__temp_prefix__}adx;
|
|
if (${x1} > ${n}) ${x1} = ${n};
|
|
if (${__temp_prefix__}x < ${x1}) {
|
|
mixin(LINE_OP!("${output}[${__temp_prefix__}x]", "inverse_db_table[${__temp_prefix__}y]"));
|
|
for (++${__temp_prefix__}x; ${__temp_prefix__}x < ${x1}; ++${__temp_prefix__}x) {
|
|
${__temp_prefix__}err += ${__temp_prefix__}ady;
|
|
if (${__temp_prefix__}err >= ${__temp_prefix__}adx) {
|
|
${__temp_prefix__}err -= ${__temp_prefix__}adx;
|
|
${__temp_prefix__}y += ${__temp_prefix__}sy;
|
|
} else {
|
|
${__temp_prefix__}y += ${__temp_prefix__}base;
|
|
}
|
|
mixin(LINE_OP!("${output}[${__temp_prefix__}x]", "inverse_db_table[${__temp_prefix__}y]"));
|
|
}
|
|
}
|
|
/*
|
|
mixin(LINE_OP!("${output}[${__temp_prefix__}x]", "inverse_db_table[${__temp_prefix__}y]"));
|
|
for (++${__temp_prefix__}x; ${__temp_prefix__}x < ${x1}; ++${__temp_prefix__}x) {
|
|
${__temp_prefix__}err += ${__temp_prefix__}ady;
|
|
if (${__temp_prefix__}err >= ${__temp_prefix__}adx) {
|
|
${__temp_prefix__}err -= ${__temp_prefix__}adx;
|
|
${__temp_prefix__}y += ${__temp_prefix__}sy;
|
|
} else {
|
|
${__temp_prefix__}y += ${__temp_prefix__}base;
|
|
}
|
|
mixin(LINE_OP!("${output}[${__temp_prefix__}x]", "inverse_db_table[${__temp_prefix__}y]"));
|
|
}
|
|
*/
|
|
}}.cmacroFixVars!("output", "x0", "y0", "x1", "y1", "n")(output, x0, y0, x1, y1, n);
|
|
|
|
private int residue_decode (VorbisDecoder f, Codebook* book, float* target, int offset, int n, int rtype) {
|
|
if (rtype == 0) {
|
|
int step = n/book.dimensions;
|
|
foreach (immutable k; 0..step) if (!codebook_decode_step(f, book, target+offset+k, n-offset-k, step)) return false;
|
|
} else {
|
|
for (int k = 0; k < n; ) {
|
|
if (!codebook_decode(f, book, target+offset, n-k)) return false;
|
|
k += book.dimensions;
|
|
offset += book.dimensions;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private void decode_residue (VorbisDecoder f, ref float*[STB_VORBIS_MAX_CHANNELS] residue_buffers, int ch, int n, int rn, ubyte* do_not_decode) {
|
|
import core.stdc.stdlib : alloca;
|
|
import core.stdc.string : memset;
|
|
|
|
Residue* r = f.residue_config+rn;
|
|
int rtype = f.residue_types.ptr[rn];
|
|
int c = r.classbook;
|
|
int classwords = f.codebooks[c].dimensions;
|
|
int n_read = r.end-r.begin;
|
|
int part_read = n_read/r.part_size;
|
|
uint temp_alloc_point = temp_alloc_save(f);
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
int** classifications = cast(int**)mixin(temp_block_array!("f.vrchannels", "part_read*int.sizeof"));
|
|
} else {
|
|
ubyte*** part_classdata = cast(ubyte***)mixin(temp_block_array!("f.vrchannels", "part_read*cast(int)(ubyte*).sizeof"));
|
|
}
|
|
|
|
//stb_prof(2);
|
|
foreach (immutable i; 0..ch) if (!do_not_decode[i]) memset(residue_buffers.ptr[i], 0, float.sizeof*n);
|
|
|
|
if (rtype == 2 && ch != 1) {
|
|
int j = void;
|
|
for (j = 0; j < ch; ++j) if (!do_not_decode[j]) break;
|
|
if (j == ch) goto done;
|
|
|
|
//stb_prof(3);
|
|
foreach (immutable pass; 0..8) {
|
|
int pcount = 0, class_set = 0;
|
|
if (ch == 2) {
|
|
//stb_prof(13);
|
|
while (pcount < part_read) {
|
|
int z = r.begin+pcount*r.part_size;
|
|
int c_inter = (z&1), p_inter = z>>1;
|
|
if (pass == 0) {
|
|
Codebook *cc = f.codebooks+r.classbook;
|
|
int q;
|
|
mixin(DECODE!("q", "cc"));
|
|
if (q == EOP) goto done;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
for (int i = classwords-1; i >= 0; --i) {
|
|
classifications[0].ptr[i+pcount] = q%r.classifications;
|
|
q /= r.classifications;
|
|
}
|
|
} else {
|
|
part_classdata[0][class_set] = r.classdata[q];
|
|
}
|
|
}
|
|
//stb_prof(5);
|
|
for (int i = 0; i < classwords && pcount < part_read; ++i, ++pcount) {
|
|
int zz = r.begin+pcount*r.part_size;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
int cc = classifications[0].ptr[pcount];
|
|
} else {
|
|
int cc = part_classdata[0][class_set][i];
|
|
}
|
|
int b = r.residue_books[cc].ptr[pass];
|
|
if (b >= 0) {
|
|
Codebook* book = f.codebooks+b;
|
|
//stb_prof(20); // accounts for X time
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {
|
|
if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r.part_size)) goto done;
|
|
} else {
|
|
// saves 1%
|
|
//if (!codebook_decode_deinterleave_repeat_2(f, book, residue_buffers, &c_inter, &p_inter, n, r.part_size)) goto done; // according to C source
|
|
if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r.part_size)) goto done;
|
|
}
|
|
//stb_prof(7);
|
|
} else {
|
|
zz += r.part_size;
|
|
c_inter = zz&1;
|
|
p_inter = zz>>1;
|
|
}
|
|
}
|
|
//stb_prof(8);
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {} else {
|
|
++class_set;
|
|
}
|
|
}
|
|
} else if (ch == 1) {
|
|
while (pcount < part_read) {
|
|
int z = r.begin+pcount*r.part_size;
|
|
int c_inter = 0, p_inter = z;
|
|
if (pass == 0) {
|
|
Codebook* cc = f.codebooks+r.classbook;
|
|
int q;
|
|
mixin(DECODE!("q", "cc"));
|
|
if (q == EOP) goto done;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
for (int i = classwords-1; i >= 0; --i) {
|
|
classifications[0].ptr[i+pcount] = q%r.classifications;
|
|
q /= r.classifications;
|
|
}
|
|
} else {
|
|
part_classdata[0][class_set] = r.classdata[q];
|
|
}
|
|
}
|
|
for (int i = 0; i < classwords && pcount < part_read; ++i, ++pcount) {
|
|
int zz = r.begin+pcount*r.part_size;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
int cc = classifications[0].ptr[pcount];
|
|
} else {
|
|
int cc = part_classdata[0][class_set][i];
|
|
}
|
|
int b = r.residue_books[cc].ptr[pass];
|
|
if (b >= 0) {
|
|
Codebook* book = f.codebooks+b;
|
|
//stb_prof(22);
|
|
if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r.part_size)) goto done;
|
|
//stb_prof(3);
|
|
} else {
|
|
zz += r.part_size;
|
|
c_inter = 0;
|
|
p_inter = zz;
|
|
}
|
|
}
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {} else {
|
|
++class_set;
|
|
}
|
|
}
|
|
} else {
|
|
while (pcount < part_read) {
|
|
int z = r.begin+pcount*r.part_size;
|
|
int c_inter = z%ch, p_inter = z/ch;
|
|
if (pass == 0) {
|
|
Codebook* cc = f.codebooks+r.classbook;
|
|
int q;
|
|
mixin(DECODE!("q", "cc"));
|
|
if (q == EOP) goto done;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
for (int i = classwords-1; i >= 0; --i) {
|
|
classifications[0].ptr[i+pcount] = q%r.classifications;
|
|
q /= r.classifications;
|
|
}
|
|
} else {
|
|
part_classdata[0][class_set] = r.classdata[q];
|
|
}
|
|
}
|
|
for (int i = 0; i < classwords && pcount < part_read; ++i, ++pcount) {
|
|
int zz = r.begin+pcount*r.part_size;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
int cc = classifications[0].ptr[pcount];
|
|
} else {
|
|
int cc = part_classdata[0][class_set][i];
|
|
}
|
|
int b = r.residue_books[cc].ptr[pass];
|
|
if (b >= 0) {
|
|
Codebook* book = f.codebooks+b;
|
|
//stb_prof(22);
|
|
if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r.part_size)) goto done;
|
|
//stb_prof(3);
|
|
} else {
|
|
zz += r.part_size;
|
|
c_inter = zz%ch;
|
|
p_inter = zz/ch;
|
|
}
|
|
}
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {} else {
|
|
++class_set;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
goto done;
|
|
}
|
|
//stb_prof(9);
|
|
|
|
foreach (immutable pass; 0..8) {
|
|
int pcount = 0, class_set=0;
|
|
while (pcount < part_read) {
|
|
if (pass == 0) {
|
|
foreach (immutable j; 0..ch) {
|
|
if (!do_not_decode[j]) {
|
|
Codebook* cc = f.codebooks+r.classbook;
|
|
int temp;
|
|
mixin(DECODE!("temp", "cc"));
|
|
if (temp == EOP) goto done;
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
for (int i = classwords-1; i >= 0; --i) {
|
|
classifications[j].ptr[i+pcount] = temp%r.classifications;
|
|
temp /= r.classifications;
|
|
}
|
|
} else {
|
|
part_classdata[j][class_set] = r.classdata[temp];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < classwords && pcount < part_read; ++i, ++pcount) {
|
|
foreach (immutable j; 0..ch) {
|
|
if (!do_not_decode[j]) {
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
int cc = classifications[j].ptr[pcount];
|
|
} else {
|
|
int cc = part_classdata[j][class_set][i];
|
|
}
|
|
int b = r.residue_books[cc].ptr[pass];
|
|
if (b >= 0) {
|
|
float* target = residue_buffers.ptr[j];
|
|
int offset = r.begin+pcount*r.part_size;
|
|
int nn = r.part_size;
|
|
Codebook* book = f.codebooks+b;
|
|
if (!residue_decode(f, book, target, offset, nn, rtype)) goto done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {} else {
|
|
++class_set;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
//stb_prof(0);
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) temp_free(f, classifications); else temp_free(f, part_classdata);
|
|
temp_alloc_restore(f, temp_alloc_point);
|
|
}
|
|
|
|
|
|
// the following were split out into separate functions while optimizing;
|
|
// they could be pushed back up but eh. __forceinline showed no change;
|
|
// they're probably already being inlined.
|
|
private void imdct_step3_iter0_loop (int n, float* e, int i_off, int k_off, float* A) {
|
|
float* ee0 = e+i_off;
|
|
float* ee2 = ee0+k_off;
|
|
debug(stb_vorbis) assert((n&3) == 0);
|
|
foreach (immutable _; 0..n>>2) {
|
|
float k00_20, k01_21;
|
|
k00_20 = ee0[ 0]-ee2[ 0];
|
|
k01_21 = ee0[-1]-ee2[-1];
|
|
ee0[ 0] += ee2[ 0];//ee0[ 0] = ee0[ 0]+ee2[ 0];
|
|
ee0[-1] += ee2[-1];//ee0[-1] = ee0[-1]+ee2[-1];
|
|
ee2[ 0] = k00_20*A[0]-k01_21*A[1];
|
|
ee2[-1] = k01_21*A[0]+k00_20*A[1];
|
|
A += 8;
|
|
|
|
k00_20 = ee0[-2]-ee2[-2];
|
|
k01_21 = ee0[-3]-ee2[-3];
|
|
ee0[-2] += ee2[-2];//ee0[-2] = ee0[-2]+ee2[-2];
|
|
ee0[-3] += ee2[-3];//ee0[-3] = ee0[-3]+ee2[-3];
|
|
ee2[-2] = k00_20*A[0]-k01_21*A[1];
|
|
ee2[-3] = k01_21*A[0]+k00_20*A[1];
|
|
A += 8;
|
|
|
|
k00_20 = ee0[-4]-ee2[-4];
|
|
k01_21 = ee0[-5]-ee2[-5];
|
|
ee0[-4] += ee2[-4];//ee0[-4] = ee0[-4]+ee2[-4];
|
|
ee0[-5] += ee2[-5];//ee0[-5] = ee0[-5]+ee2[-5];
|
|
ee2[-4] = k00_20*A[0]-k01_21*A[1];
|
|
ee2[-5] = k01_21*A[0]+k00_20*A[1];
|
|
A += 8;
|
|
|
|
k00_20 = ee0[-6]-ee2[-6];
|
|
k01_21 = ee0[-7]-ee2[-7];
|
|
ee0[-6] += ee2[-6];//ee0[-6] = ee0[-6]+ee2[-6];
|
|
ee0[-7] += ee2[-7];//ee0[-7] = ee0[-7]+ee2[-7];
|
|
ee2[-6] = k00_20*A[0]-k01_21*A[1];
|
|
ee2[-7] = k01_21*A[0]+k00_20*A[1];
|
|
A += 8;
|
|
ee0 -= 8;
|
|
ee2 -= 8;
|
|
}
|
|
}
|
|
|
|
private void imdct_step3_inner_r_loop (int lim, float* e, int d0, int k_off, float* A, int k1) {
|
|
float k00_20, k01_21;
|
|
float* e0 = e+d0;
|
|
float* e2 = e0+k_off;
|
|
foreach (immutable _; 0..lim>>2) {
|
|
k00_20 = e0[-0]-e2[-0];
|
|
k01_21 = e0[-1]-e2[-1];
|
|
e0[-0] += e2[-0];//e0[-0] = e0[-0]+e2[-0];
|
|
e0[-1] += e2[-1];//e0[-1] = e0[-1]+e2[-1];
|
|
e2[-0] = (k00_20)*A[0]-(k01_21)*A[1];
|
|
e2[-1] = (k01_21)*A[0]+(k00_20)*A[1];
|
|
|
|
A += k1;
|
|
|
|
k00_20 = e0[-2]-e2[-2];
|
|
k01_21 = e0[-3]-e2[-3];
|
|
e0[-2] += e2[-2];//e0[-2] = e0[-2]+e2[-2];
|
|
e0[-3] += e2[-3];//e0[-3] = e0[-3]+e2[-3];
|
|
e2[-2] = (k00_20)*A[0]-(k01_21)*A[1];
|
|
e2[-3] = (k01_21)*A[0]+(k00_20)*A[1];
|
|
|
|
A += k1;
|
|
|
|
k00_20 = e0[-4]-e2[-4];
|
|
k01_21 = e0[-5]-e2[-5];
|
|
e0[-4] += e2[-4];//e0[-4] = e0[-4]+e2[-4];
|
|
e0[-5] += e2[-5];//e0[-5] = e0[-5]+e2[-5];
|
|
e2[-4] = (k00_20)*A[0]-(k01_21)*A[1];
|
|
e2[-5] = (k01_21)*A[0]+(k00_20)*A[1];
|
|
|
|
A += k1;
|
|
|
|
k00_20 = e0[-6]-e2[-6];
|
|
k01_21 = e0[-7]-e2[-7];
|
|
e0[-6] += e2[-6];//e0[-6] = e0[-6]+e2[-6];
|
|
e0[-7] += e2[-7];//e0[-7] = e0[-7]+e2[-7];
|
|
e2[-6] = (k00_20)*A[0]-(k01_21)*A[1];
|
|
e2[-7] = (k01_21)*A[0]+(k00_20)*A[1];
|
|
|
|
e0 -= 8;
|
|
e2 -= 8;
|
|
|
|
A += k1;
|
|
}
|
|
}
|
|
|
|
private void imdct_step3_inner_s_loop (int n, float* e, int i_off, int k_off, float* A, int a_off, int k0) {
|
|
float A0 = A[0];
|
|
float A1 = A[0+1];
|
|
float A2 = A[0+a_off];
|
|
float A3 = A[0+a_off+1];
|
|
float A4 = A[0+a_off*2+0];
|
|
float A5 = A[0+a_off*2+1];
|
|
float A6 = A[0+a_off*3+0];
|
|
float A7 = A[0+a_off*3+1];
|
|
float k00, k11;
|
|
float *ee0 = e +i_off;
|
|
float *ee2 = ee0+k_off;
|
|
foreach (immutable _; 0..n) {
|
|
k00 = ee0[ 0]-ee2[ 0];
|
|
k11 = ee0[-1]-ee2[-1];
|
|
ee0[ 0] = ee0[ 0]+ee2[ 0];
|
|
ee0[-1] = ee0[-1]+ee2[-1];
|
|
ee2[ 0] = (k00)*A0-(k11)*A1;
|
|
ee2[-1] = (k11)*A0+(k00)*A1;
|
|
|
|
k00 = ee0[-2]-ee2[-2];
|
|
k11 = ee0[-3]-ee2[-3];
|
|
ee0[-2] = ee0[-2]+ee2[-2];
|
|
ee0[-3] = ee0[-3]+ee2[-3];
|
|
ee2[-2] = (k00)*A2-(k11)*A3;
|
|
ee2[-3] = (k11)*A2+(k00)*A3;
|
|
|
|
k00 = ee0[-4]-ee2[-4];
|
|
k11 = ee0[-5]-ee2[-5];
|
|
ee0[-4] = ee0[-4]+ee2[-4];
|
|
ee0[-5] = ee0[-5]+ee2[-5];
|
|
ee2[-4] = (k00)*A4-(k11)*A5;
|
|
ee2[-5] = (k11)*A4+(k00)*A5;
|
|
|
|
k00 = ee0[-6]-ee2[-6];
|
|
k11 = ee0[-7]-ee2[-7];
|
|
ee0[-6] = ee0[-6]+ee2[-6];
|
|
ee0[-7] = ee0[-7]+ee2[-7];
|
|
ee2[-6] = (k00)*A6-(k11)*A7;
|
|
ee2[-7] = (k11)*A6+(k00)*A7;
|
|
|
|
ee0 -= k0;
|
|
ee2 -= k0;
|
|
}
|
|
}
|
|
|
|
// this was forceinline
|
|
//void iter_54(float *z)
|
|
enum iter_54(string z) = q{{
|
|
auto ${__temp_prefix__}z = (${z});
|
|
float ${__temp_prefix__}k00, ${__temp_prefix__}k11, ${__temp_prefix__}k22, ${__temp_prefix__}k33;
|
|
float ${__temp_prefix__}y0, ${__temp_prefix__}y1, ${__temp_prefix__}y2, ${__temp_prefix__}y3;
|
|
|
|
${__temp_prefix__}k00 = ${__temp_prefix__}z[ 0]-${__temp_prefix__}z[-4];
|
|
${__temp_prefix__}y0 = ${__temp_prefix__}z[ 0]+${__temp_prefix__}z[-4];
|
|
${__temp_prefix__}y2 = ${__temp_prefix__}z[-2]+${__temp_prefix__}z[-6];
|
|
${__temp_prefix__}k22 = ${__temp_prefix__}z[-2]-${__temp_prefix__}z[-6];
|
|
|
|
${__temp_prefix__}z[-0] = ${__temp_prefix__}y0+${__temp_prefix__}y2; // z0+z4+z2+z6
|
|
${__temp_prefix__}z[-2] = ${__temp_prefix__}y0-${__temp_prefix__}y2; // z0+z4-z2-z6
|
|
|
|
// done with ${__temp_prefix__}y0, ${__temp_prefix__}y2
|
|
|
|
${__temp_prefix__}k33 = ${__temp_prefix__}z[-3]-${__temp_prefix__}z[-7];
|
|
|
|
${__temp_prefix__}z[-4] = ${__temp_prefix__}k00+${__temp_prefix__}k33; // z0-z4+z3-z7
|
|
${__temp_prefix__}z[-6] = ${__temp_prefix__}k00-${__temp_prefix__}k33; // z0-z4-z3+z7
|
|
|
|
// done with ${__temp_prefix__}k33
|
|
|
|
${__temp_prefix__}k11 = ${__temp_prefix__}z[-1]-${__temp_prefix__}z[-5];
|
|
${__temp_prefix__}y1 = ${__temp_prefix__}z[-1]+${__temp_prefix__}z[-5];
|
|
${__temp_prefix__}y3 = ${__temp_prefix__}z[-3]+${__temp_prefix__}z[-7];
|
|
|
|
${__temp_prefix__}z[-1] = ${__temp_prefix__}y1+${__temp_prefix__}y3; // z1+z5+z3+z7
|
|
${__temp_prefix__}z[-3] = ${__temp_prefix__}y1-${__temp_prefix__}y3; // z1+z5-z3-z7
|
|
${__temp_prefix__}z[-5] = ${__temp_prefix__}k11-${__temp_prefix__}k22; // z1-z5+z2-z6
|
|
${__temp_prefix__}z[-7] = ${__temp_prefix__}k11+${__temp_prefix__}k22; // z1-z5-z2+z6
|
|
}}.cmacroFixVars!"z"(z);
|
|
|
|
static void imdct_step3_inner_s_loop_ld654(int n, float *e, int i_off, float *A, int base_n)
|
|
{
|
|
int a_off = base_n >> 3;
|
|
float A2 = A[0+a_off];
|
|
float *z = e + i_off;
|
|
float *base = z - 16 * n;
|
|
|
|
while (z > base) {
|
|
float k00,k11;
|
|
float l00,l11;
|
|
|
|
k00 = z[-0] - z[ -8];
|
|
k11 = z[-1] - z[ -9];
|
|
l00 = z[-2] - z[-10];
|
|
l11 = z[-3] - z[-11];
|
|
z[ -0] = z[-0] + z[ -8];
|
|
z[ -1] = z[-1] + z[ -9];
|
|
z[ -2] = z[-2] + z[-10];
|
|
z[ -3] = z[-3] + z[-11];
|
|
z[ -8] = k00;
|
|
z[ -9] = k11;
|
|
z[-10] = (l00+l11) * A2;
|
|
z[-11] = (l11-l00) * A2;
|
|
|
|
k00 = z[ -4] - z[-12];
|
|
k11 = z[ -5] - z[-13];
|
|
l00 = z[ -6] - z[-14];
|
|
l11 = z[ -7] - z[-15];
|
|
z[ -4] = z[ -4] + z[-12];
|
|
z[ -5] = z[ -5] + z[-13];
|
|
z[ -6] = z[ -6] + z[-14];
|
|
z[ -7] = z[ -7] + z[-15];
|
|
z[-12] = k11;
|
|
z[-13] = -k00;
|
|
z[-14] = (l11-l00) * A2;
|
|
z[-15] = (l00+l11) * -A2;
|
|
|
|
mixin(iter_54!"z");
|
|
mixin(iter_54!"z-8");
|
|
z -= 16;
|
|
}
|
|
}
|
|
|
|
private void inverse_mdct (float* buffer, int n, VorbisDecoder f, int blocktype) {
|
|
import core.stdc.stdlib : alloca;
|
|
|
|
int n2 = n>>1, n4 = n>>2, n8 = n>>3, l;
|
|
int ld;
|
|
// @OPTIMIZE: reduce register pressure by using fewer variables?
