mirror of https://github.com/adamdruppe/arsd.git
1340 lines
53 KiB
D
1340 lines
53 KiB
D
/++
|
|
This is a port of the C code from https://www.nayuki.io/page/qr-code-generator-library
|
|
|
|
History:
|
|
Originally written in C by Project Nayuki.
|
|
|
|
Ported to D by me on July 26, 2021
|
|
+/
|
|
/*
|
|
* QR Code generator library (C)
|
|
*
|
|
* Copyright (c) Project Nayuki. (MIT License)
|
|
* https://www.nayuki.io/page/qr-code-generator-library
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
* - The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
* - The Software is provided "as is", without warranty of any kind, express or
|
|
* implied, including but not limited to the warranties of merchantability,
|
|
* fitness for a particular purpose and noninfringement. In no event shall the
|
|
* authors or copyright holders be liable for any claim, damages or other
|
|
* liability, whether in an action of contract, tort or otherwise, arising from,
|
|
* out of or in connection with the Software or the use or other dealings in the
|
|
* Software.
|
|
*/
|
|
module arsd.qrcode;
|
|
|
|
///
|
|
unittest {
|
|
import arsd.qrcode;
|
|
|
|
void main() {
|
|
import arsd.simpledisplay;
|
|
|
|
QrCode code = QrCode("http://arsdnet.net/");
|
|
|
|
enum drawsize = 4;
|
|
// you have to have some border around it
|
|
auto window = new SimpleWindow(code.size * drawsize + 80, code.size * drawsize + 80);
|
|
|
|
{
|
|
auto painter = window.draw;
|
|
painter.clear(Color.white);
|
|
|
|
foreach(y; 0 .. code.size)
|
|
foreach(x; 0 .. code.size) {
|
|
if(code[x, y]) {
|
|
painter.outlineColor = Color.black;
|
|
painter.fillColor = Color.black;
|
|
} else {
|
|
painter.outlineColor = Color.white;
|
|
painter.fillColor = Color.white;
|
|
}
|
|
painter.drawRectangle(Point(x * drawsize + 40, y * drawsize + 40), Size(drawsize, drawsize));
|
|
}
|
|
}
|
|
|
|
window.eventLoop(0);
|
|
}
|
|
|
|
main; // exclude from docs
|
|
}
|
|
|
|
@system:
|
|
|
|
import core.stdc.stddef;
|
|
import core.stdc.stdint;
|
|
import core.stdc.string;
|
|
import core.stdc.config;
|
|
import core.stdc.stdlib;
|
|
import core.stdc.math;
|
|
|
|
/*
|
|
* This library creates QR Code symbols, which is a type of two-dimension barcode.
|
|
* Invented by Denso Wave and described in the ISO/IEC 18004 standard.
|
|
* A QR Code structure is an immutable square grid of black and white cells.
|
|
* The library provides functions to create a QR Code from text or binary data.
|
|
* The library covers the QR Code Model 2 specification, supporting all versions (sizes)
|
|
* from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
|
|
*
|
|
* Ways to create a QR Code object:
|
|
* - High level: Take the payload data and call qrcodegen_encodeText() or qrcodegen_encodeBinary().
|
|
* - Low level: Custom-make the list of segments and call
|
|
* qrcodegen_encodeSegments() or qrcodegen_encodeSegmentsAdvanced().
|
|
* (Note that all ways require supplying the desired error correction level and various byte buffers.)
|
|
*/
|
|
|
|
|
|
/*---- Enum and struct types----*/
|
|
|
|
/*
|
|
* The error correction level in a QR Code symbol.
|
|
*/
|
|
|
|
alias qrcodegen_Ecc = int;
|
|
|
|
enum /*qrcodegen_Ecc*/ {
|
|
// Must be declared in ascending order of error protection
|
|
// so that an internal qrcodegen function works properly
|
|
qrcodegen_Ecc_LOW = 0 , // The QR Code can tolerate about 7% erroneous codewords
|
|
qrcodegen_Ecc_MEDIUM , // The QR Code can tolerate about 15% erroneous codewords
|
|
qrcodegen_Ecc_QUARTILE, // The QR Code can tolerate about 25% erroneous codewords
|
|
qrcodegen_Ecc_HIGH , // The QR Code can tolerate about 30% erroneous codewords
|
|
}
|
|
|
|
|
|
/*
|
|
* The mask pattern used in a QR Code symbol.
|
|
*/
|
|
alias qrcodegen_Mask = int;
|
|
enum /* qrcodegen_Mask */ {
|
|
// A special value to tell the QR Code encoder to
|
|
// automatically select an appropriate mask pattern
|
|
qrcodegen_Mask_AUTO = -1,
|
|
// The eight actual mask patterns
|
|
qrcodegen_Mask_0 = 0,
|
|
qrcodegen_Mask_1,
|
|
qrcodegen_Mask_2,
|
|
qrcodegen_Mask_3,
|
|
qrcodegen_Mask_4,
|
|
qrcodegen_Mask_5,
|
|
qrcodegen_Mask_6,
|
|
qrcodegen_Mask_7,
|
|
}
|
|
|
|
|
|
/*
|
|
* Describes how a segment's data bits are interpreted.
|
|
*/
|
|
alias qrcodegen_Mode = int;
|
|
enum /*qrcodegen_Mode*/ {
|
|
qrcodegen_Mode_NUMERIC = 0x1,
|
|
qrcodegen_Mode_ALPHANUMERIC = 0x2,
|
|
qrcodegen_Mode_BYTE = 0x4,
|
|
qrcodegen_Mode_KANJI = 0x8,
|
|
qrcodegen_Mode_ECI = 0x7,
|
|
}
|
|
|
|
|
|
/*
|
|
* A segment of character/binary/control data in a QR Code symbol.
|
|
* The mid-level way to create a segment is to take the payload data
|
|
* and call a factory function such as qrcodegen_makeNumeric().
|
|
* The low-level way to create a segment is to custom-make the bit buffer
|
|
* and initialize a qrcodegen_Segment struct with appropriate values.