|
|
int save_point = temp_alloc_save(f);
|
|
float *buf2;
|
|
buf2 = cast(float*)mixin(temp_alloc!("n2*float.sizeof"));
|
|
float *u = null, v = null;
|
|
// twiddle factors
|
|
float *A = f.A.ptr[blocktype];
|
|
|
|
// IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio"
|
|
// See notes about bugs in that paper in less-optimal implementation 'inverse_mdct_old' after this function.
|
|
|
|
// kernel from paper
|
|
|
|
|
|
// merged:
|
|
// copy and reflect spectral data
|
|
// step 0
|
|
|
|
// note that it turns out that the items added together during
|
|
// this step are, in fact, being added to themselves (as reflected
|
|
// by step 0). inexplicable inefficiency! this became obvious
|
|
// once I combined the passes.
|
|
|
|
// so there's a missing 'times 2' here (for adding X to itself).
|
|
// this propogates through linearly to the end, where the numbers
|
|
// are 1/2 too small, and need to be compensated for.
|
|
|
|
{
|
|
float* d, e, AA, e_stop;
|
|
d = &buf2[n2-2];
|
|
AA = A;
|
|
e = &buffer[0];
|
|
e_stop = &buffer[n2];
|
|
while (e != e_stop) {
|
|
d[1] = (e[0]*AA[0]-e[2]*AA[1]);
|
|
d[0] = (e[0]*AA[1]+e[2]*AA[0]);
|
|
d -= 2;
|
|
AA += 2;
|
|
e += 4;
|
|
}
|
|
e = &buffer[n2-3];
|
|
while (d >= buf2) {
|
|
d[1] = (-e[2]*AA[0]- -e[0]*AA[1]);
|
|
d[0] = (-e[2]*AA[1]+ -e[0]*AA[0]);
|
|
d -= 2;
|
|
AA += 2;
|
|
e -= 4;
|
|
}
|
|
}
|
|
|
|
// now we use symbolic names for these, so that we can
|
|
// possibly swap their meaning as we change which operations
|
|
// are in place
|
|
|
|
u = buffer;
|
|
v = buf2;
|
|
|
|
// step 2 (paper output is w, now u)
|
|
// this could be in place, but the data ends up in the wrong
|
|
// place... _somebody_'s got to swap it, so this is nominated
|
|
{
|
|
float* AA = &A[n2-8];
|
|
float* d0, d1, e0, e1;
|
|
e0 = &v[n4];
|
|
e1 = &v[0];
|
|
d0 = &u[n4];
|
|
d1 = &u[0];
|
|
while (AA >= A) {
|
|
float v40_20, v41_21;
|
|
|
|
v41_21 = e0[1]-e1[1];
|
|
v40_20 = e0[0]-e1[0];
|
|
d0[1] = e0[1]+e1[1];
|
|
d0[0] = e0[0]+e1[0];
|
|
d1[1] = v41_21*AA[4]-v40_20*AA[5];
|
|
d1[0] = v40_20*AA[4]+v41_21*AA[5];
|
|
|
|
v41_21 = e0[3]-e1[3];
|
|
v40_20 = e0[2]-e1[2];
|
|
d0[3] = e0[3]+e1[3];
|
|
d0[2] = e0[2]+e1[2];
|
|
d1[3] = v41_21*AA[0]-v40_20*AA[1];
|
|
d1[2] = v40_20*AA[0]+v41_21*AA[1];
|
|
|
|
AA -= 8;
|
|
|
|
d0 += 4;
|
|
d1 += 4;
|
|
e0 += 4;
|
|
e1 += 4;
|
|
}
|
|
}
|
|
|
|
// step 3
|
|
ld = ilog(n)-1; // ilog is off-by-one from normal definitions
|
|
|
|
// optimized step 3:
|
|
|
|
// the original step3 loop can be nested r inside s or s inside r;
|
|
// it's written originally as s inside r, but this is dumb when r
|
|
// iterates many times, and s few. So I have two copies of it and
|
|
// switch between them halfway.
|
|
|
|
// this is iteration 0 of step 3
|
|
imdct_step3_iter0_loop(n>>4, u, n2-1-n4*0, -(n>>3), A);
|
|
imdct_step3_iter0_loop(n>>4, u, n2-1-n4*1, -(n>>3), A);
|
|
|
|
// this is iteration 1 of step 3
|
|
imdct_step3_inner_r_loop(n>>5, u, n2-1-n8*0, -(n>>4), A, 16);
|
|
imdct_step3_inner_r_loop(n>>5, u, n2-1-n8*1, -(n>>4), A, 16);
|
|
imdct_step3_inner_r_loop(n>>5, u, n2-1-n8*2, -(n>>4), A, 16);
|
|
imdct_step3_inner_r_loop(n>>5, u, n2-1-n8*3, -(n>>4), A, 16);
|
|
|
|
l = 2;
|
|
for (; l < (ld-3)>>1; ++l) {
|
|
int k0 = n>>(l+2), k0_2 = k0>>1;
|
|
int lim = 1<<(l+1);
|
|
foreach (int i; 0..lim) imdct_step3_inner_r_loop(n>>(l+4), u, n2-1-k0*i, -k0_2, A, 1<<(l+3));
|
|
}
|
|
|
|
for (; l < ld-6; ++l) {
|
|
int k0 = n>>(l+2), k1 = 1<<(l+3), k0_2 = k0>>1;
|
|
int rlim = n>>(l+6);
|
|
int lim = 1<<(l+1);
|
|
int i_off;
|
|
float *A0 = A;
|
|
i_off = n2-1;
|
|
foreach (immutable _; 0..rlim) {
|
|
imdct_step3_inner_s_loop(lim, u, i_off, -k0_2, A0, k1, k0);
|
|
A0 += k1*4;
|
|
i_off -= 8;
|
|
}
|
|
}
|
|
|
|
// iterations with count:
|
|
// ld-6,-5,-4 all interleaved together
|
|
// the big win comes from getting rid of needless flops
|
|
// due to the constants on pass 5 & 4 being all 1 and 0;
|
|
// combining them to be simultaneous to improve cache made little difference
|
|
imdct_step3_inner_s_loop_ld654(n>>5, u, n2-1, A, n);
|
|
|
|
// output is u
|
|
|
|
// step 4, 5, and 6
|
|
// cannot be in-place because of step 5
|
|
{
|
|
ushort *bitrev = f.bit_reverse.ptr[blocktype];
|
|
// weirdly, I'd have thought reading sequentially and writing
|
|
// erratically would have been better than vice-versa, but in
|
|
// fact that's not what my testing showed. (That is, with
|
|
// j = bitreverse(i), do you read i and write j, or read j and write i.)
|
|
float *d0 = &v[n4-4];
|
|
float *d1 = &v[n2-4];
|
|
int k4;
|
|
while (d0 >= v) {
|
|
k4 = bitrev[0];
|
|
d1[3] = u[k4+0];
|
|
d1[2] = u[k4+1];
|
|
d0[3] = u[k4+2];
|
|
d0[2] = u[k4+3];
|
|
|
|
k4 = bitrev[1];
|
|
d1[1] = u[k4+0];
|
|
d1[0] = u[k4+1];
|
|
d0[1] = u[k4+2];
|
|
d0[0] = u[k4+3];
|
|
|
|
d0 -= 4;
|
|
d1 -= 4;
|
|
bitrev += 2;
|
|
}
|
|
}
|
|
// (paper output is u, now v)
|
|
|
|
|
|
// data must be in buf2
|
|
debug(stb_vorbis) assert(v == buf2);
|
|
|
|
// step 7 (paper output is v, now v)
|
|
// this is now in place
|
|
{
|
|
float a02, a11, b0, b1, b2, b3;
|
|
float* C = f.C.ptr[blocktype];
|
|
float* d, e;
|
|
d = v;
|
|
e = v+n2-4;
|
|
while (d < e) {
|
|
a02 = d[0]-e[2];
|
|
a11 = d[1]+e[3];
|
|
|
|
b0 = C[1]*a02+C[0]*a11;
|
|
b1 = C[1]*a11-C[0]*a02;
|
|
|
|
b2 = d[0]+e[ 2];
|
|
b3 = d[1]-e[ 3];
|
|
|
|
d[0] = b2+b0;
|
|
d[1] = b3+b1;
|
|
e[2] = b2-b0;
|
|
e[3] = b1-b3;
|
|
|
|
a02 = d[2]-e[0];
|
|
a11 = d[3]+e[1];
|
|
|
|
b0 = C[3]*a02+C[2]*a11;
|
|
b1 = C[3]*a11-C[2]*a02;
|
|
|
|
b2 = d[2]+e[ 0];
|
|
b3 = d[3]-e[ 1];
|
|
|
|
d[2] = b2+b0;
|
|
d[3] = b3+b1;
|
|
e[0] = b2-b0;
|
|
e[1] = b1-b3;
|
|
|
|
C += 4;
|
|
d += 4;
|
|
e -= 4;
|
|
}
|
|
}
|
|
|
|
// data must be in buf2
|
|
|
|
|
|
// step 8+decode (paper output is X, now buffer)
|
|
// this generates pairs of data a la 8 and pushes them directly through
|
|
// the decode kernel (pushing rather than pulling) to avoid having
|
|
// to make another pass later
|
|
|
|
// this cannot POSSIBLY be in place, so we refer to the buffers directly
|
|
{
|
|
float p0, p1, p2, p3;
|
|
float* d0, d1, d2, d3;
|
|
float* B = f.B.ptr[blocktype]+n2-8;
|
|
float* e = buf2+n2-8;
|
|
d0 = &buffer[0];
|
|
d1 = &buffer[n2-4];
|
|
d2 = &buffer[n2];
|
|
d3 = &buffer[n-4];
|
|
while (e >= v) {
|
|
p3 = e[6]*B[7]-e[7]*B[6];
|
|
p2 = -e[6]*B[6]-e[7]*B[7];
|
|
|
|
d0[0] = p3;
|
|
d1[3] = -p3;
|
|
d2[0] = p2;
|
|
d3[3] = p2;
|
|
|
|
p1 = e[4]*B[5]-e[5]*B[4];
|
|
p0 = -e[4]*B[4]-e[5]*B[5];
|
|
|
|
d0[1] = p1;
|
|
d1[2] = - p1;
|
|
d2[1] = p0;
|
|
d3[2] = p0;
|
|
|
|
p3 = e[2]*B[3]-e[3]*B[2];
|
|
p2 = -e[2]*B[2]-e[3]*B[3];
|
|
|
|
d0[2] = p3;
|
|
d1[1] = - p3;
|
|
d2[2] = p2;
|
|
d3[1] = p2;
|
|
|
|
p1 = e[0]*B[1]-e[1]*B[0];
|
|
p0 = -e[0]*B[0]-e[1]*B[1];
|
|
|
|
d0[3] = p1;
|
|
d1[0] = - p1;
|
|
d2[3] = p0;
|
|
d3[0] = p0;
|
|
|
|
B -= 8;
|
|
e -= 8;
|
|
d0 += 4;
|
|
d2 += 4;
|
|
d1 -= 4;
|
|
d3 -= 4;
|
|
}
|
|
}
|
|
|
|
temp_free(f, buf2);
|
|
temp_alloc_restore(f, save_point);
|
|
}
|
|
|
|
private float *get_window (VorbisDecoder f, int len) {
|
|
len <<= 1;
|
|
if (len == f.blocksize_0) return f.window.ptr[0];
|
|
if (len == f.blocksize_1) return f.window.ptr[1];
|
|
assert(0);
|
|
}
|
|
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
alias YTYPE = int;
|
|
} else {
|
|
alias YTYPE = short;
|
|
}
|
|
|
|
private int do_floor (VorbisDecoder f, Mapping* map, int i, int n, float* target, YTYPE* finalY, ubyte* step2_flag) {
|
|
int n2 = n>>1;
|
|
int s = map.chan[i].mux, floor;
|
|
floor = map.submap_floor.ptr[s];
|
|
if (f.floor_types.ptr[floor] == 0) {
|
|
return error(f, STBVorbisError.invalid_stream);
|
|
} else {
|
|
Floor1* g = &f.floor_config[floor].floor1;
|
|
int lx = 0, ly = finalY[0]*g.floor1_multiplier;
|
|
foreach (immutable q; 1..g.values) {
|
|
int j = g.sorted_order.ptr[q];
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
auto cond = step2_flag[j];
|
|
} else {
|
|
auto cond = (finalY[j] >= 0);
|
|
}
|
|
if (cond) {
|
|
int hy = finalY[j]*g.floor1_multiplier;
|
|
int hx = g.Xlist.ptr[j];
|
|
if (lx != hx) { mixin(draw_line!("target", "lx", "ly", "hx", "hy", "n2")); }
|
|
lx = hx; ly = hy;
|
|
}
|
|
}
|
|
if (lx < n2) {
|
|
// optimization of: draw_line(target, lx, ly, n, ly, n2);
|
|
foreach (immutable j; lx..n2) { mixin(LINE_OP!("target[j]", "inverse_db_table[ly]")); }
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// The meaning of "left" and "right"
|
|
//
|
|
// For a given frame:
|
|
// we compute samples from 0..n
|
|
// window_center is n/2
|
|
// we'll window and mix the samples from left_start to left_end with data from the previous frame
|
|
// all of the samples from left_end to right_start can be output without mixing; however,
|
|
// this interval is 0-length except when transitioning between short and long frames
|
|
// all of the samples from right_start to right_end need to be mixed with the next frame,
|
|
// which we don't have, so those get saved in a buffer
|
|
// frame N's right_end-right_start, the number of samples to mix with the next frame,
|
|
// has to be the same as frame N+1's left_end-left_start (which they are by
|
|
// construction)
|
|
|
|
private int vorbis_decode_initial (VorbisDecoder f, int* p_left_start, int* p_left_end, int* p_right_start, int* p_right_end, int* mode) {
|
|
Mode *m;
|
|
int i, n, prev, next, window_center;
|
|
f.channel_buffer_start = f.channel_buffer_end = 0;
|
|
|
|
retry:
|
|
if (f.eof) return false;
|
|
if (!maybe_start_packet(f)) return false;
|
|
// check packet type
|
|
if (get_bits!1(f) != 0) {
|
|
/+if (f.push_mode) return error(f, STBVorbisError.bad_packet_type);+/
|
|
while (EOP != get8_packet(f)) {}
|
|
goto retry;
|
|
}
|
|
|
|
//debug(stb_vorbis) if (f.alloc.alloc_buffer) assert(f.alloc.alloc_buffer_length_in_bytes == f.temp_offset);
|
|
|
|
i = get_bits_main(f, ilog(f.mode_count-1));
|
|
if (i == EOP) return false;
|
|
if (i >= f.mode_count) return false;
|
|
*mode = i;
|
|
m = f.mode_config.ptr+i;
|
|
if (m.blockflag) {
|
|
n = f.blocksize_1;
|
|
prev = get_bits!1(f);
|
|
next = get_bits!1(f);
|
|
} else {
|
|
prev = next = 0;
|
|
n = f.blocksize_0;
|
|
}
|
|
|
|
// WINDOWING
|
|
window_center = n>>1;
|
|
if (m.blockflag && !prev) {
|
|
*p_left_start = (n-f.blocksize_0)>>2;
|
|
*p_left_end = (n+f.blocksize_0)>>2;
|
|
} else {
|
|
*p_left_start = 0;
|
|
*p_left_end = window_center;
|
|
}
|
|
if (m.blockflag && !next) {
|
|
*p_right_start = (n*3-f.blocksize_0)>>2;
|
|
*p_right_end = (n*3+f.blocksize_0)>>2;
|
|
} else {
|
|
*p_right_start = window_center;
|
|
*p_right_end = n;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private int vorbis_decode_packet_rest (VorbisDecoder f, int* len, Mode* m, int left_start, int left_end, int right_start, int right_end, int* p_left) {
|
|
import core.stdc.string : memcpy, memset;
|
|
|
|
Mapping* map;
|
|
int n, n2;
|
|
int[256] zero_channel;
|
|
int[256] really_zero_channel;
|
|
|
|
// WINDOWING
|
|
n = f.blocksize.ptr[m.blockflag];
|
|
map = &f.mapping[m.mapping];
|
|
|
|
// FLOORS
|
|
n2 = n>>1;
|
|
|
|
//stb_prof(1);
|
|
foreach (immutable i; 0..f.vrchannels) {
|
|
int s = map.chan[i].mux, floor;
|
|
zero_channel[i] = false;
|
|
floor = map.submap_floor.ptr[s];
|
|
if (f.floor_types.ptr[floor] == 0) {
|
|
return error(f, STBVorbisError.invalid_stream);
|
|
} else {
|
|
Floor1* g = &f.floor_config[floor].floor1;
|
|
if (get_bits!1(f)) {
|
|
short* finalY;
|
|
ubyte[256] step2_flag = void;
|
|
immutable int[4] range_list = [ 256, 128, 86, 64 ];
|
|
int range = range_list[g.floor1_multiplier-1];
|
|
int offset = 2;
|
|
finalY = f.finalY.ptr[i];
|
|
finalY[0] = cast(short)get_bits_main(f, ilog(range)-1); //k8
|
|
finalY[1] = cast(short)get_bits_main(f, ilog(range)-1); //k8
|
|
foreach (immutable j; 0..g.partitions) {
|
|
int pclass = g.partition_class_list.ptr[j];
|
|
int cdim = g.class_dimensions.ptr[pclass];
|
|
int cbits = g.class_subclasses.ptr[pclass];
|
|
int csub = (1<<cbits)-1;
|
|
int cval = 0;
|
|
if (cbits) {
|
|
Codebook *cc = f.codebooks+g.class_masterbooks.ptr[pclass];
|
|
mixin(DECODE!("cval", "cc"));
|
|
}
|
|
foreach (immutable k; 0..cdim) {
|
|
int book = g.subclass_books.ptr[pclass].ptr[cval&csub];
|
|
cval = cval>>cbits;
|
|
if (book >= 0) {
|
|
int temp;
|
|
Codebook *cc = f.codebooks+book;
|
|
mixin(DECODE!("temp", "cc"));
|
|
finalY[offset++] = cast(short)temp; //k8
|
|
} else {
|
|
finalY[offset++] = 0;
|
|
}
|
|
}
|
|
}
|
|
if (f.valid_bits == INVALID_BITS) goto error; // behavior according to spec
|
|
step2_flag[0] = step2_flag[1] = 1;
|
|
foreach (immutable j; 2..g.values) {
|
|
int low = g.neighbors.ptr[j].ptr[0];
|
|
int high = g.neighbors.ptr[j].ptr[1];
|
|
//neighbors(g.Xlist, j, &low, &high);
|
|
int pred = void;
|
|
mixin(predict_point!("pred", "g.Xlist.ptr[j]", "g.Xlist.ptr[low]", "g.Xlist.ptr[high]", "finalY[low]", "finalY[high]"));
|
|
int val = finalY[j];
|
|
int highroom = range-pred;
|
|
int lowroom = pred;
|
|
auto room = (highroom < lowroom ? highroom : lowroom)*2;
|
|
if (val) {
|
|
step2_flag[low] = step2_flag[high] = 1;
|
|
step2_flag[j] = 1;
|
|
if (val >= room) {
|
|
finalY[j] = cast(short)(highroom > lowroom ? val-lowroom+pred : pred-val+highroom-1); //k8
|
|
} else {
|
|
finalY[j] = cast(short)(val&1 ? pred-((val+1)>>1) : pred+(val>>1)); //k8
|
|
}
|
|
} else {
|
|
step2_flag[j] = 0;
|
|
finalY[j] = cast(short)pred; //k8
|
|
}
|
|
}
|
|
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
do_floor(f, map, i, n, f.floor_buffers.ptr[i], finalY, step2_flag);
|
|
} else {
|
|
// defer final floor computation until _after_ residue
|
|
foreach (immutable j; 0..g.values) if (!step2_flag[j]) finalY[j] = -1;
|
|
}
|
|
} else {
|
|
error:
|
|
zero_channel[i] = true;
|
|
}
|
|
// So we just defer everything else to later
|
|
// at this point we've decoded the floor into buffer
|
|
}
|
|
}
|
|
//stb_prof(0);
|
|
// at this point we've decoded all floors
|
|
|
|
//debug(stb_vorbis) if (f.alloc.alloc_buffer) assert(f.alloc.alloc_buffer_length_in_bytes == f.temp_offset);
|
|
|
|
// re-enable coupled channels if necessary
|
|
memcpy(really_zero_channel.ptr, zero_channel.ptr, (really_zero_channel[0]).sizeof*f.vrchannels);
|
|
foreach (immutable i; 0..map.coupling_steps) {
|
|
if (!zero_channel[map.chan[i].magnitude] || !zero_channel[map.chan[i].angle]) {
|
|
zero_channel[map.chan[i].magnitude] = zero_channel[map.chan[i].angle] = false;
|
|
}
|
|
}
|
|
|
|
// RESIDUE DECODE
|
|
foreach (immutable i; 0..map.submaps) {
|
|
float*[STB_VORBIS_MAX_CHANNELS] residue_buffers;
|
|
ubyte[256] do_not_decode = void;
|
|
int ch = 0;
|
|
foreach (immutable j; 0..f.vrchannels) {
|
|
if (map.chan[j].mux == i) {
|
|
if (zero_channel[j]) {
|
|
do_not_decode[ch] = true;
|
|
residue_buffers.ptr[ch] = null;
|
|
} else {
|
|
do_not_decode[ch] = false;
|
|
residue_buffers.ptr[ch] = f.channel_buffers.ptr[j];
|
|
}
|
|
++ch;
|
|
}
|
|
}
|
|
int r = map.submap_residue.ptr[i];
|
|
decode_residue(f, residue_buffers, ch, n2, r, do_not_decode.ptr);
|
|
}
|
|
|
|
//debug(stb_vorbis) if (f.alloc.alloc_buffer) assert(f.alloc.alloc_buffer_length_in_bytes == f.temp_offset);
|
|
|
|
// INVERSE COUPLING
|
|
//stb_prof(14);
|
|
foreach_reverse (immutable i; 0..map.coupling_steps) {
|
|
int n2n = n>>1;
|
|
float* mm = f.channel_buffers.ptr[map.chan[i].magnitude];
|
|
float* a = f.channel_buffers.ptr[map.chan[i].angle];
|
|
foreach (immutable j; 0..n2n) {
|
|
float a2, m2;
|
|
if (mm[j] > 0) {
|
|
if (a[j] > 0) { m2 = mm[j]; a2 = mm[j]-a[j]; } else { a2 = mm[j]; m2 = mm[j]+a[j]; }
|
|
} else {
|
|
if (a[j] > 0) { m2 = mm[j]; a2 = mm[j]+a[j]; } else { a2 = mm[j]; m2 = mm[j]-a[j]; }
|
|
}
|
|
mm[j] = m2;
|
|
a[j] = a2;
|
|
}
|
|
}
|
|
|
|
// finish decoding the floors
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
foreach (immutable i; 0..f.vrchannels) {
|
|
if (really_zero_channel[i]) {
|
|
memset(f.channel_buffers.ptr[i], 0, (*f.channel_buffers.ptr[i]).sizeof*n2);
|
|
} else {
|
|
foreach (immutable j; 0..n2) f.channel_buffers.ptr[i].ptr[j] *= f.floor_buffers.ptr[i].ptr[j];
|
|
}
|
|
}
|
|
} else {
|
|
//stb_prof(15);
|
|
foreach (immutable i; 0..f.vrchannels) {
|
|
if (really_zero_channel[i]) {
|
|
memset(f.channel_buffers.ptr[i], 0, (*f.channel_buffers.ptr[i]).sizeof*n2);
|
|
} else {
|
|
do_floor(f, map, i, n, f.channel_buffers.ptr[i], f.finalY.ptr[i], null);
|
|
}
|
|
}
|
|
}
|
|
|
|
// INVERSE MDCT
|
|
//stb_prof(16);
|
|
foreach (immutable i; 0..f.vrchannels) inverse_mdct(f.channel_buffers.ptr[i], n, f, m.blockflag);
|
|
//stb_prof(0);
|
|
|
|
// this shouldn't be necessary, unless we exited on an error
|
|
// and want to flush to get to the next packet
|
|
flush_packet(f);
|
|
|
|
if (f.first_decode) {
|
|
// assume we start so first non-discarded sample is sample 0
|
|
// this isn't to spec, but spec would require us to read ahead
|
|
// and decode the size of all current frames--could be done,
|
|
// but presumably it's not a commonly used feature
|
|
f.current_loc = -n2; // start of first frame is positioned for discard
|
|
// we might have to discard samples "from" the next frame too,
|
|
// if we're lapping a large block then a small at the start?
|
|
f.discard_samples_deferred = n-right_end;
|
|
f.current_loc_valid = true;
|
|
f.first_decode = false;
|
|
} else if (f.discard_samples_deferred) {
|
|
if (f.discard_samples_deferred >= right_start-left_start) {
|
|
f.discard_samples_deferred -= (right_start-left_start);
|
|
left_start = right_start;
|
|
*p_left = left_start;
|
|
} else {
|
|
left_start += f.discard_samples_deferred;
|
|
*p_left = left_start;
|
|
f.discard_samples_deferred = 0;
|
|
}
|
|
} else if (f.previous_length == 0 && f.current_loc_valid) {
|
|
// we're recovering from a seek... that means we're going to discard
|
|
// the samples from this packet even though we know our position from
|
|
// the last page header, so we need to update the position based on
|
|
// the discarded samples here
|
|
// but wait, the code below is going to add this in itself even
|
|
// on a discard, so we don't need to do it here...
|
|
}
|
|
|
|
// check if we have ogg information about the sample # for this packet
|
|
if (f.last_seg_which == f.end_seg_with_known_loc) {
|
|
// if we have a valid current loc, and this is final:
|
|
if (f.current_loc_valid && (f.page_flag&PAGEFLAG_last_page)) {
|
|
uint current_end = f.known_loc_for_packet-(n-right_end);
|
|
// then let's infer the size of the (probably) short final frame
|
|
if (current_end < f.current_loc+right_end) {
|
|
if (current_end < f.current_loc+(right_end-left_start)) {
|
|
// negative truncation, that's impossible!
|
|
*len = 0;
|
|
} else {
|
|
*len = current_end-f.current_loc;
|
|
}
|
|
*len += left_start;
|
|
if (*len > right_end) *len = right_end; // this should never happen
|
|
f.current_loc += *len;
|
|
return true;
|
|
}
|
|
}
|
|
// otherwise, just set our sample loc
|
|
// guess that the ogg granule pos refers to the _middle_ of the
|
|
// last frame?
|
|
// set f.current_loc to the position of left_start
|
|
f.current_loc = f.known_loc_for_packet-(n2-left_start);
|
|
f.current_loc_valid = true;
|
|
}
|
|
if (f.current_loc_valid) f.current_loc += (right_start-left_start);
|
|
|
|
//debug(stb_vorbis) if (f.alloc.alloc_buffer) assert(f.alloc.alloc_buffer_length_in_bytes == f.temp_offset);
|
|
|
|
*len = right_end; // ignore samples after the window goes to 0
|
|
return true;
|
|
}
|
|
|
|
private int vorbis_decode_packet (VorbisDecoder f, int* len, int* p_left, int* p_right) {
|
|
int mode, left_end, right_end;
|
|
if (!vorbis_decode_initial(f, p_left, &left_end, p_right, &right_end, &mode)) return 0;
|
|
return vorbis_decode_packet_rest(f, len, f.mode_config.ptr+mode, *p_left, left_end, *p_right, right_end, p_left);
|
|
}
|
|
|
|
private int vorbis_finish_frame (VorbisDecoder f, int len, int left, int right) {
|
|
// we use right&left (the start of the right- and left-window sin()-regions)
|
|
// to determine how much to return, rather than inferring from the rules
|
|
// (same result, clearer code); 'left' indicates where our sin() window
|
|
// starts, therefore where the previous window's right edge starts, and
|
|
// therefore where to start mixing from the previous buffer. 'right'
|
|
// indicates where our sin() ending-window starts, therefore that's where
|
|
// we start saving, and where our returned-data ends.
|
|
|
|
// mixin from previous window
|
|
if (f.previous_length) {
|
|
int n = f.previous_length;
|
|
float *w = get_window(f, n);
|
|
foreach (immutable i; 0..f.vrchannels) {
|
|
foreach (immutable j; 0..n) {
|
|
(f.channel_buffers.ptr[i])[left+j] =
|
|
(f.channel_buffers.ptr[i])[left+j]*w[ j]+
|
|
(f.previous_window.ptr[i])[ j]*w[n-1-j];
|
|
}
|
|
}
|
|
}
|
|
|
|
auto prev = f.previous_length;
|
|
|
|
// last half of this data becomes previous window
|
|
f.previous_length = len-right;
|
|
|
|
// @OPTIMIZE: could avoid this copy by double-buffering the
|
|
// output (flipping previous_window with channel_buffers), but
|
|
// then previous_window would have to be 2x as large, and
|
|
// channel_buffers couldn't be temp mem (although they're NOT
|
|
// currently temp mem, they could be (unless we want to level
|
|
// performance by spreading out the computation))
|
|
foreach (immutable i; 0..f.vrchannels) {
|
|
for (uint j = 0; right+j < len; ++j) (f.previous_window.ptr[i])[j] = (f.channel_buffers.ptr[i])[right+j];
|
|
}
|
|
|
|
if (!prev) {
|
|
// there was no previous packet, so this data isn't valid...
|
|
// this isn't entirely true, only the would-have-overlapped data
|
|
// isn't valid, but this seems to be what the spec requires
|
|
return 0;
|
|
}
|
|
|
|
// truncate a short frame
|
|
if (len < right) right = len;
|
|
|
|
f.samples_output += right-left;
|
|
|
|
return right-left;
|
|
}
|
|
|
|
private bool vorbis_pump_first_frame (VorbisDecoder f) {
|
|
int len, right, left;
|
|
if (vorbis_decode_packet(f, &len, &left, &right)) {
|
|
vorbis_finish_frame(f, len, left, right);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/+ k8: i don't need that, so it's dead
|
|
private int is_whole_packet_present (VorbisDecoder f, int end_page) {
|
|
import core.stdc.string : memcmp;
|
|
|
|
// make sure that we have the packet available before continuing...
|
|
// this requires a full ogg parse, but we know we can fetch from f.stream
|
|
|
|
// instead of coding this out explicitly, we could save the current read state,
|
|
// read the next packet with get8() until end-of-packet, check f.eof, then
|
|
// reset the state? but that would be slower, esp. since we'd have over 256 bytes
|
|
// of state to restore (primarily the page segment table)
|
|
|
|
int s = f.next_seg, first = true;
|
|
ubyte *p = f.stream;
|
|
|
|
if (s != -1) { // if we're not starting the packet with a 'continue on next page' flag
|
|
for (; s < f.segment_count; ++s) {
|
|
p += f.segments[s];
|
|
if (f.segments[s] < 255) break; // stop at first short segment
|
|
}
|
|
// either this continues, or it ends it...
|
|
if (end_page && s < f.segment_count-1) return error(f, STBVorbisError.invalid_stream);
|
|
if (s == f.segment_count) s = -1; // set 'crosses page' flag
|
|
if (p > f.stream_end) return error(f, STBVorbisError.need_more_data);
|
|
first = false;
|
|
}
|
|
while (s == -1) {
|
|
ubyte* q = void;
|
|
int n = void;
|
|
// check that we have the page header ready
|
|
if (p+26 >= f.stream_end) return error(f, STBVorbisError.need_more_data);
|
|
// validate the page
|
|
if (memcmp(p, ogg_page_header.ptr, 4)) return error(f, STBVorbisError.invalid_stream);
|
|
if (p[4] != 0) return error(f, STBVorbisError.invalid_stream);
|
|
if (first) { // the first segment must NOT have 'continued_packet', later ones MUST
|
|
if (f.previous_length && (p[5]&PAGEFLAG_continued_packet)) return error(f, STBVorbisError.invalid_stream);
|
|
// if no previous length, we're resynching, so we can come in on a continued-packet,
|
|
// which we'll just drop
|
|
} else {
|
|
if (!(p[5]&PAGEFLAG_continued_packet)) return error(f, STBVorbisError.invalid_stream);
|
|
}
|
|
n = p[26]; // segment counts
|
|
q = p+27; // q points to segment table
|
|
p = q+n; // advance past header
|
|
// make sure we've read the segment table
|
|
if (p > f.stream_end) return error(f, STBVorbisError.need_more_data);
|
|
for (s = 0; s < n; ++s) {
|
|
p += q[s];
|
|
if (q[s] < 255) break;
|
|
}
|
|
if (end_page && s < n-1) return error(f, STBVorbisError.invalid_stream);
|
|
if (s == n) s = -1; // set 'crosses page' flag
|
|
if (p > f.stream_end) return error(f, STBVorbisError.need_more_data);
|
|
first = false;
|
|
}
|
|
return true;
|
|
}
|
|
+/
|
|
|
|
private int start_decoder (VorbisDecoder f) {
|
|
import core.stdc.string : memcpy, memset;
|
|
|
|
ubyte[6] header;
|
|
ubyte x, y;
|
|
int len, max_submaps = 0;
|
|
int longest_floorlist = 0;
|
|
|
|
// first page, first packet
|
|
|
|
if (!start_page(f)) return false;
|
|
// validate page flag
|
|
if (!(f.page_flag&PAGEFLAG_first_page)) return error(f, STBVorbisError.invalid_first_page);
|
|
if (f.page_flag&PAGEFLAG_last_page) return error(f, STBVorbisError.invalid_first_page);
|
|
if (f.page_flag&PAGEFLAG_continued_packet) return error(f, STBVorbisError.invalid_first_page);
|
|
// check for expected packet length
|
|
if (f.segment_count != 1) return error(f, STBVorbisError.invalid_first_page);
|
|
if (f.segments[0] != 30) return error(f, STBVorbisError.invalid_first_page);
|
|
// read packet
|
|
// check packet header
|
|
if (get8(f) != VorbisPacket.id) return error(f, STBVorbisError.invalid_first_page);
|
|
if (!getn(f, header.ptr, 6)) return error(f, STBVorbisError.unexpected_eof);
|
|
if (!vorbis_validate(header.ptr)) return error(f, STBVorbisError.invalid_first_page);
|
|
// vorbis_version
|
|
if (get32(f) != 0) return error(f, STBVorbisError.invalid_first_page);
|
|
f.vrchannels = get8(f); if (!f.vrchannels) return error(f, STBVorbisError.invalid_first_page);
|
|
if (f.vrchannels > STB_VORBIS_MAX_CHANNELS) return error(f, STBVorbisError.too_many_channels);
|
|
f.sample_rate = get32(f); if (!f.sample_rate) return error(f, STBVorbisError.invalid_first_page);
|
|
get32(f); // bitrate_maximum
|
|
get32(f); // bitrate_nominal
|
|
get32(f); // bitrate_minimum
|
|
x = get8(f);
|
|
{
|
|
int log0 = x&15;
|
|
int log1 = x>>4;
|
|
f.blocksize_0 = 1<<log0;
|
|
f.blocksize_1 = 1<<log1;
|
|
if (log0 < 6 || log0 > 13) return error(f, STBVorbisError.invalid_setup);
|
|
if (log1 < 6 || log1 > 13) return error(f, STBVorbisError.invalid_setup);
|
|
if (log0 > log1) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
|
|
// framing_flag
|
|
x = get8(f);
|
|
if (!(x&1)) return error(f, STBVorbisError.invalid_first_page);
|
|
|
|
// second packet! (comments)
|
|
if (!start_page(f)) return false;
|
|
|
|
// read comments
|
|
if (!start_packet(f)) return false;
|
|
|
|
if (f.read_comments) {
|
|
/+if (f.push_mode) {
|
|
if (!is_whole_packet_present(f, true)) {
|
|
// convert error in ogg header to write type
|
|
if (f.error == STBVorbisError.invalid_stream) f.error = STBVorbisError.invalid_setup;
|
|
return false;
|
|
}
|
|
}+/
|
|
if (get8_packet(f) != VorbisPacket.comment) return error(f, STBVorbisError.invalid_setup);
|
|
foreach (immutable i; 0..6) header[i] = cast(ubyte)get8_packet(f); //k8
|
|
if (!vorbis_validate(header.ptr)) return error(f, STBVorbisError.invalid_setup);
|
|
|
|
// skip vendor id
|
|
uint vidsize = get32_packet(f);
|
|
//{ import core.stdc.stdio; printf("vendor size: %u\n", vidsize); }
|
|
if (vidsize == EOP) return error(f, STBVorbisError.invalid_setup);
|
|
while (vidsize--) get8_packet(f);
|
|
|
|
// read comments section
|
|
uint cmtcount = get32_packet(f);
|
|
if (cmtcount == EOP) return error(f, STBVorbisError.invalid_setup);
|
|
if (cmtcount > 0) {
|
|
uint cmtsize = 32768; // this should be enough for everyone
|
|
f.comment_data = setup_malloc!ubyte(f, cmtsize);
|
|
if (f.comment_data is null) return error(f, STBVorbisError.outofmem);
|
|
auto cmtpos = 0;
|
|
auto d = f.comment_data;
|
|
while (cmtcount--) {
|
|
uint linelen = get32_packet(f);
|
|
//{ import core.stdc.stdio; printf("linelen: %u; lines left: %u\n", linelen, cmtcount); }
|
|
if (linelen == EOP || linelen > ushort.max-2) break;
|
|
if (linelen == 0) { continue; }
|
|
if (cmtpos+2+linelen > cmtsize) break;
|
|
cmtpos += linelen+2;
|
|
*d++ = (linelen+2)&0xff;
|
|
*d++ = ((linelen+2)>>8)&0xff;
|
|
while (linelen--) {
|
|
auto b = get8_packet(f);
|
|
if (b == EOP) return error(f, STBVorbisError.outofmem);
|
|
*d++ = cast(ubyte)b;
|
|
}
|
|
//{ import core.stdc.stdio; printf("%u bytes of comments read\n", cmtpos); }
|
|
f.comment_size = cmtpos;
|
|
}
|
|
}
|
|
flush_packet(f);
|
|
f.comment_rewind();
|
|
} else {
|
|
// skip comments
|
|
do {
|
|
len = next_segment(f);
|
|
skip(f, len);
|
|
f.bytes_in_seg = 0;
|
|
} while (len);
|
|
}
|
|
|
|
// third packet!