|
|
* Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
|
|
* Any segment longer than this is meaningless for the purpose of generating QR Codes.
|
|
* Moreover, the maximum allowed bit length is 32767 because
|
|
* the largest QR Code (version 40) has 31329 modules.
|
|
*/
|
|
struct qrcodegen_Segment {
|
|
// The mode indicator of this segment.
|
|
qrcodegen_Mode mode;
|
|
|
|
// The length of this segment's unencoded data. Measured in characters for
|
|
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
|
|
// Always zero or positive. Not the same as the data's bit length.
|
|
int numChars;
|
|
|
|
// The data bits of this segment, packed in bitwise big endian.
|
|
// Can be null if the bit length is zero.
|
|
uint8_t *data;
|
|
|
|
// The number of valid data bits used in the buffer. Requires
|
|
// 0 <= bitLength <= 32767, and bitLength <= (capacity of data array) * 8.
|
|
// The character count (numChars) must agree with the mode and the bit buffer length.
|
|
int bitLength;
|
|
};
|
|
|
|
|
|
|
|
/*---- Macro constants and functions ----*/
|
|
|
|
enum qrcodegen_VERSION_MIN = 1; // The minimum version number supported in the QR Code Model 2 standard
|
|
enum qrcodegen_VERSION_MAX = 40; // The maximum version number supported in the QR Code Model 2 standard
|
|
|
|
// Calculates the number of bytes needed to store any QR Code up to and including the given version number,
|
|
// as a compile-time constant. For example, 'uint8_t buffer[qrcodegen_BUFFER_LEN_FOR_VERSION(25)];'
|
|
// can store any single QR Code from version 1 to 25 (inclusive). The result fits in an int (or int16).
|
|
// Requires qrcodegen_VERSION_MIN <= n <= qrcodegen_VERSION_MAX.
|
|
auto qrcodegen_BUFFER_LEN_FOR_VERSION(int n) { return ((((n) * 4 + 17) * ((n) * 4 + 17) + 7) / 8 + 1); }
|
|
|
|
// The worst-case number of bytes needed to store one QR Code, up to and including
|
|
// version 40. This value equals 3918, which is just under 4 kilobytes.
|
|
// Use this more convenient value to avoid calculating tighter memory bounds for buffers.
|
|
auto qrcodegen_BUFFER_LEN_MAX() { return qrcodegen_BUFFER_LEN_FOR_VERSION(qrcodegen_VERSION_MAX); }
|
|
|
|
|
|
|
|
/*---- Functions (high level) to generate QR Codes ----*/
|
|
|
|
/*
|
|
* Encodes the given text string to a QR Code, returning true if encoding succeeded.
|
|
* If the data is too long to fit in any version in the given range
|
|
* at the given ECC level, then false is returned.
|
|
* - The input text must be encoded in UTF-8 and contain no NULs.
|
|
* - The variables ecl and mask must correspond to enum constant values.
|
|
* - Requires 1 <= minVersion <= maxVersion <= 40.
|
|
* - The arrays tempBuffer and qrcode must each have a length
|
|
* of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion).
|
|
* - After the function returns, tempBuffer contains no useful data.
|
|
* - If successful, the resulting QR Code may use numeric,
|
|
* alphanumeric, or byte mode to encode the text.
|
|
* - In the most optimistic case, a QR Code at version 40 with low ECC
|
|
* can hold any UTF-8 string up to 2953 bytes, or any alphanumeric string
|
|
* up to 4296 characters, or any digit string up to 7089 characters.
|
|
* These numbers represent the hard upper limit of the QR Code standard.
|
|
* - Please consult the QR Code specification for information on
|
|
* data capacities per version, ECC level, and text encoding mode.
|
|
*/
|
|
bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode,
|
|
qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl);
|
|
|
|
|
|
/*
|
|
* Encodes the given binary data to a QR Code, returning true if encoding succeeded.
|
|
* If the data is too long to fit in any version in the given range
|
|
* at the given ECC level, then false is returned.
|
|
* - The input array range dataAndTemp[0 : dataLen] should normally be
|
|
* valid UTF-8 text, but is not required by the QR Code standard.
|
|
* - The variables ecl and mask must correspond to enum constant values.
|
|
* - Requires 1 <= minVersion <= maxVersion <= 40.
|
|
* - The arrays dataAndTemp and qrcode must each have a length
|
|
* of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion).
|
|
* - After the function returns, the contents of dataAndTemp may have changed,
|
|
* and does not represent useful data anymore.
|
|
* - If successful, the resulting QR Code will use byte mode to encode the data.
|
|
* - In the most optimistic case, a QR Code at version 40 with low ECC can hold any byte
|
|
* sequence up to length 2953. This is the hard upper limit of the QR Code standard.
|
|
* - Please consult the QR Code specification for information on
|
|
* data capacities per version, ECC level, and text encoding mode.
|
|
*/
|
|
bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode,
|
|
qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl);
|
|
|
|
|
|
|
|
/*---- Functions to extract raw data from QR Codes ----*/
|
|
|
|
|
|
/*
|
|
* QR Code generator library (C)
|
|
*
|
|
* Copyright (c) Project Nayuki. (MIT License)
|
|
* https://www.nayuki.io/page/qr-code-generator-library
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
* - The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
* - The Software is provided "as is", without warranty of any kind, express or
|
|
* implied, including but not limited to the warranties of merchantability,
|
|
* fitness for a particular purpose and noninfringement. In no event shall the
|
|
* authors or copyright holders be liable for any claim, damages or other
|
|
* liability, whether in an action of contract, tort or otherwise, arising from,
|
|
* out of or in connection with the Software or the use or other dealings in the
|
|
* Software.
|
|
*/
|
|
|
|
/*---- Forward declarations for private functions ----*/
|
|
|
|
// Regarding all public and private functions defined in this source file:
|
|
// - They require all pointer/array arguments to be not null unless the array length is zero.
|
|
// - They only read input scalar/array arguments, write to output pointer/array
|
|
// arguments, and return scalar values; they are "pure" functions.