|
|
if (!start_packet(f)) return false;
|
|
|
|
/+if (f.push_mode) {
|
|
if (!is_whole_packet_present(f, true)) {
|
|
// convert error in ogg header to write type
|
|
if (f.error == STBVorbisError.invalid_stream) f.error = STBVorbisError.invalid_setup;
|
|
return false;
|
|
}
|
|
}+/
|
|
|
|
if (get8_packet(f) != VorbisPacket.setup) return error(f, STBVorbisError.invalid_setup);
|
|
foreach (immutable i; 0..6) header[i] = cast(ubyte)get8_packet(f); //k8
|
|
if (!vorbis_validate(header.ptr)) return error(f, STBVorbisError.invalid_setup);
|
|
|
|
// codebooks
|
|
f.codebook_count = get_bits!8(f)+1;
|
|
f.codebooks = setup_malloc!Codebook(f, f.codebook_count);
|
|
static assert((*f.codebooks).sizeof == Codebook.sizeof);
|
|
if (f.codebooks is null) return error(f, STBVorbisError.outofmem);
|
|
memset(f.codebooks, 0, (*f.codebooks).sizeof*f.codebook_count);
|
|
foreach (immutable i; 0..f.codebook_count) {
|
|
uint* values;
|
|
int ordered, sorted_count;
|
|
int total = 0;
|
|
ubyte* lengths;
|
|
Codebook* c = f.codebooks+i;
|
|
x = get_bits!8(f); if (x != 0x42) return error(f, STBVorbisError.invalid_setup);
|
|
x = get_bits!8(f); if (x != 0x43) return error(f, STBVorbisError.invalid_setup);
|
|
x = get_bits!8(f); if (x != 0x56) return error(f, STBVorbisError.invalid_setup);
|
|
x = get_bits!8(f);
|
|
c.dimensions = (get_bits!8(f)<<8)+x;
|
|
x = get_bits!8(f);
|
|
y = get_bits!8(f);
|
|
c.entries = (get_bits!8(f)<<16)+(y<<8)+x;
|
|
ordered = get_bits!1(f);
|
|
c.sparse = (ordered ? 0 : get_bits!1(f));
|
|
|
|
if (c.dimensions == 0 && c.entries != 0) return error(f, STBVorbisError.invalid_setup);
|
|
|
|
if (c.sparse) {
|
|
lengths = cast(ubyte*)setup_temp_malloc(f, c.entries);
|
|
} else {
|
|
lengths = c.codeword_lengths = setup_malloc!ubyte(f, c.entries);
|
|
}
|
|
|
|
if (lengths is null) return error(f, STBVorbisError.outofmem);
|
|
|
|
if (ordered) {
|
|
int current_entry = 0;
|
|
int current_length = get_bits_add_no!5(f, 1);
|
|
while (current_entry < c.entries) {
|
|
int limit = c.entries-current_entry;
|
|
int n = get_bits_main(f, ilog(limit));
|
|
if (current_entry+n > cast(int)c.entries) return error(f, STBVorbisError.invalid_setup);
|
|
memset(lengths+current_entry, current_length, n);
|
|
current_entry += n;
|
|
++current_length;
|
|
}
|
|
} else {
|
|
foreach (immutable j; 0..c.entries) {
|
|
int present = (c.sparse ? get_bits!1(f) : 1);
|
|
if (present) {
|
|
lengths[j] = get_bits_add_no!5(f, 1);
|
|
++total;
|
|
if (lengths[j] == 32) return error(f, STBVorbisError.invalid_setup);
|
|
} else {
|
|
lengths[j] = NO_CODE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c.sparse && total >= c.entries>>2) {
|
|
// convert sparse items to non-sparse!
|
|
if (c.entries > cast(int)f.setup_temp_memory_required) f.setup_temp_memory_required = c.entries;
|
|
c.codeword_lengths = setup_malloc!ubyte(f, c.entries);
|
|
if (c.codeword_lengths is null) return error(f, STBVorbisError.outofmem);
|
|
memcpy(c.codeword_lengths, lengths, c.entries);
|
|
setup_temp_free(f, lengths, c.entries); // note this is only safe if there have been no intervening temp mallocs!
|
|
lengths = c.codeword_lengths;
|
|
c.sparse = 0;
|
|
}
|
|
|
|
// compute the size of the sorted tables
|
|
if (c.sparse) {
|
|
sorted_count = total;
|
|
} else {
|
|
sorted_count = 0;
|
|
version(STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH) {} else {
|
|
foreach (immutable j; 0..c.entries) if (lengths[j] > STB_VORBIS_FAST_HUFFMAN_LENGTH && lengths[j] != NO_CODE) ++sorted_count;
|
|
}
|
|
}
|
|
|
|
c.sorted_entries = sorted_count;
|
|
values = null;
|
|
|
|
if (!c.sparse) {
|
|
c.codewords = setup_malloc!uint(f, c.entries);
|
|
if (!c.codewords) return error(f, STBVorbisError.outofmem);
|
|
} else {
|
|
if (c.sorted_entries) {
|
|
c.codeword_lengths = setup_malloc!ubyte(f, c.sorted_entries);
|
|
if (!c.codeword_lengths) return error(f, STBVorbisError.outofmem);
|
|
c.codewords = cast(uint*)setup_temp_malloc(f, cast(int)(*c.codewords).sizeof*c.sorted_entries);
|
|
if (!c.codewords) return error(f, STBVorbisError.outofmem);
|
|
values = cast(uint*)setup_temp_malloc(f, cast(int)(*values).sizeof*c.sorted_entries);
|
|
if (!values) return error(f, STBVorbisError.outofmem);
|
|
}
|
|
uint size = c.entries+cast(int)((*c.codewords).sizeof+(*values).sizeof)*c.sorted_entries;
|
|
if (size > f.setup_temp_memory_required) f.setup_temp_memory_required = size;
|
|
}
|
|
|
|
if (!compute_codewords(c, lengths, c.entries, values)) {
|
|
if (c.sparse) setup_temp_free(f, values, 0);
|
|
return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
|
|
if (c.sorted_entries) {
|
|
// allocate an extra slot for sentinels
|
|
c.sorted_codewords = setup_malloc!uint(f, c.sorted_entries+1);
|
|
if (c.sorted_codewords is null) return error(f, STBVorbisError.outofmem);
|
|
// allocate an extra slot at the front so that c.sorted_values[-1] is defined
|
|
// so that we can catch that case without an extra if
|
|
c.sorted_values = setup_malloc!int(f, c.sorted_entries+1);
|
|
if (c.sorted_values is null) return error(f, STBVorbisError.outofmem);
|
|
++c.sorted_values;
|
|
c.sorted_values[-1] = -1;
|
|
compute_sorted_huffman(c, lengths, values);
|
|
}
|
|
|
|
if (c.sparse) {
|
|
setup_temp_free(f, values, cast(int)(*values).sizeof*c.sorted_entries);
|
|
setup_temp_free(f, c.codewords, cast(int)(*c.codewords).sizeof*c.sorted_entries);
|
|
setup_temp_free(f, lengths, c.entries);
|
|
c.codewords = null;
|
|
}
|
|
|
|
compute_accelerated_huffman(c);
|
|
|
|
c.lookup_type = get_bits!4(f);
|
|
if (c.lookup_type > 2) return error(f, STBVorbisError.invalid_setup);
|
|
if (c.lookup_type > 0) {
|
|
ushort* mults;
|
|
c.minimum_value = float32_unpack(get_bits!32(f));
|
|
c.delta_value = float32_unpack(get_bits!32(f));
|
|
c.value_bits = get_bits_add_no!4(f, 1);
|
|
c.sequence_p = get_bits!1(f);
|
|
if (c.lookup_type == 1) {
|
|
c.lookup_values = lookup1_values(c.entries, c.dimensions);
|
|
} else {
|
|
c.lookup_values = c.entries*c.dimensions;
|
|
}
|
|
if (c.lookup_values == 0) return error(f, STBVorbisError.invalid_setup);
|
|
mults = cast(ushort*)setup_temp_malloc(f, cast(int)(mults[0]).sizeof*c.lookup_values);
|
|
if (mults is null) return error(f, STBVorbisError.outofmem);
|
|
foreach (immutable j; 0..cast(int)c.lookup_values) {
|
|
int q = get_bits_main(f, c.value_bits);
|
|
if (q == EOP) { setup_temp_free(f, mults, cast(int)(mults[0]).sizeof*c.lookup_values); return error(f, STBVorbisError.invalid_setup); }
|
|
mults[j] = cast(ushort)q; //k8
|
|
}
|
|
|
|
version(STB_VORBIS_DIVIDES_IN_CODEBOOK) {} else {
|
|
if (c.lookup_type == 1) {
|
|
int sparse = c.sparse; //len
|
|
float last = 0;
|
|
// pre-expand the lookup1-style multiplicands, to avoid a divide in the inner loop
|
|
if (sparse) {
|
|
if (c.sorted_entries == 0) goto skip;
|
|
c.multiplicands = setup_malloc!codetype(f, c.sorted_entries*c.dimensions);
|
|
} else {
|
|
c.multiplicands = setup_malloc!codetype(f, c.entries*c.dimensions);
|
|
}
|
|
if (c.multiplicands is null) { setup_temp_free(f, mults, cast(int)(mults[0]).sizeof*c.lookup_values); return error(f, STBVorbisError.outofmem); }
|
|
foreach (immutable j; 0..(sparse ? c.sorted_entries : c.entries)) {
|
|
uint z = (sparse ? c.sorted_values[j] : j);
|
|
uint div = 1;
|
|
foreach (immutable k; 0..c.dimensions) {
|
|
int off = (z/div)%c.lookup_values;
|
|
float val = mults[off];
|
|
val = val*c.delta_value+c.minimum_value+last;
|
|
c.multiplicands[j*c.dimensions+k] = val;
|
|
if (c.sequence_p) last = val;
|
|
if (k+1 < c.dimensions) {
|
|
if (div > uint.max/cast(uint)c.lookup_values) {
|
|
setup_temp_free(f, mults, cast(uint)(mults[0]).sizeof*c.lookup_values);
|
|
return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
div *= c.lookup_values;
|
|
}
|
|
}
|
|
}
|
|
c.lookup_type = 2;
|
|
goto skip;
|
|
}
|
|
//else
|
|
}
|
|
{
|
|
float last = 0;
|
|
c.multiplicands = setup_malloc!codetype(f, c.lookup_values);
|
|
if (c.multiplicands is null) { setup_temp_free(f, mults, cast(uint)(mults[0]).sizeof*c.lookup_values); return error(f, STBVorbisError.outofmem); }
|
|
foreach (immutable j; 0..cast(int)c.lookup_values) {
|
|
float val = mults[j]*c.delta_value+c.minimum_value+last;
|
|
c.multiplicands[j] = val;
|
|
if (c.sequence_p) last = val;
|
|
}
|
|
}
|
|
//version(STB_VORBIS_DIVIDES_IN_CODEBOOK)
|
|
skip: // this is versioned out in C
|
|
setup_temp_free(f, mults, cast(uint)(mults[0]).sizeof*c.lookup_values);
|
|
}
|
|
}
|
|
|
|
// time domain transfers (notused)
|
|
x = get_bits_add_no!6(f, 1);
|
|
foreach (immutable i; 0..x) {
|
|
auto z = get_bits!16(f);
|
|
if (z != 0) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
|
|
// Floors
|
|
f.floor_count = get_bits_add_no!6(f, 1);
|
|
f.floor_config = setup_malloc!Floor(f, f.floor_count);
|
|
if (f.floor_config is null) return error(f, STBVorbisError.outofmem);
|
|
foreach (immutable i; 0..f.floor_count) {
|
|
f.floor_types[i] = get_bits!16(f);
|
|
if (f.floor_types[i] > 1) return error(f, STBVorbisError.invalid_setup);
|
|
if (f.floor_types[i] == 0) {
|
|
Floor0* g = &f.floor_config[i].floor0;
|
|
g.order = get_bits!8(f);
|
|
g.rate = get_bits!16(f);
|
|
g.bark_map_size = get_bits!16(f);
|
|
g.amplitude_bits = get_bits!6(f);
|
|
g.amplitude_offset = get_bits!8(f);
|
|
g.number_of_books = get_bits_add_no!4(f, 1);
|
|
foreach (immutable j; 0..g.number_of_books) g.book_list[j] = get_bits!8(f);
|
|
return error(f, STBVorbisError.feature_not_supported);
|
|
} else {
|
|
Point[31*8+2] p;
|
|
Floor1 *g = &f.floor_config[i].floor1;
|
|
int max_class = -1;
|
|
g.partitions = get_bits!5(f);
|
|
foreach (immutable j; 0..g.partitions) {
|
|
g.partition_class_list[j] = get_bits!4(f);
|
|
if (g.partition_class_list[j] > max_class) max_class = g.partition_class_list[j];
|
|
}
|
|
foreach (immutable j; 0..max_class+1) {
|
|
g.class_dimensions[j] = get_bits_add_no!3(f, 1);
|
|
g.class_subclasses[j] = get_bits!2(f);
|
|
if (g.class_subclasses[j]) {
|
|
g.class_masterbooks[j] = get_bits!8(f);
|
|
if (g.class_masterbooks[j] >= f.codebook_count) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
foreach (immutable k; 0..1<<g.class_subclasses[j]) {
|
|
g.subclass_books[j].ptr[k] = get_bits!8(f)-1;
|
|
if (g.subclass_books[j].ptr[k] >= f.codebook_count) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
}
|
|
g.floor1_multiplier = get_bits_add_no!2(f, 1);
|
|
g.rangebits = get_bits!4(f);
|
|
g.Xlist[0] = 0;
|
|
g.Xlist[1] = cast(ushort)(1<<g.rangebits); //k8
|
|
g.values = 2;
|
|
foreach (immutable j; 0..g.partitions) {
|
|
int c = g.partition_class_list[j];
|
|
foreach (immutable k; 0..g.class_dimensions[c]) {
|
|
g.Xlist[g.values] = cast(ushort)get_bits_main(f, g.rangebits); //k8
|
|
++g.values;
|
|
}
|
|
}
|
|
assert(g.values <= ushort.max);
|
|
// precompute the sorting
|
|
foreach (ushort j; 0..cast(ushort)g.values) {
|
|
p[j].x = g.Xlist[j];
|
|
p[j].y = j;
|
|
}
|
|
qsort(p.ptr, g.values, (p[0]).sizeof, &point_compare);
|
|
foreach (uint j; 0..g.values) g.sorted_order.ptr[j] = cast(ubyte)p.ptr[j].y;
|
|
// precompute the neighbors
|
|
foreach (uint j; 2..g.values) {
|
|
ushort low = void, hi = void;
|
|
neighbors(g.Xlist.ptr, j, &low, &hi);
|
|
assert(low <= ubyte.max);
|
|
assert(hi <= ubyte.max);
|
|
g.neighbors[j].ptr[0] = cast(ubyte)low;
|
|
g.neighbors[j].ptr[1] = cast(ubyte)hi;
|
|
}
|
|
if (g.values > longest_floorlist) longest_floorlist = g.values;
|
|
}
|
|
}
|
|
|
|
// Residue
|
|
f.residue_count = get_bits_add_no!6(f, 1);
|
|
f.residue_config = setup_malloc!Residue(f, f.residue_count);
|
|
if (f.residue_config is null) return error(f, STBVorbisError.outofmem);
|
|
memset(f.residue_config, 0, f.residue_count*(f.residue_config[0]).sizeof);
|
|
foreach (immutable i; 0..f.residue_count) {
|
|
ubyte[64] residue_cascade;
|
|
Residue* r = f.residue_config+i;
|
|
f.residue_types[i] = get_bits!16(f);
|
|
if (f.residue_types[i] > 2) return error(f, STBVorbisError.invalid_setup);
|
|
r.begin = get_bits!24(f);
|
|
r.end = get_bits!24(f);
|
|
if (r.end < r.begin) return error(f, STBVorbisError.invalid_setup);
|
|
r.part_size = get_bits_add_no!24(f, 1);
|
|
r.classifications = get_bits_add_no!6(f, 1);
|
|
r.classbook = get_bits!8(f);
|
|
if (r.classbook >= f.codebook_count) return error(f, STBVorbisError.invalid_setup);
|
|
foreach (immutable j; 0..r.classifications) {
|
|
ubyte high_bits = 0;
|
|
ubyte low_bits = get_bits!3(f);
|
|
if (get_bits!1(f)) high_bits = get_bits!5(f);
|
|
assert(high_bits*8+low_bits <= ubyte.max);
|
|
residue_cascade[j] = cast(ubyte)(high_bits*8+low_bits);
|
|
}
|
|
static assert(r.residue_books[0].sizeof == 16);
|
|
r.residue_books = setup_malloc!(short[8])(f, r.classifications);
|
|
if (r.residue_books is null) return error(f, STBVorbisError.outofmem);
|
|
foreach (immutable j; 0..r.classifications) {
|
|
foreach (immutable k; 0..8) {
|
|
if (residue_cascade[j]&(1<<k)) {
|
|
r.residue_books[j].ptr[k] = get_bits!8(f);
|
|
if (r.residue_books[j].ptr[k] >= f.codebook_count) return error(f, STBVorbisError.invalid_setup);
|
|
} else {
|
|
r.residue_books[j].ptr[k] = -1;
|
|
}
|
|
}
|
|
}
|
|
// precompute the classifications[] array to avoid inner-loop mod/divide
|
|
// call it 'classdata' since we already have r.classifications
|
|
r.classdata = setup_malloc!(ubyte*)(f, f.codebooks[r.classbook].entries);
|
|
if (!r.classdata) return error(f, STBVorbisError.outofmem);
|
|
memset(r.classdata, 0, (*r.classdata).sizeof*f.codebooks[r.classbook].entries);
|
|
foreach (immutable j; 0..f.codebooks[r.classbook].entries) {
|
|
int classwords = f.codebooks[r.classbook].dimensions;
|
|
int temp = j;
|
|
r.classdata[j] = setup_malloc!ubyte(f, classwords);
|
|
if (r.classdata[j] is null) return error(f, STBVorbisError.outofmem);
|
|
foreach_reverse (immutable k; 0..classwords) {
|
|
assert(temp%r.classifications >= 0 && temp%r.classifications <= ubyte.max);
|
|
r.classdata[j][k] = cast(ubyte)(temp%r.classifications);
|
|
temp /= r.classifications;
|
|
}
|
|
}
|
|
}
|
|
|
|
f.mapping_count = get_bits_add_no!6(f, 1);
|
|
f.mapping = setup_malloc!Mapping(f, f.mapping_count);
|
|
if (f.mapping is null) return error(f, STBVorbisError.outofmem);
|
|
memset(f.mapping, 0, f.mapping_count*(*f.mapping).sizeof);
|
|
foreach (immutable i; 0..f.mapping_count) {
|
|
Mapping* m = f.mapping+i;
|
|
int mapping_type = get_bits!16(f);
|
|
if (mapping_type != 0) return error(f, STBVorbisError.invalid_setup);
|
|
m.chan = setup_malloc!MappingChannel(f, f.vrchannels);
|
|
if (m.chan is null) return error(f, STBVorbisError.outofmem);
|
|
m.submaps = (get_bits!1(f) ? get_bits_add_no!4(f, 1) : 1);
|
|
if (m.submaps > max_submaps) max_submaps = m.submaps;
|
|
if (get_bits!1(f)) {
|
|
m.coupling_steps = get_bits_add_no!8(f, 1);
|
|
foreach (immutable k; 0..m.coupling_steps) {
|
|