|
|
// - They don't read mutable global variables or write to any global variables.
|
|
// - They don't perform I/O, read the clock, print to console, etc.
|
|
// - They allocate a small and constant amount of stack memory.
|
|
// - They don't allocate or free any memory on the heap.
|
|
// - They don't recurse or mutually recurse. All the code
|
|
// could be inlined into the top-level public functions.
|
|
// - They run in at most quadratic time with respect to input arguments.
|
|
// Most functions run in linear time, and some in constant time.
|
|
// There are no unbounded loops or non-obvious termination conditions.
|
|
// - They are completely thread-safe if the caller does not give the
|
|
// same writable buffer to concurrent calls to these functions.
|
|
|
|
/*---- Private tables of constants ----*/
|
|
|
|
// The set of all legal characters in alphanumeric mode, where each character
|
|
// value maps to the index in the string. For checking text and encoding segments.
|
|
static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
|
|
|
|
// For generating error correction codes.
|
|
private const int8_t[41][4] ECC_CODEWORDS_PER_BLOCK = [
|
|
// Version: (note that index 0 is for padding, and is set to an illegal value)
|
|
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
|
|
[-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low
|
|
[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium
|
|
[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile
|
|
[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High
|
|
];
|
|
|
|
enum qrcodegen_REED_SOLOMON_DEGREE_MAX = 30; // Based on the table above
|
|
|
|
// For generating error correction codes.
|
|
private const int8_t[41][4] NUM_ERROR_CORRECTION_BLOCKS = [
|
|
// Version: (note that index 0 is for padding, and is set to an illegal value)
|
|
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
|
|
[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low
|
|
[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium
|
|
[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile
|
|
[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High
|
|
];
|
|
|
|
// For automatic mask pattern selection.
|
|
static const int PENALTY_N1 = 3;
|
|
static const int PENALTY_N2 = 3;
|
|
static const int PENALTY_N3 = 40;
|
|
static const int PENALTY_N4 = 10;
|
|
|
|
|
|
|
|
/*---- High-level QR Code encoding functions ----*/
|
|
|
|
// Public function - see documentation comment in header file.
|
|
bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode,
|
|
qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) {
|
|
|
|
size_t textLen = strlen(text);
|
|
if (textLen == 0)
|
|
return qrcodegen_encodeSegmentsAdvanced(null, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
|
|
size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion);
|
|
|
|
qrcodegen_Segment seg;
|
|
if (qrcodegen_isNumeric(text)) {
|
|
if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen)
|
|
goto fail;
|
|
seg = qrcodegen_makeNumeric(text, tempBuffer);
|
|
} else if (qrcodegen_isAlphanumeric(text)) {
|
|
if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen)
|
|
goto fail;
|
|
seg = qrcodegen_makeAlphanumeric(text, tempBuffer);
|
|
} else {
|
|
if (textLen > bufLen)
|
|
goto fail;
|
|
for (size_t i = 0; i < textLen; i++)
|
|
tempBuffer[i] = cast(uint8_t)text[i];
|
|
seg.mode = qrcodegen_Mode_BYTE;
|
|
seg.bitLength = calcSegmentBitLength(seg.mode, textLen);
|
|
if (seg.bitLength == -1)
|
|
goto fail;
|
|
seg.numChars = cast(int)textLen;
|
|
seg.data = tempBuffer;
|
|
}
|
|
return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
|
|
|
|
fail:
|
|
qrcode[0] = 0; // Set size to invalid value for safety
|
|
return false;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode,
|
|
qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) {
|
|
|
|
qrcodegen_Segment seg;
|
|
seg.mode = qrcodegen_Mode_BYTE;
|
|
seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
|
|
if (seg.bitLength == -1) {
|
|
qrcode[0] = 0; // Set size to invalid value for safety
|
|
return false;
|
|
}
|
|
seg.numChars = cast(int)dataLen;
|
|
seg.data = dataAndTemp;
|
|
return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode);
|
|
}
|
|
|
|
|
|
// Appends the given number of low-order bits of the given value to the given byte-based
|
|
// bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits.
|
|
private void appendBitsToBuffer(uint val, int numBits, uint8_t* buffer, int *bitLen) {
|
|
assert(0 <= numBits && numBits <= 16 && cast(c_ulong)val >> numBits == 0);
|
|
for (int i = numBits - 1; i >= 0; i--, (*bitLen)++)
|
|
buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
|
|
}
|
|
|
|
|
|
|
|
/*---- Low-level QR Code encoding functions ----*/
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Renders a QR Code representing the given segments at the given error correction level.
|
|
* The smallest possible QR Code version is automatically chosen for the output. Returns true if
|
|
* QR Code creation succeeded, or false if the data is too long to fit in any version. The ECC level
|
|
* of the result may be higher than the ecl argument if it can be done without increasing the version.
|
|
* This function allows the user to create a custom sequence of segments that switches
|
|
* between modes (such as alphanumeric and byte) to encode text in less space.
|
|
* This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary().
|
|
* To save memory, the segments' data buffers can alias/overlap tempBuffer, and will
|
|
* result in them being clobbered, but the QR Code output will still be correct.
|
|
* But the qrcode array must not overlap tempBuffer or any segment's data buffer.
|
|
*/
|
|
|
|
bool qrcodegen_encodeSegments(const qrcodegen_Segment* segs, size_t len,
|
|
qrcodegen_Ecc ecl, uint8_t* tempBuffer, uint8_t* qrcode) {
|
|
return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl,
|
|
qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true, tempBuffer, qrcode);
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
|
|
/*
|
|
* Renders a QR Code representing the given segments with the given encoding parameters.
|
|
* Returns true if QR Code creation succeeded, or false if the data is too long to fit in the range of versions.
|
|
* The smallest possible QR Code version within the given range is automatically
|
|
* chosen for the output. Iff boostEcl is true, then the ECC level of the result
|
|
* may be higher than the ecl argument if it can be done without increasing the
|
|
* version. The mask is either between qrcodegen_Mask_0 to 7 to force that mask, or
|
|
* qrcodegen_Mask_AUTO to automatically choose an appropriate mask (which may be slow).
|
|
* This function allows the user to create a custom sequence of segments that switches
|
|
* between modes (such as alphanumeric and byte) to encode text in less space.
|
|
* This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary().
|
|
* To save memory, the segments' data buffers can alias/overlap tempBuffer, and will
|
|
* result in them being clobbered, but the QR Code output will still be correct.
|
|
* But the qrcode array must not overlap tempBuffer or any segment's data buffer.
|
|
*/
|
|
|
|
bool qrcodegen_encodeSegmentsAdvanced(const qrcodegen_Segment* segs, size_t len, qrcodegen_Ecc ecl,
|
|
int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl, uint8_t* tempBuffer, uint8_t* qrcode) {
|
|
assert(segs != null || len == 0);
|
|
assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX);
|
|
assert(0 <= cast(int)ecl && cast(int)ecl <= 3 && -1 <= cast(int)mask && cast(int)mask <= 7);
|
|
|
|
// Find the minimal version_ number to use
|
|
int version_, dataUsedBits;
|
|
for (version_ = minVersion; ; version_++) {
|
|
int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8; // Number of data bits available
|
|
dataUsedBits = getTotalBits(segs, len, version_);
|
|
if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
|
|
break; // This version_ number is found to be suitable
|
|
if (version_ >= maxVersion) { // All version_s in the range could not fit the given data
|
|
qrcode[0] = 0; // Set size to invalid value for safety
|
|
return false;
|
|
}
|
|
}
|
|
assert(dataUsedBits != -1);
|
|
|
|
// Increase the error correction level while the data still fits in the current version_ number
|
|
for (int i = cast(int)qrcodegen_Ecc_MEDIUM; i <= cast(int)qrcodegen_Ecc_HIGH; i++) { // From low to high
|
|
if (boostEcl && dataUsedBits <= getNumDataCodewords(version_, cast(qrcodegen_Ecc)i) * 8)
|
|
ecl = cast(qrcodegen_Ecc)i;
|
|
}
|
|
|
|
// Concatenate all segments to create the data bit string
|
|
memset(qrcode, 0, cast(size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(version_) * (qrcode[0]).sizeof);
|
|
int bitLen = 0;
|
|
for (size_t i = 0; i < len; i++) {
|
|
const qrcodegen_Segment *seg = &segs[i];
|
|
appendBitsToBuffer(cast(uint)seg.mode, 4, qrcode, &bitLen);
|
|
appendBitsToBuffer(cast(uint)seg.numChars, numCharCountBits(seg.mode, version_), qrcode, &bitLen);
|
|
for (int j = 0; j < seg.bitLength; j++) {
|
|
int bit = (seg.data[j >> 3] >> (7 - (j & 7))) & 1;
|
|
appendBitsToBuffer(cast(uint)bit, 1, qrcode, &bitLen);
|
|
}
|
|
}
|
|
assert(bitLen == dataUsedBits);
|
|
|
|
// Add terminator and pad up to a byte if applicable
|
|
int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8;
|
|
assert(bitLen <= dataCapacityBits);
|
|
int terminatorBits = dataCapacityBits - bitLen;
|
|
if (terminatorBits > 4)
|
|
terminatorBits = 4;
|
|
appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen);
|
|
appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen);
|
|
assert(bitLen % 8 == 0);
|
|
|
|
// Pad with alternating bytes until data capacity is reached
|
|
for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
|
|
appendBitsToBuffer(padByte, 8, qrcode, &bitLen);
|
|
|
|
// Draw function and data codeword modules
|
|
addEccAndInterleave(qrcode, version_, ecl, tempBuffer);
|
|
initializeFunctionModules(version_, qrcode);
|
|
drawCodewords(tempBuffer, getNumRawDataModules(version_) / 8, qrcode);
|
|
drawWhiteFunctionModules(qrcode, version_);
|
|
initializeFunctionModules(version_, tempBuffer);
|
|
|
|
// Handle masking
|
|
if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask
|
|
long minPenalty = long.max;
|
|
for (int i = 0; i < 8; i++) {
|
|
qrcodegen_Mask msk = cast(qrcodegen_Mask)i;
|
|
applyMask(tempBuffer, qrcode, msk);
|
|
drawFormatBits(ecl, msk, qrcode);
|
|
long penalty = getPenaltyScore(qrcode);
|
|
if (penalty < minPenalty) {
|
|
mask = msk;
|
|
minPenalty = penalty;
|
|
}
|
|
applyMask(tempBuffer, qrcode, msk); // Undoes the mask due to XOR
|
|
}
|
|
}
|
|
assert(0 <= cast(int)mask && cast(int)mask <= 7);
|
|
applyMask(tempBuffer, qrcode, mask);
|
|
drawFormatBits(ecl, mask, qrcode);
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/*---- Error correction code generation functions ----*/
|
|
|
|
// Appends error correction bytes to each block of the given data array, then interleaves
|
|
// bytes from the blocks and stores them in the result array. data[0 : dataLen] contains
|
|
// the input data. data[dataLen : rawCodewords] is used as a temporary work area and will
|
|
// be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
|
|
private void addEccAndInterleave(uint8_t* data, int version_, qrcodegen_Ecc ecl, uint8_t* result) {
|
|
// Calculate parameter numbers
|
|
assert(0 <= cast(int)ecl && cast(int)ecl < 4 && qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX);
|
|
int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[cast(int)ecl][version_];
|
|
int blockEccLen = ECC_CODEWORDS_PER_BLOCK [cast(int)ecl][version_];
|
|
int rawCodewords = getNumRawDataModules(version_) / 8;
|
|
int dataLen = getNumDataCodewords(version_, ecl);
|
|
int numShortBlocks = numBlocks - rawCodewords % numBlocks;
|
|
int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
|
|
|
|
// Split data into blocks, calculate ECC, and interleave
|
|
// (not concatenate) the bytes into a single sequence
|
|
uint8_t[qrcodegen_REED_SOLOMON_DEGREE_MAX] rsdiv;
|
|
reedSolomonComputeDivisor(blockEccLen, rsdiv.ptr);
|
|
const(uint8_t)* dat = data;
|
|
for (int i = 0; i < numBlocks; i++) {
|
|
int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1);
|
|
uint8_t *ecc = &data[dataLen]; // Temporary storage
|
|
reedSolomonComputeRemainder(dat, datLen, rsdiv.ptr, blockEccLen, ecc);
|
|
for (int j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data
|
|
if (j == shortBlockDataLen)
|
|
k -= numShortBlocks;
|
|
result[k] = dat[j];
|
|
}
|
|
for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC
|
|
result[k] = ecc[j];
|
|
dat += datLen;
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the number of 8-bit codewords that can be used for storing data (not ECC),
|
|
// for the given version_ number and error correction level. The result is in the range [9, 2956].