m.chan[k].magnitude = cast(ubyte)get_bits_main(f, ilog(f.vrchannels-1)); //k8
|
|
m.chan[k].angle = cast(ubyte)get_bits_main(f, ilog(f.vrchannels-1)); //k8
|
|
if (m.chan[k].magnitude >= f.vrchannels) return error(f, STBVorbisError.invalid_setup);
|
|
if (m.chan[k].angle >= f.vrchannels) return error(f, STBVorbisError.invalid_setup);
|
|
if (m.chan[k].magnitude == m.chan[k].angle) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
} else {
|
|
m.coupling_steps = 0;
|
|
}
|
|
|
|
// reserved field
|
|
if (get_bits!2(f)) return error(f, STBVorbisError.invalid_setup);
|
|
if (m.submaps > 1) {
|
|
foreach (immutable j; 0..f.vrchannels) {
|
|
m.chan[j].mux = get_bits!4(f);
|
|
if (m.chan[j].mux >= m.submaps) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
} else {
|
|
// @SPECIFICATION: this case is missing from the spec
|
|
foreach (immutable j; 0..f.vrchannels) m.chan[j].mux = 0;
|
|
}
|
|
foreach (immutable j; 0..m.submaps) {
|
|
get_bits!8(f); // discard
|
|
m.submap_floor[j] = get_bits!8(f);
|
|
m.submap_residue[j] = get_bits!8(f);
|
|
if (m.submap_floor[j] >= f.floor_count) return error(f, STBVorbisError.invalid_setup);
|
|
if (m.submap_residue[j] >= f.residue_count) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
}
|
|
|
|
// Modes
|
|
f.mode_count = get_bits_add_no!6(f, 1);
|
|
foreach (immutable i; 0..f.mode_count) {
|
|
Mode* m = f.mode_config.ptr+i;
|
|
m.blockflag = get_bits!1(f);
|
|
m.windowtype = get_bits!16(f);
|
|
m.transformtype = get_bits!16(f);
|
|
m.mapping = get_bits!8(f);
|
|
if (m.windowtype != 0) return error(f, STBVorbisError.invalid_setup);
|
|
if (m.transformtype != 0) return error(f, STBVorbisError.invalid_setup);
|
|
if (m.mapping >= f.mapping_count) return error(f, STBVorbisError.invalid_setup);
|
|
}
|
|
|
|
flush_packet(f);
|
|
|
|
f.previous_length = 0;
|
|
|
|
foreach (immutable i; 0..f.vrchannels) {
|
|
f.channel_buffers.ptr[i] = setup_malloc!float(f, f.blocksize_1);
|
|
f.previous_window.ptr[i] = setup_malloc!float(f, f.blocksize_1/2);
|
|
f.finalY.ptr[i] = setup_malloc!short(f, longest_floorlist);
|
|
if (f.channel_buffers.ptr[i] is null || f.previous_window.ptr[i] is null || f.finalY.ptr[i] is null) return error(f, STBVorbisError.outofmem);
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
f.floor_buffers.ptr[i] = setup_malloc!float(f, f.blocksize_1/2);
|
|
if (f.floor_buffers.ptr[i] is null) return error(f, STBVorbisError.outofmem);
|
|
}
|
|
}
|
|
|
|
if (!init_blocksize(f, 0, f.blocksize_0)) return false;
|
|
if (!init_blocksize(f, 1, f.blocksize_1)) return false;
|
|
f.blocksize.ptr[0] = f.blocksize_0;
|
|
f.blocksize.ptr[1] = f.blocksize_1;
|
|
|
|
version(STB_VORBIS_DIVIDE_TABLE) {
|
|
if (integer_divide_table[1].ptr[1] == 0) {
|
|
foreach (immutable i; 0..DIVTAB_NUMER) foreach (immutable j; 1..DIVTAB_DENOM) integer_divide_table[i].ptr[j] = i/j;
|
|
}
|
|
}
|
|
|
|
// compute how much temporary memory is needed
|
|
|
|
// 1.
|
|
{
|
|
uint imdct_mem = (f.blocksize_1*cast(uint)(float).sizeof>>1);
|
|
uint classify_mem;
|
|
int max_part_read = 0;
|
|
foreach (immutable i; 0..f.residue_count) {
|
|
Residue* r = f.residue_config+i;
|
|
int n_read = r.end-r.begin;
|
|
int part_read = n_read/r.part_size;
|
|
if (part_read > max_part_read) max_part_read = part_read;
|
|
}
|
|
version(STB_VORBIS_DIVIDES_IN_RESIDUE) {
|
|
classify_mem = f.vrchannels*cast(uint)((void*).sizeof+max_part_read*(int*).sizeof);
|
|
} else {
|
|
classify_mem = f.vrchannels*cast(uint)((void*).sizeof+max_part_read*(ubyte*).sizeof);
|
|
}
|
|
f.temp_memory_required = classify_mem;
|
|
if (imdct_mem > f.temp_memory_required) f.temp_memory_required = imdct_mem;
|
|
}
|
|
|
|
f.first_decode = true;
|
|
|
|
/+
|
|
if (f.alloc.alloc_buffer) {
|
|
debug(stb_vorbis) assert(f.temp_offset == f.alloc.alloc_buffer_length_in_bytes);
|
|
// check if there's enough temp memory so we don't error later
|
|
if (f.setup_offset+ /*(*f).sizeof+*/ f.temp_memory_required > cast(uint)f.temp_offset) return error(f, STBVorbisError.outofmem);
|
|
}
|
|
+/
|
|
|
|
f.first_audio_page_offset = f.fileOffset();
|
|
|
|
return true;
|
|
}
|
|
|
|
/+
|
|
private int vorbis_search_for_page_pushdata (VorbisDecoder f, ubyte* data, int data_len) {
|
|
import core.stdc.string : memcmp;
|
|
|
|
foreach (immutable i; 0..f.page_crc_tests) f.scan.ptr[i].bytes_done = 0;
|
|
|
|
// if we have room for more scans, search for them first, because
|
|
// they may cause us to stop early if their header is incomplete
|
|
if (f.page_crc_tests < STB_VORBIS_PUSHDATA_CRC_COUNT) {
|
|
if (data_len < 4) return 0;
|
|
data_len -= 3; // need to look for 4-byte sequence, so don't miss one that straddles a boundary
|
|
foreach (immutable i; 0..data_len) {
|
|
if (data[i] == 0x4f) {
|
|
if (memcmp(data+i, ogg_page_header.ptr, 4) == 0) {
|
|
// make sure we have the whole page header
|
|
if (i+26 >= data_len || i+27+data[i+26] >= data_len) {
|
|
// only read up to this page start, so hopefully we'll
|
|
// have the whole page header start next time
|
|
data_len = i;
|
|
break;
|
|
}
|
|
// ok, we have it all; compute the length of the page
|
|
auto len = 27+data[i+26];
|
|
foreach (immutable j; 0..data[i+26]) len += data[i+27+j];
|
|
// scan everything up to the embedded crc (which we must 0)
|
|
uint crc = 0;
|
|
foreach (immutable j; 0..22) crc = crc32_update(crc, data[i+j]);
|
|
// now process 4 0-bytes
|
|
foreach (immutable j; 22..26) crc = crc32_update(crc, 0);
|
|
// len is the total number of bytes we need to scan
|
|
auto n = f.page_crc_tests++;
|
|
f.scan.ptr[n].bytes_left = len-/*j*/26;
|
|
f.scan.ptr[n].crc_so_far = crc;
|
|
f.scan.ptr[n].goal_crc = data[i+22]+(data[i+23]<<8)+(data[i+24]<<16)+(data[i+25]<<24);
|
|
// if the last frame on a page is continued to the next, then
|
|
// we can't recover the sample_loc immediately
|
|
if (data[i+27+data[i+26]-1] == 255) {
|
|
f.scan.ptr[n].sample_loc = ~0;
|
|
} else {
|
|
f.scan.ptr[n].sample_loc = data[i+6]+(data[i+7]<<8)+(data[i+8]<<16)+(data[i+9]<<24);
|
|
}
|
|
f.scan.ptr[n].bytes_done = i+26/*j*/;
|
|
if (f.page_crc_tests == STB_VORBIS_PUSHDATA_CRC_COUNT) break;
|
|
// keep going if we still have room for more
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (uint i = 0; i < f.page_crc_tests; ) {
|
|
int nn = f.scan.ptr[i].bytes_done;
|
|
int m = f.scan.ptr[i].bytes_left;
|
|
if (m > data_len-nn) m = data_len-nn;
|
|
// m is the bytes to scan in the current chunk
|
|
uint crc = f.scan.ptr[i].crc_so_far;
|
|
foreach (immutable j; 0..m) crc = crc32_update(crc, data[nn+j]);
|
|
f.scan.ptr[i].bytes_left -= m;
|
|
f.scan.ptr[i].crc_so_far = crc;
|
|
if (f.scan.ptr[i].bytes_left == 0) {
|
|
// does it match?
|
|
if (f.scan.ptr[i].crc_so_far == f.scan.ptr[i].goal_crc) {
|
|
// Houston, we have page
|
|
data_len = nn+m; // consumption amount is wherever that scan ended
|
|
f.page_crc_tests = -1; // drop out of page scan mode
|
|
f.previous_length = 0; // decode-but-don't-output one frame
|
|
f.next_seg = -1; // start a new page
|
|
f.current_loc = f.scan.ptr[i].sample_loc; // set the current sample location to the amount we'd have decoded had we decoded this page
|
|
f.current_loc_valid = f.current_loc != ~0U;
|
|
return data_len;
|
|
}
|
|
// delete entry
|
|
f.scan.ptr[i] = f.scan.ptr[--f.page_crc_tests];
|
|
} else {
|
|
++i;
|
|
}
|
|
}
|
|
|
|
return data_len;
|
|
}
|
|
+/
|
|
|
|
private uint vorbis_find_page (VorbisDecoder f, uint* end, uint* last) {
|
|
for (;;) {
|
|
if (f.eof) return 0;
|
|
auto n = get8(f);
|
|
if (n == 0x4f) { // page header candidate
|
|
uint retry_loc = f.fileOffset;
|
|
// check if we're off the end of a file_section stream
|
|
if (retry_loc-25 > f.stream_len) return 0;
|
|
// check the rest of the header
|
|
int i = void;
|
|
for (i = 1; i < 4; ++i) if (get8(f) != ogg_page_header[i]) break;
|
|
if (f.eof) return 0;
|
|
if (i == 4) {
|
|
ubyte[27] header;
|
|
//for (i=0; i < 4; ++i) header[i] = ogg_page_header[i];
|
|
header[0..4] = cast(immutable(ubyte)[])ogg_page_header[0..4];
|
|
for (i = 4; i < 27; ++i) header[i] = get8(f);
|
|
if (f.eof) return 0;
|
|
if (header[4] != 0) goto invalid;
|
|
uint goal = header[22]+(header[23]<<8)+(header[24]<<16)+(header[25]<<24);
|
|
for (i = 22; i < 26; ++i) header[i] = 0;
|
|
uint crc = 0;
|
|
for (i = 0; i < 27; ++i) crc = crc32_update(crc, header[i]);
|
|
uint len = 0;
|
|
for (i = 0; i < header[26]; ++i) {
|
|
auto s = get8(f);
|
|
crc = crc32_update(crc, s);
|
|
len += s;
|
|
}
|
|
if (len && f.eof) return 0;
|
|
for (i = 0; i < len; ++i) crc = crc32_update(crc, get8(f));
|
|
// finished parsing probable page
|
|
if (crc == goal) {
|
|
// we could now check that it's either got the last
|
|
// page flag set, OR it's followed by the capture
|
|
// pattern, but I guess TECHNICALLY you could have
|
|
// a file with garbage between each ogg page and recover
|
|
// from it automatically? So even though that paranoia
|
|
// might decrease the chance of an invalid decode by
|
|
// another 2^32, not worth it since it would hose those
|
|
// invalid-but-useful files?
|
|
if (end) *end = f.fileOffset;
|
|
if (last) *last = (header[5]&0x04 ? 1 : 0);
|
|
set_file_offset(f, retry_loc-1);
|
|
return 1;
|
|
}
|
|
}
|
|
invalid:
|
|
// not a valid page, so rewind and look for next one
|
|
set_file_offset(f, retry_loc);
|
|
}
|
|
}
|
|
assert(0);
|
|
}
|
|
|
|
enum SAMPLE_unknown = 0xffffffff;
|
|
|
|
// seeking is implemented with a binary search, which narrows down the range to
|
|
// 64K, before using a linear search (because finding the synchronization
|
|
// pattern can be expensive, and the chance we'd find the end page again is
|
|
// relatively high for small ranges)
|
|
//
|
|
// two initial interpolation-style probes are used at the start of the search
|
|
// to try to bound either side of the binary search sensibly, while still
|
|
// working in O(log n) time if they fail.
|
|
private int get_seek_page_info (VorbisDecoder f, ProbedPage* z) {
|
|
ubyte[27] header;
|
|
ubyte[255] lacing;
|
|
|
|
// record where the page starts
|
|
z.page_start = f.fileOffset;
|
|
|
|
// parse the header
|
|
getn(f, header.ptr, 27);
|
|
if (header[0] != 'O' || header[1] != 'g' || header[2] != 'g' || header[3] != 'S') return 0;
|
|
getn(f, lacing.ptr, header[26]);
|
|
|
|
// determine the length of the payload
|
|
uint len = 0;
|
|
foreach (immutable i; 0..header[26]) len += lacing[i];
|
|
|
|
// this implies where the page ends
|
|
z.page_end = z.page_start+27+header[26]+len;
|
|
|
|
// read the last-decoded sample out of the data
|
|
z.last_decoded_sample = header[6]+(header[7]<<8)+(header[8]<<16)+(header[9]<<24);
|
|
|
|
// restore file state to where we were
|
|
set_file_offset(f, z.page_start);
|
|
return 1;
|
|
}
|
|
|
|
// rarely used function to seek back to the preceeding page while finding the start of a packet
|
|
private int go_to_page_before (VorbisDecoder f, uint limit_offset) {
|
|
uint previous_safe, end;
|
|
|
|
// now we want to seek back 64K from the limit
|
|
if (limit_offset >= 65536 && limit_offset-65536 >= f.first_audio_page_offset) {
|
|
previous_safe = limit_offset-65536;
|
|
} else {
|
|
previous_safe = f.first_audio_page_offset;
|
|
}
|
|
|
|
set_file_offset(f, previous_safe);
|
|
|
|
while (vorbis_find_page(f, &end, null)) {
|
|
if (end >= limit_offset && f.fileOffset < limit_offset) return 1;
|
|
set_file_offset(f, end);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// implements the search logic for finding a page and starting decoding. if
|
|
// the function succeeds, current_loc_valid will be true and current_loc will
|
|
// be less than or equal to the provided sample number (the closer the
|
|
// better).
|
|
private int seek_to_sample_coarse (VorbisDecoder f, uint sample_number) {
|
|
ProbedPage left, right, mid;
|
|
int i, start_seg_with_known_loc, end_pos, page_start;
|
|
uint delta, stream_length, padding;
|
|
double offset, bytes_per_sample;
|
|
int probe = 0;
|
|
|
|
// find the last page and validate the target sample
|
|
stream_length = f.streamLengthInSamples;
|
|
if (stream_length == 0) return error(f, STBVorbisError.seek_without_length);
|
|
if (sample_number > stream_length) return error(f, STBVorbisError.seek_invalid);
|
|
|
|
// this is the maximum difference between the window-center (which is the
|
|
// actual granule position value), and the right-start (which the spec
|
|
// indicates should be the granule position (give or take one)).
|
|
padding = ((f.blocksize_1-f.blocksize_0)>>2);
|
|
if (sample_number < padding) sample_number = 0; else sample_number -= padding;
|
|
|
|
left = f.p_first;
|
|
while (left.last_decoded_sample == ~0U) {
|
|
// (untested) the first page does not have a 'last_decoded_sample'
|
|
set_file_offset(f, left.page_end);
|
|
if (!get_seek_page_info(f, &left)) goto error;
|
|
}
|
|
|
|
right = f.p_last;
|
|
debug(stb_vorbis) assert(right.last_decoded_sample != ~0U);
|
|
|
|
// starting from the start is handled differently
|
|
if (sample_number <= left.last_decoded_sample) {
|
|
f.seekStart;
|
|
return 1;
|
|
}
|
|
|
|
while (left.page_end != right.page_start) {
|
|
debug(stb_vorbis) assert(left.page_end < right.page_start);
|
|
// search range in bytes
|
|
delta = right.page_start-left.page_end;
|
|
if (delta <= 65536) {
|
|
// there's only 64K left to search - handle it linearly
|
|
set_file_offset(f, left.page_end);
|
|
} else {
|
|
if (probe < 2) {
|
|
if (probe == 0) {
|
|
// first probe (interpolate)
|
|
double data_bytes = right.page_end-left.page_start;
|
|
bytes_per_sample = data_bytes/right.last_decoded_sample;
|
|
offset = left.page_start+bytes_per_sample*(sample_number-left.last_decoded_sample);
|
|
} else {
|
|
// second probe (try to bound the other side)
|
|
double error = (cast(double)sample_number-mid.last_decoded_sample)*bytes_per_sample;
|
|
if (error >= 0 && error < 8000) error = 8000;
|
|
if (error < 0 && error > -8000) error = -8000;
|
|
offset += error*2;
|
|
}
|
|
|
|
// ensure the offset is valid
|
|
if (offset < left.page_end) offset = left.page_end;
|
|
if (offset > right.page_start-65536) offset = right.page_start-65536;
|
|
|
|
set_file_offset(f, cast(uint)offset);
|
|
} else {
|
|
// binary search for large ranges (offset by 32K to ensure
|
|
// we don't hit the right page)
|
|
set_file_offset(f, left.page_end+(delta/2)-32768);
|
|
}
|
|
|
|
if (!vorbis_find_page(f, null, null)) goto error;
|
|
}
|
|
|
|
for (;;) {
|
|
if (!get_seek_page_info(f, &mid)) goto error;
|
|
if (mid.last_decoded_sample != ~0U) break;
|
|
// (untested) no frames end on this page
|
|
set_file_offset(f, mid.page_end);
|
|
debug(stb_vorbis) assert(mid.page_start < right.page_start);
|
|
}
|
|
|
|
// if we've just found the last page again then we're in a tricky file,
|
|
// and we're close enough.