|
|
private int getNumDataCodewords(int version_, qrcodegen_Ecc ecl) {
|
|
int v = version_, e = cast(int)ecl;
|
|
assert(0 <= e && e < 4);
|
|
return getNumRawDataModules(v) / 8
|
|
- ECC_CODEWORDS_PER_BLOCK [e][v]
|
|
* NUM_ERROR_CORRECTION_BLOCKS[e][v];
|
|
}
|
|
|
|
|
|
// Returns the number of data bits that can be stored in a QR Code of the given version_ number, after
|
|
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
|
|
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
|
|
private int getNumRawDataModules(int ver) {
|
|
assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX);
|
|
int result = (16 * ver + 128) * ver + 64;
|
|
if (ver >= 2) {
|
|
int numAlign = ver / 7 + 2;
|
|
result -= (25 * numAlign - 10) * numAlign - 55;
|
|
if (ver >= 7)
|
|
result -= 36;
|
|
}
|
|
assert(208 <= result && result <= 29648);
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
/*---- Reed-Solomon ECC generator functions ----*/
|
|
|
|
// Computes a Reed-Solomon ECC generator polynomial for the given degree, storing in result[0 : degree].
|
|
// This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm.
|
|
private void reedSolomonComputeDivisor(int degree, uint8_t* result) {
|
|
assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
|
|
// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
|
|
// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
|
|
memset(result, 0, cast(size_t)degree * (result[0]).sizeof);
|
|
result[degree - 1] = 1; // Start off with the monomial x^0
|
|
|
|
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
|
|
// drop the highest monomial term which is always 1x^degree.
|
|
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
|
|
uint8_t root = 1;
|
|
for (int i = 0; i < degree; i++) {
|
|
// Multiply the current product by (x - r^i)
|
|
for (int j = 0; j < degree; j++) {
|
|
result[j] = reedSolomonMultiply(result[j], root);
|
|
if (j + 1 < degree)
|
|
result[j] ^= result[j + 1];
|
|
}
|
|
root = reedSolomonMultiply(root, 0x02);
|
|
}
|
|
}
|
|
|
|
|
|
// Computes the Reed-Solomon error correction codeword for the given data and divisor polynomials.
|
|
// The remainder when data[0 : dataLen] is divided by divisor[0 : degree] is stored in result[0 : degree].
|
|
// All polynomials are in big endian, and the generator has an implicit leading 1 term.
|
|
private void reedSolomonComputeRemainder(const uint8_t* data, int dataLen,
|
|
const uint8_t* generator, int degree, uint8_t* result) {
|
|
assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX);
|
|
memset(result, 0, cast(size_t)degree * (result[0]).sizeof);
|
|
for (int i = 0; i < dataLen; i++) { // Polynomial division
|
|
uint8_t factor = data[i] ^ result[0];
|
|
memmove(&result[0], &result[1], cast(size_t)(degree - 1) * (result[0]).sizeof);
|
|
result[degree - 1] = 0;
|
|
for (int j = 0; j < degree; j++)
|
|
result[j] ^= reedSolomonMultiply(generator[j], factor);
|
|
}
|
|
}
|
|
|
|
// Returns the product of the two given field elements modulo GF(2^8/0x11D).
|
|
// All inputs are valid. This could be implemented as a 256*256 lookup table.
|
|
private uint8_t reedSolomonMultiply(uint8_t x, uint8_t y) {
|
|
// Russian peasant multiplication
|
|
uint8_t z = 0;
|
|
for (int i = 7; i >= 0; i--) {
|
|
z = cast(uint8_t)((z << 1) ^ ((z >> 7) * 0x11D));
|
|
z ^= ((y >> i) & 1) * x;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
|
|
/*---- Drawing function modules ----*/
|
|
|
|
// Clears the given QR Code grid with white modules for the given
|
|
// version_'s size, then marks every function module as black.
|
|
private void initializeFunctionModules(int version_, uint8_t* qrcode) {
|
|
// Initialize QR Code
|
|
int qrsize = version_ * 4 + 17;
|
|
memset(qrcode, 0, cast(size_t)((qrsize * qrsize + 7) / 8 + 1) * (qrcode[0]).sizeof);
|
|
qrcode[0] = cast(uint8_t)qrsize;
|
|
|
|
// Fill horizontal and vertical timing patterns
|
|
fillRectangle(6, 0, 1, qrsize, qrcode);
|
|
fillRectangle(0, 6, qrsize, 1, qrcode);
|
|
|
|
// Fill 3 finder patterns (all corners except bottom right) and format bits
|
|
fillRectangle(0, 0, 9, 9, qrcode);
|
|
fillRectangle(qrsize - 8, 0, 8, 9, qrcode);
|
|
fillRectangle(0, qrsize - 8, 9, 8, qrcode);
|
|
|
|
// Fill numerous alignment patterns
|
|
uint8_t[7] alignPatPos;
|
|
int numAlign = getAlignmentPatternPositions(version_, alignPatPos);
|
|
for (int i = 0; i < numAlign; i++) {
|
|
for (int j = 0; j < numAlign; j++) {
|
|
// Don't draw on the three finder corners
|
|
if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)))
|
|
fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
|
|
}
|
|
}
|
|
|
|
// Fill version_ blocks
|
|
if (version_ >= 7) {
|
|
fillRectangle(qrsize - 11, 0, 3, 6, qrcode);
|
|
fillRectangle(0, qrsize - 11, 6, 3, qrcode);
|
|
}
|
|
}
|
|
|
|
|
|
// Draws white function modules and possibly some black modules onto the given QR Code, without changing
|
|
// non-function modules. This does not draw the format bits. This requires all function modules to be previously
|
|
// marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules.
|
|
static void drawWhiteFunctionModules(uint8_t* qrcode, int version_) {
|
|
// Draw horizontal and vertical timing patterns
|
|
int qrsize = qrcodegen_getSize(qrcode);
|
|
for (int i = 7; i < qrsize - 7; i += 2) {
|
|
setModule(qrcode, 6, i, false);
|
|
setModule(qrcode, i, 6, false);
|
|
}
|
|
|
|
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
|
|
for (int dy = -4; dy <= 4; dy++) {
|
|
for (int dx = -4; dx <= 4; dx++) {
|
|
int dist = abs(dx);
|
|
if (abs(dy) > dist)
|
|
dist = abs(dy);
|
|
if (dist == 2 || dist == 4) {
|
|
setModuleBounded(qrcode, 3 + dx, 3 + dy, false);
|
|
setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false);
|
|
setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draw numerous alignment patterns
|
|
uint8_t[7] alignPatPos;
|
|
int numAlign = getAlignmentPatternPositions(version_, alignPatPos);
|
|
for (int i = 0; i < numAlign; i++) {
|
|
for (int j = 0; j < numAlign; j++) {
|
|
if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
|
|
continue; // Don't draw on the three finder corners
|
|
for (int dy = -1; dy <= 1; dy++) {
|
|
for (int dx = -1; dx <= 1; dx++)
|
|
setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draw version_ blocks
|
|
if (version_ >= 7) {
|
|
// Calculate error correction code and pack bits
|
|
int rem = version_; // version_ is uint6, in the range [7, 40]
|
|
for (int i = 0; i < 12; i++)
|
|
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
|
|
c_long bits = cast(c_long)version_ << 12 | rem; // uint18
|
|
assert(bits >> 18 == 0);
|
|
|
|
// Draw two copies
|
|
for (int i = 0; i < 6; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
int k = qrsize - 11 + j;
|
|
setModule(qrcode, k, i, (bits & 1) != 0);
|
|
setModule(qrcode, i, k, (bits & 1) != 0);
|
|
bits >>= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Draws two copies of the format bits (with its own error correction code) based
|
|
// on the given mask and error correction level. This always draws all modules of
|
|
// the format bits, unlike drawWhiteFunctionModules() which might skip black modules.
|
|
static void drawFormatBits(qrcodegen_Ecc ecl, qrcodegen_Mask mask, uint8_t* qrcode) {
|
|
// Calculate error correction code and pack bits
|
|
assert(0 <= cast(int)mask && cast(int)mask <= 7);
|
|
static const int[] table = [1, 0, 3, 2];
|
|
int data = table[cast(int)ecl] << 3 | cast(int)mask; // errCorrLvl is uint2, mask is uint3
|
|
int rem = data;
|
|
for (int i = 0; i < 10; i++)
|
|
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
|
|
int bits = (data << 10 | rem) ^ 0x5412; // uint15
|
|
assert(bits >> 15 == 0);
|
|
|
|
// Draw first copy
|
|
for (int i = 0; i <= 5; i++)
|
|
setModule(qrcode, 8, i, getBit(bits, i));
|
|
setModule(qrcode, 8, 7, getBit(bits, 6));
|
|
setModule(qrcode, 8, 8, getBit(bits, 7));
|
|
setModule(qrcode, 7, 8, getBit(bits, 8));
|
|
for (int i = 9; i < 15; i++)
|
|
setModule(qrcode, 14 - i, 8, getBit(bits, i));
|
|
|
|
// Draw second copy
|
|
int qrsize = qrcodegen_getSize(qrcode);
|
|
for (int i = 0; i < 8; i++)
|
|
setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i));
|
|
for (int i = 8; i < 15; i++)
|
|
setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i));
|
|
setModule(qrcode, 8, qrsize - 8, true); // Always black
|
|
}
|
|
|
|
|
|
// Calculates and stores an ascending list of positions of alignment patterns
|
|
// for this version_ number, returning the length of the list (in the range [0,7]).
|
|
// Each position is in the range [0,177), and are used on both the x and y axes.
|
|
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
|
|
private int getAlignmentPatternPositions(int version_, ref uint8_t[7] result) {
|
|
if (version_ == 1)
|
|
return 0;
|
|
int numAlign = version_ / 7 + 2;
|
|
int step = (version_ == 32) ? 26 :
|
|
(version_*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2;
|
|
for (int i = numAlign - 1, pos = version_ * 4 + 10; i >= 1; i--, pos -= step)
|
|
result[i] = cast(uint8_t)pos;
|
|
result[0] = 6;
|
|
return numAlign;
|
|
}
|
|
|
|
|
|
// Sets every pixel in the range [left : left + width] * [top : top + height] to black.
|
|
static void fillRectangle(int left, int top, int width, int height, uint8_t* qrcode) {
|
|
for (int dy = 0; dy < height; dy++) {
|
|
for (int dx = 0; dx < width; dx++)
|
|
setModule(qrcode, left + dx, top + dy, true);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*---- Drawing data modules and masking ----*/
|
|
|
|
// Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
|
|
// the QR Code to be black at function modules and white at codeword modules (including unused remainder bits).