|
|
if (mid.page_start == right.page_start) break;
|
|
|
|
if (sample_number < mid.last_decoded_sample) right = mid; else left = mid;
|
|
|
|
++probe;
|
|
}
|
|
|
|
// seek back to start of the last packet
|
|
page_start = left.page_start;
|
|
set_file_offset(f, page_start);
|
|
if (!start_page(f)) return error(f, STBVorbisError.seek_failed);
|
|
end_pos = f.end_seg_with_known_loc;
|
|
debug(stb_vorbis) assert(end_pos >= 0);
|
|
|
|
for (;;) {
|
|
for (i = end_pos; i > 0; --i) if (f.segments.ptr[i-1] != 255) break;
|
|
start_seg_with_known_loc = i;
|
|
if (start_seg_with_known_loc > 0 || !(f.page_flag&PAGEFLAG_continued_packet)) break;
|
|
// (untested) the final packet begins on an earlier page
|
|
if (!go_to_page_before(f, page_start)) goto error;
|
|
page_start = f.fileOffset;
|
|
if (!start_page(f)) goto error;
|
|
end_pos = f.segment_count-1;
|
|
}
|
|
|
|
// prepare to start decoding
|
|
f.current_loc_valid = false;
|
|
f.last_seg = false;
|
|
f.valid_bits = 0;
|
|
f.packet_bytes = 0;
|
|
f.bytes_in_seg = 0;
|
|
f.previous_length = 0;
|
|
f.next_seg = start_seg_with_known_loc;
|
|
|
|
for (i = 0; i < start_seg_with_known_loc; ++i) skip(f, f.segments.ptr[i]);
|
|
|
|
// start decoding (optimizable - this frame is generally discarded)
|
|
if (!vorbis_pump_first_frame(f)) return 0;
|
|
if (f.current_loc > sample_number) return error(f, STBVorbisError.seek_failed);
|
|
return 1;
|
|
|
|
error:
|
|
// try to restore the file to a valid state
|
|
f.seekStart;
|
|
return error(f, STBVorbisError.seek_failed);
|
|
}
|
|
|
|
// the same as vorbis_decode_initial, but without advancing
|
|
private int peek_decode_initial (VorbisDecoder f, int* p_left_start, int* p_left_end, int* p_right_start, int* p_right_end, int* mode) {
|
|
if (!vorbis_decode_initial(f, p_left_start, p_left_end, p_right_start, p_right_end, mode)) return 0;
|
|
|
|
// either 1 or 2 bytes were read, figure out which so we can rewind
|
|
int bits_read = 1+ilog(f.mode_count-1);
|
|
if (f.mode_config.ptr[*mode].blockflag) bits_read += 2;
|
|
int bytes_read = (bits_read+7)/8;
|
|
|
|
f.bytes_in_seg += bytes_read;
|
|
f.packet_bytes -= bytes_read;
|
|
skip(f, -bytes_read);
|
|
if (f.next_seg == -1) f.next_seg = f.segment_count-1; else --f.next_seg;
|
|
f.valid_bits = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// ////////////////////////////////////////////////////////////////////////// //
|
|
// utility and supporting functions for getting s16 samples
|
|
enum PLAYBACK_MONO = (1<<0);
|
|
enum PLAYBACK_LEFT = (1<<1);
|
|
enum PLAYBACK_RIGHT = (1<<2);
|
|
|
|
enum L = (PLAYBACK_LEFT |PLAYBACK_MONO);
|
|
enum C = (PLAYBACK_LEFT |PLAYBACK_RIGHT|PLAYBACK_MONO);
|
|
enum R = (PLAYBACK_RIGHT|PLAYBACK_MONO);
|
|
|
|
immutable byte[6][7] channel_position = [
|
|
[ 0 ],
|
|
[ C ],
|
|
[ L, R ],
|
|
[ L, C, R ],
|
|
[ L, R, L, R ],
|
|
[ L, C, R, L, R ],
|
|
[ L, C, R, L, R, C ],
|
|
];
|
|
|
|
|
|
version(STB_VORBIS_NO_FAST_SCALED_FLOAT) {
|
|
enum declfcvar(string name) = "{}";
|
|
template FAST_SCALED_FLOAT_TO_INT(string x, string s) {
|
|
static assert(s == "15");
|
|
enum FAST_SCALED_FLOAT_TO_INT = q{import core.stdc.math : lrintf; int v = lrintf((${x})*32768.0f);}.cmacroFixVars!"x"(x);
|
|
}
|
|
} else {
|
|
//k8: actually, this is only marginally faster than using `lrintf()`, but anyway...
|
|
align(1) union float_conv {
|
|
align(1):
|
|
float f;
|
|
int i;
|
|
}
|
|
enum declfcvar(string name) = "float_conv "~name~" = void;";
|
|
static assert(float_conv.i.sizeof == 4 && float_conv.f.sizeof == 4);
|
|
// add (1<<23) to convert to int, then divide by 2^SHIFT, then add 0.5/2^SHIFT to round
|
|
//#define check_endianness()
|
|
enum MAGIC(string SHIFT) = q{(1.5f*(1<<(23-${SHIFT}))+0.5f/(1<<${SHIFT}))}.cmacroFixVars!("SHIFT")(SHIFT);
|
|
enum ADDEND(string SHIFT) = q{(((150-${SHIFT})<<23)+(1<<22))}.cmacroFixVars!("SHIFT")(SHIFT);
|
|
enum FAST_SCALED_FLOAT_TO_INT(string x, string s) = q{temp.f = (${x})+${MAGIC}; int v = temp.i-${ADDEND};}
|
|
.cmacroFixVars!("x", "s", "MAGIC", "ADDEND")(x, s, MAGIC!(s), ADDEND!(s));
|
|
}
|
|
|
|
private void copy_samples (short* dest, float* src, int len) {
|
|
//check_endianness();
|
|
mixin(declfcvar!"temp");
|
|
foreach (immutable _; 0..len) {
|
|
mixin(FAST_SCALED_FLOAT_TO_INT!("*src", "15"));
|
|
if (cast(uint)(v+32768) > 65535) v = (v < 0 ? -32768 : 32767);
|
|
*dest++ = cast(short)v; //k8
|
|
++src;
|
|
}
|
|
}
|
|
|
|
private void compute_samples (int mask, short* output, int num_c, float** data, int d_offset, int len) {
|
|
import core.stdc.string : memset;
|
|
enum BUFFER_SIZE = 32;
|
|
float[BUFFER_SIZE] buffer;
|
|
int n = BUFFER_SIZE;
|
|
//check_endianness();
|
|
mixin(declfcvar!"temp");
|
|
for (uint o = 0; o < len; o += BUFFER_SIZE) {
|
|
memset(buffer.ptr, 0, (buffer).sizeof);
|
|
if (o+n > len) n = len-o;
|
|
foreach (immutable j; 0..num_c) {
|
|
if (channel_position[num_c].ptr[j]&mask) foreach (immutable i; 0..n) buffer.ptr[i] += data[j][d_offset+o+i];
|
|
}
|
|
foreach (immutable i; 0..n) {
|
|
mixin(FAST_SCALED_FLOAT_TO_INT!("buffer[i]", "15"));
|
|
if (cast(uint)(v+32768) > 65535) v = (v < 0 ? -32768 : 32767);
|
|
output[o+i] = cast(short)v; //k8
|
|
}
|
|
}
|
|
}
|
|
|
|
private void compute_stereo_samples (short* output, int num_c, float** data, int d_offset, int len) {
|
|
import core.stdc.string : memset;
|
|
|
|
enum BUFFER_SIZE = 32;
|
|
float[BUFFER_SIZE] buffer;
|
|
int n = BUFFER_SIZE>>1;
|
|
// o is the offset in the source data
|
|
//check_endianness();
|
|
mixin(declfcvar!"temp");
|
|
for (uint o = 0; o < len; o += BUFFER_SIZE>>1) {
|
|
// o2 is the offset in the output data
|
|
int o2 = o<<1;
|
|
memset(buffer.ptr, 0, buffer.sizeof);
|
|
if (o+n > len) n = len-o;
|
|
foreach (immutable j; 0..num_c) {
|
|
int m = channel_position[num_c].ptr[j]&(PLAYBACK_LEFT|PLAYBACK_RIGHT);
|
|
if (m == (PLAYBACK_LEFT|PLAYBACK_RIGHT)) {
|
|
foreach (immutable i; 0..n) {
|
|
buffer.ptr[i*2+0] += data[j][d_offset+o+i];
|
|
buffer.ptr[i*2+1] += data[j][d_offset+o+i];
|
|
}
|
|
} else if (m == PLAYBACK_LEFT) {
|
|
foreach (immutable i; 0..n) buffer.ptr[i*2+0] += data[j][d_offset+o+i];
|
|
} else if (m == PLAYBACK_RIGHT) {
|
|
foreach (immutable i; 0..n) buffer.ptr[i*2+1] += data[j][d_offset+o+i];
|
|
}
|
|
}
|
|
foreach (immutable i; 0..n<<1) {
|
|
mixin(FAST_SCALED_FLOAT_TO_INT!("buffer[i]", "15"));
|
|
if (cast(uint)(v+32768) > 65535) v = (v < 0 ? -32768 : 32767);
|
|
output[o2+i] = cast(short)v; //k8
|
|
}
|
|
}
|
|
}
|
|
|
|
private void convert_samples_short (int buf_c, short** buffer, int b_offset, int data_c, float** data, int d_offset, int samples) {
|
|
import core.stdc.string : memset;
|
|
|
|
if (buf_c != data_c && buf_c <= 2 && data_c <= 6) {
|
|
immutable int[2][3] channel_selector = [ [0,0], [PLAYBACK_MONO,0], [PLAYBACK_LEFT, PLAYBACK_RIGHT] ];
|
|
foreach (immutable i; 0..buf_c) compute_samples(channel_selector[buf_c].ptr[i], buffer[i]+b_offset, data_c, data, d_offset, samples);
|
|
} else {
|
|
int limit = (buf_c < data_c ? buf_c : data_c);
|
|
foreach (immutable i; 0..limit) copy_samples(buffer[i]+b_offset, data[i]+d_offset, samples);
|
|
foreach (immutable i; limit..buf_c) memset(buffer[i]+b_offset, 0, short.sizeof*samples);
|
|
}
|
|
}
|
|
|
|
private void convert_channels_short_interleaved (int buf_c, short* buffer, int data_c, float** data, int d_offset, int len) {
|
|
//check_endianness();
|
|
mixin(declfcvar!"temp");
|
|
if (buf_c != data_c && buf_c <= 2 && data_c <= 6) {
|
|
debug(stb_vorbis) assert(buf_c == 2);
|
|
foreach (immutable i; 0..buf_c) compute_stereo_samples(buffer, data_c, data, d_offset, len);
|
|
} else {
|
|
int limit = (buf_c < data_c ? buf_c : data_c);
|
|
foreach (immutable j; 0..len) {
|
|
foreach (immutable i; 0..limit) {
|
|
float f = data[i][d_offset+j];
|
|
mixin(FAST_SCALED_FLOAT_TO_INT!("f", "15"));//data[i][d_offset+j], 15);
|
|
if (cast(uint)(v+32768) > 65535) v = (v < 0 ? -32768 : 32767);
|
|
*buffer++ = cast(short)v; //k8
|
|
}
|
|
foreach (immutable i; limit..buf_c) *buffer++ = 0;
|
|
}
|
|
}
|
|
}
|
|
} // @nogc
|
|
|
|
|
|
public class VorbisDecoder {
|
|
// return # of bytes read, 0 on eof, -1 on error
|
|
// if called with `buf is null`, do `close()`
|
|
alias readCB = int delegate (void[] buf, uint ofs, VorbisDecoder vb) nothrow @nogc;
|
|
|
|
//TODO
|
|
static struct Allocator {
|
|
static nothrow @nogc: // because
|
|
void* alloc (uint sz, VorbisDecoder vb) {
|
|
import core.stdc.stdlib : malloc;
|
|
return malloc(sz);
|
|
}
|
|
void free (void* p, VorbisDecoder vb) {
|
|
import core.stdc.stdlib : free;
|
|
free(p);
|
|
}
|
|
void* allocTemp (uint sz, VorbisDecoder vb) {
|
|
import core.stdc.stdlib : malloc;
|
|
return malloc(sz);
|
|
}
|
|
void freeTemp (void* p, uint sz, VorbisDecoder vb) {
|
|
import core.stdc.stdlib : free;
|
|
free(p);
|
|
}
|
|
uint tempSave (VorbisDecoder vb) { return 0; }
|
|
void tempRestore (uint pos, VorbisDecoder vb) {}
|
|
}
|
|
|
|
nothrow @nogc:
|
|
private:
|
|
bool isOpened;
|
|
readCB stmread;
|
|
uint stlastofs = uint.max;
|
|
uint stst;
|
|
uint stpos;
|
|
uint stend;
|
|
bool stclose;
|
|
FILE* stfl;
|
|
|
|
private:
|
|
//ubyte* stream;
|
|
//ubyte* stream_start;
|
|
//ubyte* stream_end;
|
|
//uint stream_len;
|
|
|
|
/+bool push_mode;+/
|
|
|
|
uint first_audio_page_offset;
|
|
|
|
ProbedPage p_first, p_last;
|
|
|
|
// memory management
|
|
Allocator alloc;
|
|
int setup_offset;
|
|
int temp_offset;
|
|
|
|
// run-time results
|
|
bool eof = true;
|
|
STBVorbisError error;
|
|
|
|
// header info
|
|
int[2] blocksize;
|
|
int blocksize_0, blocksize_1;
|
|
int codebook_count;
|
|
Codebook* codebooks;
|
|
int floor_count;
|
|
ushort[64] floor_types; // varies
|
|
Floor* floor_config;
|
|
int residue_count;
|
|
ushort[64] residue_types; // varies
|
|
Residue* residue_config;
|
|
int mapping_count;
|
|
Mapping* mapping;
|
|
int mode_count;
|
|
Mode[64] mode_config; // varies
|
|
|
|
uint total_samples;
|
|
|
|
// decode buffer
|
|
float*[STB_VORBIS_MAX_CHANNELS] channel_buffers;
|
|
float*[STB_VORBIS_MAX_CHANNELS] outputs;
|
|
|
|
float*[STB_VORBIS_MAX_CHANNELS] previous_window;
|
|
int previous_length;
|
|
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
float*[STB_VORBIS_MAX_CHANNELS] floor_buffers;
|
|
} else {
|
|
short*[STB_VORBIS_MAX_CHANNELS] finalY;
|
|
}
|
|
|
|
uint current_loc; // sample location of next frame to decode
|
|
int current_loc_valid;
|
|
|
|
// per-blocksize precomputed data
|
|
|
|
// twiddle factors
|
|
float*[2] A, B, C;
|
|
float*[2] window;
|
|
ushort*[2] bit_reverse;
|
|
|
|
// current page/packet/segment streaming info
|
|
uint serial; // stream serial number for verification
|
|
int last_page;
|
|
int segment_count;
|
|
ubyte[255] segments;
|
|
ubyte page_flag;
|
|
ubyte bytes_in_seg;
|
|
ubyte first_decode;
|
|
int next_seg;
|
|
int last_seg; // flag that we're on the last segment
|
|
int last_seg_which; // what was the segment number of the last seg?