|
|
static void drawCodewords(const uint8_t* data, int dataLen, uint8_t* qrcode) {
|
|
int qrsize = qrcodegen_getSize(qrcode);
|
|
int i = 0; // Bit index into the data
|
|
// Do the funny zigzag scan
|
|
for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair
|
|
if (right == 6)
|
|
right = 5;
|
|
for (int vert = 0; vert < qrsize; vert++) { // Vertical counter
|
|
for (int j = 0; j < 2; j++) {
|
|
int x = right - j; // Actual x coordinate
|
|
bool upward = ((right + 1) & 2) == 0;
|
|
int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate
|
|
if (!getModule(qrcode, x, y) && i < dataLen * 8) {
|
|
bool black = getBit(data[i >> 3], 7 - (i & 7));
|
|
setModule(qrcode, x, y, black);
|
|
i++;
|
|
}
|
|
// If this QR Code has any remainder bits (0 to 7), they were assigned as
|
|
// 0/false/white by the constructor and are left unchanged by this method
|
|
}
|
|
}
|
|
}
|
|
assert(i == dataLen * 8);
|
|
}
|
|
|
|
|
|
// XORs the codeword modules in this QR Code with the given mask pattern.
|
|
// The function modules must be marked and the codeword bits must be drawn
|
|
// before masking. Due to the arithmetic of XOR, calling applyMask() with
|
|
// the same mask value a second time will undo the mask. A final well-formed
|
|
// QR Code needs exactly one (not zero, two, etc.) mask applied.
|
|
static void applyMask(const uint8_t* functionModules, uint8_t* qrcode, qrcodegen_Mask mask) {
|
|
assert(0 <= cast(int)mask && cast(int)mask <= 7); // Disallows qrcodegen_Mask_AUTO
|
|
int qrsize = qrcodegen_getSize(qrcode);
|
|
for (int y = 0; y < qrsize; y++) {
|
|
for (int x = 0; x < qrsize; x++) {
|
|
if (getModule(functionModules, x, y))
|
|
continue;
|
|
bool invert;
|
|
switch (cast(int)mask) {
|
|
case 0: invert = (x + y) % 2 == 0; break;
|
|
case 1: invert = y % 2 == 0; break;
|
|
case 2: invert = x % 3 == 0; break;
|
|
case 3: invert = (x + y) % 3 == 0; break;
|
|
case 4: invert = (x / 3 + y / 2) % 2 == 0; break;
|
|
case 5: invert = x * y % 2 + x * y % 3 == 0; break;
|
|
case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break;
|
|
case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break;
|
|
default: assert(false);
|
|
}
|
|
bool val = getModule(qrcode, x, y);
|
|
setModule(qrcode, x, y, val ^ invert);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Calculates and returns the penalty score based on state of the given QR Code's current modules.
|
|
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
|
|
static long getPenaltyScore(const uint8_t* qrcode) {
|
|
int qrsize = qrcodegen_getSize(qrcode);
|
|
long result = 0;
|
|
|
|
// Adjacent modules in row having same color, and finder-like patterns
|
|
for (int y = 0; y < qrsize; y++) {
|
|
bool runColor = false;
|
|
int runX = 0;
|
|
int[7] runHistory = 0;
|
|
for (int x = 0; x < qrsize; x++) {
|
|
if (getModule(qrcode, x, y) == runColor) {
|
|
runX++;
|
|
if (runX == 5)
|
|
result += PENALTY_N1;
|
|
else if (runX > 5)
|
|
result++;
|
|
} else {
|
|
finderPenaltyAddHistory(runX, runHistory, qrsize);
|
|
if (!runColor)
|
|
result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
|
|
runColor = getModule(qrcode, x, y);
|
|
runX = 1;
|
|
}
|
|
}
|
|
result += finderPenaltyTerminateAndCount(runColor, runX, runHistory, qrsize) * PENALTY_N3;
|
|
}
|
|
// Adjacent modules in column having same color, and finder-like patterns
|
|
for (int x = 0; x < qrsize; x++) {
|
|
bool runColor = false;
|
|
int runY = 0;
|
|
int[7] runHistory = 0;
|
|
for (int y = 0; y < qrsize; y++) {
|
|
if (getModule(qrcode, x, y) == runColor) {
|
|
runY++;
|
|
if (runY == 5)
|
|
result += PENALTY_N1;
|
|
else if (runY > 5)
|
|
result++;
|
|
} else {
|
|
finderPenaltyAddHistory(runY, runHistory, qrsize);
|
|
if (!runColor)
|
|
result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
|
|
runColor = getModule(qrcode, x, y);
|
|
runY = 1;
|
|
}
|
|
}
|
|
result += finderPenaltyTerminateAndCount(runColor, runY, runHistory, qrsize) * PENALTY_N3;
|
|
}
|
|
|
|
// 2*2 blocks of modules having same color
|
|
for (int y = 0; y < qrsize - 1; y++) {
|
|
for (int x = 0; x < qrsize - 1; x++) {
|
|
bool color = getModule(qrcode, x, y);
|
|
if ( color == getModule(qrcode, x + 1, y) &&
|
|
color == getModule(qrcode, x, y + 1) &&
|
|
color == getModule(qrcode, x + 1, y + 1))
|
|
result += PENALTY_N2;
|
|
}
|
|
}
|
|
|
|
// Balance of black and white modules
|
|
int black = 0;
|
|
for (int y = 0; y < qrsize; y++) {
|
|
for (int x = 0; x < qrsize; x++) {
|
|
if (getModule(qrcode, x, y))
|
|
black++;
|
|
}
|
|
}
|
|
int total = qrsize * qrsize; // Note that size is odd, so black/total != 1/2
|
|
// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
|
|
int k = cast(int)((labs(black * 20 - total * 10) + total - 1) / total) - 1;
|
|
result += k * PENALTY_N4;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Can only be called immediately after a white run is added, and
|
|
// returns either 0, 1, or 2. A helper function for getPenaltyScore().
|
|
static int finderPenaltyCountPatterns(const int[7] runHistory, int qrsize) {
|
|
int n = runHistory[1];
|
|
assert(n <= qrsize * 3);
|
|
bool core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
|
|
// The maximum QR Code size is 177, hence the black run length n <= 177.
|
|
// Arithmetic is promoted to int, so n*4 will not overflow.