|
|
uint acc;
|
|
int valid_bits;
|
|
int packet_bytes;
|
|
int end_seg_with_known_loc;
|
|
uint known_loc_for_packet;
|
|
int discard_samples_deferred;
|
|
uint samples_output;
|
|
|
|
// push mode scanning
|
|
/+
|
|
int page_crc_tests; // only in push_mode: number of tests active; -1 if not searching
|
|
CRCscan[STB_VORBIS_PUSHDATA_CRC_COUNT] scan;
|
|
+/
|
|
|
|
// sample-access
|
|
int channel_buffer_start;
|
|
int channel_buffer_end;
|
|
|
|
private: // k8: 'cause i'm evil
|
|
// user-accessible info
|
|
uint sample_rate;
|
|
int vrchannels;
|
|
|
|
uint setup_memory_required;
|
|
uint temp_memory_required;
|
|
uint setup_temp_memory_required;
|
|
|
|
bool read_comments;
|
|
ubyte* comment_data;
|
|
uint comment_size;
|
|
|
|
// functions to get comment data
|
|
uint comment_data_pos;
|
|
|
|
private:
|
|
int rawRead (void[] buf) {
|
|
static if (__VERSION__ > 2067) pragma(inline, true);
|
|
if (isOpened && buf.length > 0 && stpos < stend) {
|
|
if (stend-stpos < buf.length) buf = buf[0..stend-stpos];
|
|
auto rd = stmread(buf, stpos, this);
|
|
if (rd > 0) stpos += rd;
|
|
return rd;
|
|
}
|
|
return 0;
|
|
}
|
|
void rawSkip (int n) { static if (__VERSION__ > 2067) pragma(inline, true);
|
|
if (isOpened) {
|
|
stpos += n;
|
|
if(stpos < stst)
|
|
stpos = stst;
|
|
else if(stpos > stend)
|
|
stpos = stend;
|
|
}
|
|
}
|
|
void rawSeek (int n) { static if (__VERSION__ > 2067) pragma(inline, true); if (isOpened) { stpos = stst+(n < 0 ? 0 : n); if (stpos > stend) stpos = stend; } }
|
|
void rawClose () { static if (__VERSION__ > 2067) pragma(inline, true); if (isOpened) { isOpened = false; stmread(null, 0, this); } }
|
|
|
|
final:
|
|
private:
|
|
void doInit () {
|
|
import core.stdc.string : memset;
|
|
/*
|
|
if (z) {
|
|
alloc = *z;
|
|
alloc.alloc_buffer_length_in_bytes = (alloc.alloc_buffer_length_in_bytes+3)&~3;
|
|
temp_offset = alloc.alloc_buffer_length_in_bytes;
|
|
}
|
|
*/
|
|
eof = false;
|
|
error = STBVorbisError.no_error;
|
|
/+stream = null;+/
|
|
codebooks = null;
|
|
/+page_crc_tests = -1;+/
|
|
}
|
|
|
|
static int stflRead (void[] buf, uint ofs, VorbisDecoder vb) {
|
|
if (buf !is null) {
|
|
if (vb.stlastofs != ofs) {
|
|
// { import core.stdc.stdio; printf("stflRead: ofs=%u; len=%u\n", ofs, cast(uint)buf.length); }
|
|
import core.stdc.stdio : fseek, SEEK_SET;
|
|
vb.stlastofs = ofs;
|
|
fseek(vb.stfl, ofs, SEEK_SET);
|
|
}
|
|
import core.stdc.stdio : fread;
|
|
auto rd = cast(int)fread(buf.ptr, 1, buf.length, vb.stfl);
|
|
if(rd > 0)
|
|
vb.stlastofs += rd;
|
|
return rd;
|
|
} else {
|
|
if (vb.stclose) {
|
|
import core.stdc.stdio : fclose;
|
|
if (vb.stfl !is null) fclose(vb.stfl);
|
|
}
|
|
vb.stfl = null;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
public:
|
|
this () {}
|
|
~this () { close(); }
|
|
|
|
this (int asize, readCB rcb) {
|
|
assert(rcb !is null);
|
|
stend = (asize > 0 ? asize : 0);
|
|
stmread = rcb;
|
|
isOpened = true;
|
|
eof = false;
|
|
read_comments = true;
|
|
if (start_decoder(this)) {
|
|
vorbis_pump_first_frame(this);
|
|
return;
|
|
}
|
|
}
|
|
this (FILE* fl, bool doclose=true) { open(fl, doclose); }
|
|
this (const(char)[] filename) { open(filename); }
|
|
|
|
@property bool closed () { return !isOpened; }
|
|
|
|
void open (FILE *fl, bool doclose=true) {
|
|
import core.stdc.stdio : ftell, fseek, SEEK_SET, SEEK_END;
|
|
close();
|
|
if (fl is null) { error = STBVorbisError.invalid_stream; return; }
|
|
stclose = doclose;
|
|
stst = stpos = cast(uint)ftell(fl);
|
|
fseek(fl, 0, SEEK_END);
|
|
stend = cast(uint)ftell(fl);
|
|
stlastofs = stlastofs.max;
|
|
stclose = false;
|
|
stfl = fl;
|
|
import std.functional : toDelegate;
|
|
stmread = toDelegate(&stflRead);
|
|
isOpened = true;
|
|
eof = false;
|
|
read_comments = true;
|
|
if (start_decoder(this)) {
|
|
vorbis_pump_first_frame(this);
|
|
return;
|
|
}
|
|
auto err = error;
|
|
close();
|
|
error = err;
|
|
}
|
|
|
|
void open (const(char)[] filename) {
|
|
import core.stdc.stdio : fopen;
|
|
import std.internal.cstring; // sorry
|
|
close();
|
|
FILE* fl = fopen(filename.tempCString, "rb");
|
|
if (fl is null) { error = STBVorbisError.file_open_failure; return; }
|
|
open(fl, true);
|
|
}
|
|
|
|
/+
|
|
void openPushdata(void* data, int data_len, // the memory available for decoding
|
|
int* data_used) // only defined on success
|
|
{
|
|
close();
|
|
eof = false;
|
|
stream = cast(ubyte*)data;
|
|
stream_end = stream+data_len;
|
|
push_mode = true;
|
|
if (!start_decoder(this)) {
|
|
auto err = error;
|
|
if (eof) err = STBVorbisError.need_more_data; else close();
|
|
error = err;
|
|
return;
|
|
}
|
|
*data_used = stream-(cast(ubyte*)data);
|
|
error = STBVorbisError.no_error;
|
|
}
|
|
+/
|
|
|
|
void close () {
|
|
import core.stdc.string : memset;
|
|
|
|
setup_free(this, this.comment_data);
|
|
if (this.residue_config) {
|
|
foreach (immutable i; 0..this.residue_count) {
|
|
Residue* r = this.residue_config+i;
|
|
if (r.classdata) {
|
|
foreach (immutable j; 0..this.codebooks[r.classbook].entries) setup_free(this, r.classdata[j]);
|
|
setup_free(this, r.classdata);
|
|
}
|
|
setup_free(this, r.residue_books);
|
|
}
|
|
}
|
|
|
|
if (this.codebooks) {
|
|
foreach (immutable i; 0..this.codebook_count) {
|
|
Codebook* c = this.codebooks+i;
|
|
setup_free(this, c.codeword_lengths);
|
|
setup_free(this, c.multiplicands);
|
|
setup_free(this, c.codewords);
|
|
setup_free(this, c.sorted_codewords);
|
|
// c.sorted_values[-1] is the first entry in the array
|
|
setup_free(this, c.sorted_values ? c.sorted_values-1 : null);
|
|
}
|
|
setup_free(this, this.codebooks);
|
|
}
|
|
setup_free(this, this.floor_config);
|
|
setup_free(this, this.residue_config);
|
|
if (this.mapping) {
|
|
foreach (immutable i; 0..this.mapping_count) setup_free(this, this.mapping[i].chan);
|
|
setup_free(this, this.mapping);
|
|
}
|
|
foreach (immutable i; 0..(this.vrchannels > STB_VORBIS_MAX_CHANNELS ? STB_VORBIS_MAX_CHANNELS : this.vrchannels)) {
|
|
setup_free(this, this.channel_buffers.ptr[i]);
|
|
setup_free(this, this.previous_window.ptr[i]);
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) setup_free(this, this.floor_buffers.ptr[i]);
|
|
setup_free(this, this.finalY.ptr[i]);
|
|
}
|
|
foreach (immutable i; 0..2) {
|
|
setup_free(this, this.A.ptr[i]);
|
|
setup_free(this, this.B.ptr[i]);
|
|
setup_free(this, this.C.ptr[i]);
|
|
setup_free(this, this.window.ptr[i]);
|
|
setup_free(this, this.bit_reverse.ptr[i]);
|
|
}
|
|
|
|
rawClose();
|
|
isOpened = false;
|
|
stmread = null;
|
|
stlastofs = uint.max;
|
|
stst = 0;
|
|
stpos = 0;
|
|
stend = 0;
|
|
stclose = false;
|
|
stfl = null;
|
|
|
|
sample_rate = 0;
|
|
vrchannels = 0;
|
|
|
|
setup_memory_required = 0;
|
|
temp_memory_required = 0;
|
|
setup_temp_memory_required = 0;
|
|
|
|
read_comments = 0;
|
|
comment_data = null;
|
|
comment_size = 0;
|
|
|
|
comment_data_pos = 0;
|
|
|
|
/+
|
|
stream = null;
|
|
stream_start = null;
|
|
stream_end = null;
|
|
+/
|
|
|
|
//stream_len = 0;
|
|
|
|
/+push_mode = false;+/
|
|
|
|
first_audio_page_offset = 0;
|
|
|
|
p_first = p_first.init;
|
|
p_last = p_last.init;
|
|
|
|
setup_offset = 0;
|
|
temp_offset = 0;
|
|
|
|
eof = true;
|
|
error = STBVorbisError.no_error;
|
|
|
|
blocksize[] = 0;
|
|
blocksize_0 = 0;
|
|
blocksize_1 = 0;
|
|
codebook_count = 0;
|
|
codebooks = null;
|
|
floor_count = 0;
|
|
floor_types[] = 0;
|
|
floor_config = null;
|
|
residue_count = 0;
|
|
residue_types[] = 0;
|
|
residue_config = null;
|
|
mapping_count = 0;
|
|
mapping = null;
|
|
mode_count = 0;
|
|
mode_config[] = Mode.init;
|
|
|
|
total_samples = 0;
|
|
|
|
channel_buffers[] = null;
|
|
outputs[] = null;
|
|
|
|
previous_window[] = null;
|
|
previous_length = 0;
|
|
|
|
version(STB_VORBIS_NO_DEFER_FLOOR) {
|
|
floor_buffers[] = null;
|
|
} else {
|
|
finalY[] = null;
|
|
}
|
|
|
|
current_loc = 0;
|
|
current_loc_valid = 0;
|
|
|
|
A[] = null;
|
|
B[] = null;
|
|
C[] = null;
|
|
window[] = null;
|
|
bit_reverse = null;
|
|
|
|
serial = 0;
|
|
last_page = 0;
|
|
segment_count = 0;
|
|
segments[] = 0;
|
|
page_flag = 0;
|
|
bytes_in_seg = 0;
|
|
first_decode = 0;
|
|
next_seg = 0;
|
|
last_seg = 0;
|
|
last_seg_which = 0;
|
|
acc = 0;
|
|
valid_bits = 0;
|
|
packet_bytes = 0;
|
|
end_seg_with_known_loc = 0;
|
|
known_loc_for_packet = 0;
|
|
discard_samples_deferred = 0;
|
|
samples_output = 0;
|
|
|
|
/+
|
|
page_crc_tests = -1;
|
|
scan[] = CRCscan.init;
|
|
+/
|
|
|
|
channel_buffer_start = 0;
|
|
channel_buffer_end = 0;
|
|
}
|
|
|
|
@property const pure {
|
|
int getSampleOffset () { return (current_loc_valid ? current_loc : -1); }
|
|
|
|
@property ubyte chans () { return (isOpened ? cast(ubyte)this.vrchannels : 0); }
|
|
@property uint sampleRate () { return (isOpened ? this.sample_rate : 0); }
|
|
@property uint maxFrameSize () { return (isOpened ? this.blocksize_1>>1 : 0); }
|
|
|
|
@property uint getSetupMemoryRequired () { return (isOpened ? this.setup_memory_required : 0); }
|
|
@property uint getSetupTempMemoryRequired () { return (isOpened ? this.setup_temp_memory_required : 0); }
|
|
@property uint getTempMemoryRequired () { return (isOpened ? this.temp_memory_required : 0); }
|
|
}
|
|
|
|
// will clear last error
|
|
@property int lastError () {
|
|
int e = error;
|
|
error = STBVorbisError.no_error;
|
|
return e;
|
|
}
|
|
|
|
// PUSHDATA API
|
|
/+
|
|
void flushPushdata () {
|
|
if (push_mode) {
|
|
previous_length = 0;
|
|
page_crc_tests = 0;
|
|
discard_samples_deferred = 0;
|
|
current_loc_valid = false;
|
|
first_decode = false;
|
|
samples_output = 0;
|
|
channel_buffer_start = 0;
|
|
channel_buffer_end = 0;
|
|
}
|
|
}
|
|
|
|
// return value: number of bytes we used
|
|
int decodeFramePushdata(
|
|
void* data, int data_len, // the memory available for decoding
|
|
int* channels, // place to write number of float* buffers
|
|
float*** output, // place to write float** array of float* buffers
|
|
int* samples // place to write number of output samples
|
|
)
|
|
{
|
|
if (!this.push_mode) return .error(this, STBVorbisError.invalid_api_mixing);
|
|
|
|
if (this.page_crc_tests >= 0) {
|
|
*samples = 0;
|
|
return vorbis_search_for_page_pushdata(this, cast(ubyte*)data, data_len);
|
|
}
|
|
|
|
this.stream = cast(ubyte*)data;
|
|
this.stream_end = this.stream+data_len;
|
|
this.error = STBVorbisError.no_error;
|
|
|
|
// check that we have the entire packet in memory
|
|
if (!is_whole_packet_present(this, false)) {
|
|
*samples = 0;
|
|
return 0;
|
|
}
|
|
|
|
int len, left, right;
|
|
|
|
if (!vorbis_decode_packet(this, &len, &left, &right)) {
|
|
// save the actual error we encountered
|
|
STBVorbisError error = this.error;
|
|
if (error == STBVorbisError.bad_packet_type) {
|
|
// flush and resynch
|
|
this.error = STBVorbisError.no_error;
|
|
while (get8_packet(this) != EOP) if (this.eof) break;
|
|
*samples = 0;
|
|
return this.stream-data;
|
|
}
|
|
if (error == STBVorbisError.continued_packet_flag_invalid) {
|
|
if (this.previous_length == 0) {
|
|
// we may be resynching, in which case it's ok to hit one
|
|
// of these; just discard the packet
|
|
this.error = STBVorbisError.no_error;
|
|
while (get8_packet(this) != EOP) if (this.eof) break;
|
|
*samples = 0;
|
|
return this.stream-data;
|
|
}
|
|
}
|
|
// if we get an error while parsing, what to do?
|
|
// well, it DEFINITELY won't work to continue from where we are!
|
|
flushPushdata();
|
|
// restore the error that actually made us bail
|
|
this.error = error;
|
|
*samples = 0;
|
|
return 1;
|
|
}
|
|
|
|
// success!
|
|
len = vorbis_finish_frame(this, len, left, right);
|
|
foreach (immutable i; 0..this.vrchannels) this.outputs.ptr[i] = this.channel_buffers.ptr[i]+left;
|
|
|
|
if (channels) *channels = this.vrchannels;
|
|
*samples = len;
|
|
*output = this.outputs.ptr;
|
|
return this.stream-data;
|
|
}
|
|
+/
|
|
|
|
public uint fileOffset () {
|
|
if (/+push_mode ||+/ !isOpened) return 0;
|
|
/+if (stream !is null) return cast(uint)(stream-stream_start);+/
|
|
return (stpos > stst ? stpos-stst : 0);
|
|
}
|
|
|
|
public uint stream_len () { return stend-stst; }
|
|
|
|
// DATA-PULLING API
|
|
public int seekFrame (uint sample_number) {
|
|
uint max_frame_samples;
|
|
|
|
/+if (this.push_mode) return -.error(this, STBVorbisError.invalid_api_mixing);+/
|
|
|
|
// fast page-level search
|
|
if (!seek_to_sample_coarse(this, sample_number)) return 0;
|
|
|
|
assert(this.current_loc_valid);
|
|
assert(this.current_loc <= sample_number);
|
|
|
|
import std.stdio;
|
|
|
|
// linear search for the relevant packet
|
|
max_frame_samples = (this.blocksize_1*3-this.blocksize_0)>>2;
|
|
while (this.current_loc < sample_number) {
|
|
int left_start, left_end, right_start, right_end, mode, frame_samples;
|
|
if (!peek_decode_initial(this, &left_start, &left_end, &right_start, &right_end, &mode)) return .error(this, STBVorbisError.seek_failed);
|
|
// calculate the number of samples returned by the next frame
|
|
frame_samples = right_start-left_start;
|
|
if (this.current_loc+frame_samples > sample_number) {
|
|
return 1; // the next frame will contain the sample
|
|
} else if (this.current_loc+frame_samples+max_frame_samples > sample_number) {
|
|
// there's a chance the frame after this could contain the sample
|
|
vorbis_pump_first_frame(this);
|
|
} else {
|
|
// this frame is too early to be relevant
|
|
this.current_loc += frame_samples;
|
|
this.previous_length = 0;
|
|
maybe_start_packet(this);
|
|
flush_packet(this);
|
|
}
|
|
}
|
|
// the next frame will start with the sample
|
|
assert(this.current_loc == sample_number);
|
|
|
|
return 1;
|
|
}
|
|
|
|
public int seek (uint sample_number) {
|
|
if (!seekFrame(sample_number)) return 0;
|
|
if (sample_number != this.current_loc) {
|
|
int n;
|
|
uint frame_start = this.current_loc;
|
|
getFrameFloat(&n, null);
|
|
assert(sample_number > frame_start);
|
|
assert(this.channel_buffer_start+cast(int)(sample_number-frame_start) <= this.channel_buffer_end);
|
|
this.channel_buffer_start += (sample_number-frame_start);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
public bool seekStart () {
|
|
/+if (push_mode) { .error(this, STBVorbisError.invalid_api_mixing); return; }+/
|
|
set_file_offset(this, first_audio_page_offset);
|
|
previous_length = 0;
|
|
first_decode = true;
|
|
next_seg = -1;
|
|
return vorbis_pump_first_frame(this);
|
|
}
|
|
|
|
public uint streamLengthInSamples () {
|
|
uint restore_offset, previous_safe;
|
|
uint end, last_page_loc;
|
|
|
|
/+if (this.push_mode) return .error(this, STBVorbisError.invalid_api_mixing);+/
|
|
if (!this.total_samples) {
|
|
uint last;
|
|
uint lo, hi;
|
|
char[6] header;
|
|
|
|
// first, store the current decode position so we can restore it
|
|
restore_offset = fileOffset;
|
|
|
|
// now we want to seek back 64K from the end (the last page must
|
|
// be at most a little less than 64K, but let's allow a little slop)
|
|
if (this.stream_len >= 65536 && this.stream_len-65536 >= this.first_audio_page_offset) {
|
|
previous_safe = this.stream_len-65536;
|
|
} else {
|
|
previous_safe = this.first_audio_page_offset;
|
|
}
|
|
|
|
set_file_offset(this, previous_safe);
|
|
// previous_safe is now our candidate 'earliest known place that seeking
|
|
// to will lead to the final page'
|
|
|
|
if (!vorbis_find_page(this, &end, &last)) {
|
|
// if we can't find a page, we're hosed!
|
|
this.error = STBVorbisError.cant_find_last_page;
|
|
this.total_samples = 0xffffffff;
|
|
goto done;
|
|
}
|
|
|
|
// check if there are more pages
|
|
last_page_loc = fileOffset;
|
|
|
|
// stop when the last_page flag is set, not when we reach eof;
|
|
// this allows us to stop short of a 'file_section' end without
|
|
// explicitly checking the length of the section
|
|
while (!last) {
|
|
set_file_offset(this, end);
|
|
if (!vorbis_find_page(this, &end, &last)) {
|
|
// the last page we found didn't have the 'last page' flag set. whoops!
|
|
break;
|
|
}
|
|
previous_safe = last_page_loc+1;
|
|
last_page_loc = fileOffset;
|
|
}
|
|
|
|
set_file_offset(this, last_page_loc);
|
|
|
|
// parse the header
|
|
getn(this, cast(ubyte*)header, 6);
|
|
// extract the absolute granule position
|
|
lo = get32(this);
|
|
hi = get32(this);
|
|
if (lo == 0xffffffff && hi == 0xffffffff) {
|
|
this.error = STBVorbisError.cant_find_last_page;
|
|
this.total_samples = SAMPLE_unknown;
|
|
goto done;
|
|
}
|
|
if (hi) lo = 0xfffffffe; // saturate
|
|
this.total_samples = lo;
|
|
|
|
this.p_last.page_start = last_page_loc;
|
|
this.p_last.page_end = end;
|
|
this.p_last.last_decoded_sample = lo;
|
|
|
|
done:
|
|
set_file_offset(this, restore_offset);
|
|
}
|
|
return (this.total_samples == SAMPLE_unknown ? 0 : this.total_samples);
|
|
}
|
|
|
|
public float streamLengthInSeconds () {
|
|
return (isOpened ? streamLengthInSamples()/cast(float)sample_rate : 0.0f);
|
|
}
|
|
|
|
public int getFrameFloat (int* channels, float*** output) {
|
|
int len, right, left;
|
|
/+if (push_mode) return .error(this, STBVorbisError.invalid_api_mixing);+/
|
|
|
|
if (!vorbis_decode_packet(this, &len, &left, &right)) {
|
|
channel_buffer_start = channel_buffer_end = 0;
|
|
return 0;
|
|
}
|
|
|
|
len = vorbis_finish_frame(this, len, left, right);
|
|
foreach (immutable i; 0..this.vrchannels) this.outputs.ptr[i] = this.channel_buffers.ptr[i]+left;
|
|
|
|
channel_buffer_start = left;
|
|
channel_buffer_end = left+len;
|
|
|
|
if (channels) *channels = this.vrchannels;
|
|
if (output) *output = this.outputs.ptr;
|
|
return len;
|
|
}
|
|
|
|
/+
|
|
public VorbisDecoder stb_vorbis_open_memory (const(void)* data, int len, int* error=null, stb_vorbis_alloc* alloc=null) {
|
|
VorbisDecoder this;
|
|
stb_vorbis_ctx p = void;
|
|
if (data is null) return null;
|
|
vorbis_init(&p, alloc);
|
|
p.stream = cast(ubyte*)data;
|
|
p.stream_end = cast(ubyte*)data+len;
|
|
p.stream_start = cast(ubyte*)p.stream;
|
|
p.stream_len = len;
|
|
p.push_mode = false;
|
|
if (start_decoder(&p)) {
|
|
this = vorbis_alloc(&p);
|
|
if (this) {
|
|
*this = p;
|
|
vorbis_pump_first_frame(this);
|
|
return this;
|
|
}
|
|
}
|
|
if (error) *error = p.error;
|
|
vorbis_deinit(&p);
|
|
return null;
|
|
}
|
|
+/
|
|
|
|
// s16 samples API
|
|
int getFrameShort (int num_c, short** buffer, int num_samples) {
|
|
float** output;
|
|
int len = getFrameFloat(null, &output);
|
|
if (len > num_samples) len = num_samples;
|
|
if (len) convert_samples_short(num_c, buffer, 0, vrchannels, output, 0, len);
|
|
return len;
|
|
}
|
|
|
|
int getFrameShortInterleaved (int num_c, short* buffer, int num_shorts) {
|
|
float** output;
|
|
int len;
|
|
if (num_c == 1) return getFrameShort(num_c, &buffer, num_shorts);
|
|
len = getFrameFloat(null, &output);
|
|
if (len) {
|
|
if (len*num_c > num_shorts) len = num_shorts/num_c;
|
|
convert_channels_short_interleaved(num_c, buffer, vrchannels, output, 0, len);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int getSamplesShortInterleaved (int channels, short* buffer, int num_shorts) {
|
|
float** outputs;
|
|
int len = num_shorts/channels;
|
|
int n = 0;
|
|
int z = this.vrchannels;
|
|
if (z > channels) z = channels;
|
|
while (n < len) {
|
|
int k = channel_buffer_end-channel_buffer_start;
|
|
if (n+k >= len) k = len-n;
|
|
if (k) convert_channels_short_interleaved(channels, buffer, vrchannels, channel_buffers.ptr, channel_buffer_start, k);
|
|
buffer += k*channels;
|
|
n += k;
|
|
channel_buffer_start += k;
|
|
if (n == len) break;
|
|
if (!getFrameFloat(null, &outputs)) break;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
int getSamplesShort (int channels, short** buffer, int len) {
|
|
float** outputs;
|
|
int n = 0;
|
|
int z = this.vrchannels;
|
|
if (z > channels) z = channels;
|
|
while (n < len) {
|
|
int k = channel_buffer_end-channel_buffer_start;
|
|
if (n+k >= len) k = len-n;
|
|
if (k) convert_samples_short(channels, buffer, n, vrchannels, channel_buffers.ptr, channel_buffer_start, k);
|
|
n += k;
|
|
channel_buffer_start += k;
|
|
if (n == len) break;
|
|
if (!getFrameFloat(null, &outputs)) break;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/+
|
|
public int stb_vorbis_decode_filename (string filename, int* channels, int* sample_rate, short** output) {
|
|
import core.stdc.stdlib : malloc, realloc;
|
|
|
|
int data_len, offset, total, limit, error;
|
|
short* data;
|
|
VorbisDecoder v = stb_vorbis_open_filename(filename, &error, null);
|
|
if (v is null) return -1;
|
|
limit = v.vrchannels*4096;
|
|
*channels = v.vrchannels;
|
|
if (sample_rate) *sample_rate = v.sample_rate;
|
|
offset = data_len = 0;
|
|
total = limit;
|
|
data = cast(short*)malloc(total*(*data).sizeof);
|
|
if (data is null) {
|
|
stb_vorbis_close(v);
|
|
return -2;
|
|
}
|
|
for (;;) {
|
|
int n = stb_vorbis_get_frame_short_interleaved(v, v.vrchannels, data+offset, total-offset);
|
|
if (n == 0) break;
|
|
data_len += n;
|
|
offset += n*v.vrchannels;
|
|
if (offset+limit > total) {
|
|
short *data2;
|
|
total *= 2;
|
|
data2 = cast(short*)realloc(data, total*(*data).sizeof);
|
|
if (data2 is null) {
|
|
import core.stdc.stdlib : free;
|
|
free(data);
|
|
stb_vorbis_close(v);
|
|
return -2;
|
|
}
|
|
data = data2;
|
|
}
|
|
}
|
|
*output = data;
|
|
stb_vorbis_close(v);
|
|
return data_len;
|
|
}
|
|
|
|
public int stb_vorbis_decode_memory (const(void)* mem, int len, int* channels, int* sample_rate, short** output) {
|
|
import core.stdc.stdlib : malloc, realloc;
|
|
|
|
int data_len, offset, total, limit, error;
|
|
short* data;
|
|
VorbisDecoder v = stb_vorbis_open_memory(mem, len, &error, null);
|
|
if (v is null) return -1;
|
|
limit = v.vrchannels*4096;
|
|
*channels = v.vrchannels;
|
|
if (sample_rate) *sample_rate = v.sample_rate;
|
|
offset = data_len = 0;
|
|
total = limit;
|
|
data = cast(short*)malloc(total*(*data).sizeof);
|
|
if (data is null) {
|
|
stb_vorbis_close(v);
|
|
return -2;
|
|
}
|
|
for (;;) {
|
|
int n = stb_vorbis_get_frame_short_interleaved(v, v.vrchannels, data+offset, total-offset);
|
|
if (n == 0) break;
|
|
data_len += n;
|
|
offset += n*v.vrchannels;
|
|
if (offset+limit > total) {
|
|
short *data2;
|
|
total *= 2;
|
|
data2 = cast(short*)realloc(data, total*(*data).sizeof);
|
|
if (data2 is null) {
|
|
import core.stdc.stdlib : free;
|
|
free(data);
|
|
stb_vorbis_close(v);
|
|
return -2;
|
|
}
|
|
data = data2;
|
|
}
|
|
}
|
|
*output = data;
|
|
stb_vorbis_close(v);
|
|
return data_len;
|
|
}
|
|
|
|
public int stb_vorbis_get_samples_float_interleaved (VorbisDecoder this, int channels, float* buffer, int num_floats) {
|
|
float** outputs;
|
|
int len = num_floats/channels;
|
|
int n = 0;
|
|
int z = this.vrchannels;
|
|
if (z > channels) z = channels;
|
|
while (n < len) {
|
|
int k = this.channel_buffer_end-this.channel_buffer_start;
|
|
if (n+k >= len) k = len-n;
|
|
foreach (immutable j; 0..k) {
|
|
foreach (immutable i; 0..z) *buffer++ = (this.channel_buffers.ptr[i])[this.channel_buffer_start+j];
|
|
foreach (immutable i; z..channels) *buffer++ = 0;
|
|
}
|
|
n += k;
|
|
this.channel_buffer_start += k;
|
|
if (n == len) break;
|
|
if (!stb_vorbis_get_frame_float(this, null, &outputs)) break;
|
|
}
|
|
return n;
|
|
}
|
|
+/
|
|
|
|
public int getSamplesFloat (int achans, float** buffer, int num_samples) {
|
|
import core.stdc.string : memcpy, memset;
|
|
float** outputs;
|
|
int n = 0;
|
|
int z = vrchannels;
|
|
if (z > achans) z = achans;
|
|
while (n < num_samples) {
|
|
int k = channel_buffer_end-channel_buffer_start;
|
|
if (n+k >= num_samples) k = num_samples-n;
|
|
if (k) {
|
|
foreach (immutable i; 0..z) memcpy(buffer[i]+n, channel_buffers.ptr[i]+channel_buffer_start, float.sizeof*k);
|
|
foreach (immutable i; z..achans) memset(buffer[i]+n, 0, float.sizeof*k);
|
|
}
|
|
n += k;
|
|
channel_buffer_start += k;
|
|
if (n == num_samples) break;
|
|
if (!getFrameFloat(null, &outputs)) break;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private: // k8: 'cause i'm evil
|
|
private enum cmt_len_size = 2;
|
|
nothrow /*@trusted*/ @nogc {
|
|
public @property bool comment_empty () const pure { return (comment_get_line_len == 0); }
|
|
|
|
// 0: error
|
|
// includes length itself
|
|
private uint comment_get_line_len () const pure {
|
|
if (comment_data_pos >= comment_size) return 0;
|
|
if (comment_size-comment_data_pos < cmt_len_size) return 0;
|
|
uint len = comment_data[comment_data_pos];
|
|
len += cast(uint)comment_data[comment_data_pos+1]<<8;
|
|
return (len >= cmt_len_size && comment_data_pos+len <= comment_size ? len : 0);
|
|
}
|
|
|
|
public bool comment_rewind () {
|
|
comment_data_pos = 0;
|
|
for (;;) {
|
|
auto len = comment_get_line_len();
|
|
if (!len) { comment_data_pos = comment_size; return false; }
|
|
if (len != cmt_len_size) return true;
|
|
comment_data_pos += len;
|
|
}
|
|
}
|
|
|
|
// true: has something to read after skip
|
|
public bool comment_skip () {
|
|
comment_data_pos += comment_get_line_len();
|
|
for (;;) {
|
|
auto len = comment_get_line_len();
|
|
if (!len) { comment_data_pos = comment_size; return false; }
|
|
if (len != cmt_len_size) break;
|
|
comment_data_pos += len;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public const(char)[] comment_line () {
|
|
auto len = comment_get_line_len();
|
|
if (len < cmt_len_size) return null;
|
|
if (len == cmt_len_size) return "";
|
|
return (cast(char*)comment_data+comment_data_pos+cmt_len_size)[0..len-cmt_len_size];
|
|
}
|
|
|
|
public const(char)[] comment_name () {
|
|
auto line = comment_line();
|
|
if (line.length == 0) return line;
|
|
uint epos = 0;
|
|
while (epos < line.length && line.ptr[epos] != '=') ++epos;
|
|
return (epos < line.length ? line[0..epos] : "");
|
|
}
|
|
|
|
public const(char)[] comment_value () {
|
|
auto line = comment_line();
|
|
if (line.length == 0) return line;
|
|
uint epos = 0;
|
|
while (epos < line.length && line.ptr[epos] != '=') ++epos;
|
|
return (epos < line.length ? line[epos+1..$] : line);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ////////////////////////////////////////////////////////////////////////// //
|
|
private:
|
|
// cool helper to translate C defines
|
|
template cmacroFixVars(T...) {
|
|
/**
|
|
* 64-bit implementation of fasthash
|
|
*
|
|
* Params:
|
|
* buf = data buffer
|
|
* seed = the seed
|
|
*
|
|
* Returns:
|
|
* 32-bit or 64-bit hash
|
|
*/
|
|
size_t hashOf (const(void)* buf, size_t len, size_t seed=0) pure nothrow @trusted @nogc {
|
|
enum Get8Bytes = q{
|
|
cast(ulong)data[0]|
|
|
(cast(ulong)data[1]<<8)|
|
|
(cast(ulong)data[2]<<16)|
|
|
(cast(ulong)data[3]<<24)|
|
|
(cast(ulong)data[4]<<32)|
|
|
(cast(ulong)data[5]<<40)|
|
|
(cast(ulong)data[6]<<48)|
|
|
(cast(ulong)data[7]<<56)
|
|
};
|
|
enum m = 0x880355f21e6d1965UL;
|
|
auto data = cast(const(ubyte)*)buf;
|
|
ulong h = seed;
|
|
ulong t;
|
|
foreach (immutable _; 0..len/8) {
|
|
version(HasUnalignedOps) {
|
|
if (__ctfe) {
|
|
t = mixin(Get8Bytes);
|
|
} else {
|
|
t = *cast(ulong*)data;
|
|
}
|
|
} else {
|
|
t = mixin(Get8Bytes);
|
|
}
|
|
data += 8;
|
|
t ^= t>>23;
|
|
t *= 0x2127599bf4325c37UL;
|
|
t ^= t>>47;
|
|
h ^= t;
|
|
h *= m;
|
|
}
|
|
|
|
h ^= len*m;
|
|
t = 0;
|
|
switch (len&7) {
|
|
case 7: t ^= cast(ulong)data[6]<<48; goto case 6;
|
|
case 6: t ^= cast(ulong)data[5]<<40; goto case 5;
|
|
case 5: t ^= cast(ulong)data[4]<<32; goto case 4;
|
|
case 4: t ^= cast(ulong)data[3]<<24; goto case 3;
|
|
case 3: t ^= cast(ulong)data[2]<<16; goto case 2;
|
|
case 2: t ^= cast(ulong)data[1]<<8; goto case 1;
|
|
case 1: t ^= cast(ulong)data[0]; goto default;
|
|
default:
|
|
t ^= t>>23;
|
|
t *= 0x2127599bf4325c37UL;
|
|
t ^= t>>47;
|
|
h ^= t;
|
|
h *= m;
|
|
break;
|
|
}
|
|
|
|
h ^= h>>23;
|
|
h *= 0x2127599bf4325c37UL;
|
|
h ^= h>>47;
|
|
static if (size_t.sizeof == 4) {
|
|
// 32-bit hash
|
|
// the following trick converts the 64-bit hashcode to Fermat
|
|
// residue, which shall retain information from both the higher
|
|
// and lower parts of hashcode.
|
|
return cast(size_t)(h-(h>>32));
|
|
} else {
|
|
return h;
|
|
}
|
|
}
|
|
|
|
string cmacroFixVars (string s, string[] names...) {
|
|
assert(T.length == names.length, "cmacroFixVars: names and arguments count mismatch");
|
|
enum tmpPfxName = "__temp_prefix__";
|
|
string res;
|
|
string tmppfx;
|
|
uint pos = 0;
|
|
// skip empty lines (for pretty printing)
|
|
// trim trailing spaces
|
|
while (s.length > 0 && s[$-1] <= ' ') s = s[0..$-1];
|
|
uint linestpos = 0; // start of the current line
|
|
while (pos < s.length) {
|
|
if (s[pos] > ' ') break;
|
|
if (s[pos] == '\n') linestpos = pos+1;
|
|
++pos;
|
|
}
|
|
pos = linestpos;
|
|
while (pos+2 < s.length) {
|
|
int epos = pos;
|
|
while (epos+2 < s.length && (s[epos] != '$' || s[epos+1] != '{')) ++epos;
|
|
if (epos > pos) {
|
|
if (s.length-epos < 3) break;
|
|
res ~= s[pos..epos];
|
|
pos = epos;
|
|
}
|
|
assert(s[pos] == '$' && s[pos+1] == '{');
|
|
pos += 2;
|
|
bool found = false;
|
|
if (s.length-pos >= tmpPfxName.length+1 && s[pos+tmpPfxName.length] == '}' && s[pos..pos+tmpPfxName.length] == tmpPfxName) {
|
|
if (tmppfx.length == 0) {
|
|
// generate temporary prefix
|
|
auto hash = hashOf(s.ptr, s.length);
|
|
immutable char[16] hexChars = "0123456789abcdef";
|
|
tmppfx = "_temp_macro_var_";
|
|
foreach_reverse (immutable idx; 0..size_t.sizeof*2) {
|
|
tmppfx ~= hexChars[hash&0x0f];
|
|
hash >>= 4;
|
|
}
|
|
tmppfx ~= "_";
|
|
}
|
|
pos += tmpPfxName.length+1;
|
|
res ~= tmppfx;
|
|
found = true;
|
|
} else {
|
|
foreach (immutable nidx, string oname; T) {
|
|
static assert(oname.length > 0);
|
|
if (s.length-pos >= oname.length+1 && s[pos+oname.length] == '}' && s[pos..pos+oname.length] == oname) {
|
|
found = true;
|
|
pos += oname.length+1;
|
|
res ~= names[nidx];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert(found, "unknown variable in macro");
|
|
}
|
|
if (pos < s.length) res ~= s[pos..$];
|
|
return res;
|
|
}
|
|
}
|
|
|
|
// ////////////////////////////////////////////////////////////////////////// //
|
|
/* Version history
|
|
1.09 - 2016/04/04 - back out 'avoid discarding last frame' fix from previous version
|
|
1.08 - 2016/04/02 - fixed multiple warnings; fix setup memory leaks;
|
|
avoid discarding last frame of audio data
|
|
1.07 - 2015/01/16 - fixed some warnings, fix mingw, const-correct API
|
|
some more crash fixes when out of memory or with corrupt files
|
|
1.06 - 2015/08/31 - full, correct support for seeking API (Dougall Johnson)
|
|
some crash fixes when out of memory or with corrupt files
|
|
1.05 - 2015/04/19 - don't define __forceinline if it's redundant
|
|
1.04 - 2014/08/27 - fix missing const-correct case in API
|
|
1.03 - 2014/08/07 - Warning fixes
|
|
1.02 - 2014/07/09 - Declare qsort compare function _cdecl on windows
|
|
1.01 - 2014/06/18 - fix stb_vorbis_get_samples_float
|
|
1.0 - 2014/05/26 - fix memory leaks; fix warnings; fix bugs in multichannel
|
|
(API change) report sample rate for decode-full-file funcs
|
|
0.99996 - bracket #include <malloc.h> for macintosh compilation by Laurent Gomila
|
|
0.99995 - use union instead of pointer-cast for fast-float-to-int to avoid alias-optimization problem
|
|
0.99994 - change fast-float-to-int to work in single-precision FPU mode, remove endian-dependence
|
|
0.99993 - remove assert that fired on legal files with empty tables
|
|
0.99992 - rewind-to-start
|
|
0.99991 - bugfix to stb_vorbis_get_samples_short by Bernhard Wodo
|
|
0.9999 - (should have been 0.99990) fix no-CRT support, compiling as C++
|
|
0.9998 - add a full-decode function with a memory source
|
|
0.9997 - fix a bug in the read-from-FILE case in 0.9996 addition
|
|
0.9996 - query length of vorbis stream in samples/seconds
|
|
0.9995 - bugfix to another optimization that only happened in certain files
|
|
0.9994 - bugfix to one of the optimizations that caused significant (but inaudible?) errors
|
|
0.9993 - performance improvements; runs in 99% to 104% of time of reference implementation
|
|
0.9992 - performance improvement of IMDCT; now performs close to reference implementation
|
|
0.9991 - performance improvement of IMDCT
|
|
0.999 - (should have been 0.9990) performance improvement of IMDCT
|
|
0.998 - no-CRT support from Casey Muratori
|
|
0.997 - bugfixes for bugs found by Terje Mathisen
|
|
0.996 - bugfix: fast-huffman decode initialized incorrectly for sparse codebooks; fixing gives 10% speedup - found by Terje Mathisen
|
|
0.995 - bugfix: fix to 'effective' overrun detection - found by Terje Mathisen
|
|
0.994 - bugfix: garbage decode on final VQ symbol of a non-multiple - found by Terje Mathisen
|
|
0.993 - bugfix: pushdata API required 1 extra byte for empty page (failed to consume final page if empty) - found by Terje Mathisen
|
|
0.992 - fixes for MinGW warning
|
|
0.991 - turn fast-float-conversion on by default
|
|
0.990 - fix push-mode seek recovery if you seek into the headers
|
|
0.98b - fix to bad release of 0.98
|
|
0.98 - fix push-mode seek recovery; robustify float-to-int and support non-fast mode
|
|
0.97 - builds under c++ (typecasting, don't use 'class' keyword)
|
|
0.96 - somehow MY 0.95 was right, but the web one was wrong, so here's my 0.95 rereleased as 0.96, fixes a typo in the clamping code
|
|
0.95 - clamping code for 16-bit functions
|
|
0.94 - not publically released
|
|
0.93 - fixed all-zero-floor case (was decoding garbage)
|
|
0.92 - fixed a memory leak
|
|
0.91 - conditional compiles to omit parts of the API and the infrastructure to support them: STB_VORBIS_NO_PULLDATA_API, STB_VORBIS_NO_PUSHDATA_API, STB_VORBIS_NO_STDIO, STB_VORBIS_NO_INTEGER_CONVERSION
|
|
0.90 - first public release
|
|
*/
|
|
|
|
/*
|
|
------------------------------------------------------------------------------
|
|
This software is available under 2 licenses -- choose whichever you prefer.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE A - MIT License
|
|
Copyright (c) 2017 Sean Barrett
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
ALTERNATIVE B - Public Domain (www.unlicense.org)
|
|
This is free and unencumbered software released into the public domain.
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
|
software, either in source code form or as a compiled binary, for any purpose,
|
|
commercial or non-commercial, and by any means.
|
|
In jurisdictions that recognize copyright laws, the author or authors of this
|
|
software dedicate any and all copyright interest in the software to the public
|
|
domain. We make this dedication for the benefit of the public at large and to
|
|
the detriment of our heirs and successors. We intend this dedication to be an
|
|
overt act of relinquishment in perpetuity of all present and future rights to
|
|
this software under copyright law.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
------------------------------------------------------------------------------
|
|
*/
|