|
|
return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0)
|
|
+ (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
|
|
}
|
|
|
|
|
|
// Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
|
|
static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, ref int[7] runHistory, int qrsize) {
|
|
if (currentRunColor) { // Terminate black run
|
|
finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
|
|
currentRunLength = 0;
|
|
}
|
|
currentRunLength += qrsize; // Add white border to final run
|
|
finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
|
|
return finderPenaltyCountPatterns(runHistory, qrsize);
|
|
}
|
|
|
|
|
|
// Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
|
|
static void finderPenaltyAddHistory(int currentRunLength, ref int[7] runHistory, int qrsize) {
|
|
if (runHistory[0] == 0)
|
|
currentRunLength += qrsize; // Add white border to initial run
|
|
memmove(&runHistory[1], &runHistory[0], 6 * (runHistory[0]).sizeof);
|
|
runHistory[0] = currentRunLength;
|
|
}
|
|
|
|
|
|
|
|
/*---- Basic QR Code information ----*/
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns the side length of the given QR Code, assuming that encoding succeeded.
|
|
* The result is in the range [21, 177]. Note that the length of the array buffer
|
|
* is related to the side length - every 'uint8_t qrcode[]' must have length at least
|
|
* qrcodegen_BUFFER_LEN_FOR_VERSION(version), which equals ceil(size^2 / 8 + 1).
|
|
*/
|
|
|
|
int qrcodegen_getSize(const uint8_t* qrcode) {
|
|
assert(qrcode != null);
|
|
int result = qrcode[0];
|
|
assert((qrcodegen_VERSION_MIN * 4 + 17) <= result
|
|
&& result <= (qrcodegen_VERSION_MAX * 4 + 17));
|
|
return result;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns the color of the module (pixel) at the given coordinates, which is false
|
|
* for white or true for black. The top left corner has the coordinates (x=0, y=0).
|
|
* If the given coordinates are out of bounds, then false (white) is returned.
|
|
*/
|
|
|
|
bool qrcodegen_getModule(const uint8_t* qrcode, int x, int y) {
|
|
assert(qrcode != null);
|
|
int qrsize = qrcode[0];
|
|
return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y);
|
|
}
|
|
|
|
|
|
// Gets the module at the given coordinates, which must be in bounds.
|
|
private bool getModule(const uint8_t* qrcode, int x, int y) {
|
|
int qrsize = qrcode[0];
|
|
assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
|
|
int index = y * qrsize + x;
|
|
return getBit(qrcode[(index >> 3) + 1], index & 7);
|
|
}
|
|
|
|
|
|
// Sets the module at the given coordinates, which must be in bounds.
|
|
private void setModule(uint8_t* qrcode, int x, int y, bool isBlack) {
|
|
int qrsize = qrcode[0];
|
|
assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize);
|
|
int index = y * qrsize + x;
|
|
int bitIndex = index & 7;
|
|
int byteIndex = (index >> 3) + 1;
|
|
if (isBlack)
|
|
qrcode[byteIndex] |= 1 << bitIndex;
|
|
else
|
|
qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
|
|
}
|
|
|
|
|
|
// Sets the module at the given coordinates, doing nothing if out of bounds.
|
|
private void setModuleBounded(uint8_t* qrcode, int x, int y, bool isBlack) {
|
|
int qrsize = qrcode[0];
|
|
if (0 <= x && x < qrsize && 0 <= y && y < qrsize)
|
|
setModule(qrcode, x, y, isBlack);
|
|
}
|
|
|
|
|
|
// Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14.
|
|
static bool getBit(int x, int i) {
|
|
return ((x >> i) & 1) != 0;
|
|
}
|
|
|
|
|
|
|
|
/*---- Segment handling ----*/
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Tests whether the given string can be encoded as a segment in alphanumeric mode.
|
|
* A string is encodable iff each character is in the following set: 0 to 9, A to Z
|
|
* (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
|
|
*/
|
|
bool qrcodegen_isAlphanumeric(const(char)* text) {
|
|
assert(text != null);
|
|
for (; *text != '\0'; text++) {
|
|
if (strchr(ALPHANUMERIC_CHARSET, *text) == null)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Tests whether the given string can be encoded as a segment in numeric mode.
|
|
* A string is encodable iff each character is in the range 0 to 9.
|
|
*/
|
|
bool qrcodegen_isNumeric(const(char)* text) {
|
|
assert(text != null);
|
|
for (; *text != '\0'; text++) {
|
|
if (*text < '0' || *text > '9')
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns the number of bytes (uint8_t) needed for the data buffer of a segment
|
|
* containing the given number of characters using the given mode. Notes:
|
|
* - Returns SIZE_MAX on failure, i.e. numChars > INT16_MAX or
|
|
* the number of needed bits exceeds INT16_MAX (i.e. 32767).
|
|
* - Otherwise, all valid results are in the range [0, ceil(INT16_MAX / 8)], i.e. at most 4096.
|
|
* - It is okay for the user to allocate more bytes for the buffer than needed.
|
|
* - For byte mode, numChars measures the number of bytes, not Unicode code points.
|
|
* - For ECI mode, numChars must be 0, and the worst-case number of bytes is returned.
|
|
* An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
|
|
*/
|
|
|
|
size_t qrcodegen_calcSegmentBufferSize(qrcodegen_Mode mode, size_t numChars) {
|
|
int temp = calcSegmentBitLength(mode, numChars);
|
|
if (temp == -1)
|
|
return SIZE_MAX;
|
|
assert(0 <= temp && temp <= INT16_MAX);
|
|
return (cast(size_t)temp + 7) / 8;
|
|
}
|
|
|
|
|
|
// Returns the number of data bits needed to represent a segment
|
|
// containing the given number of characters using the given mode. Notes:
|
|
// - Returns -1 on failure, i.e. numChars > INT16_MAX or
|
|
// the number of needed bits exceeds INT16_MAX (i.e. 32767).
|
|
// - Otherwise, all valid results are in the range [0, INT16_MAX].
|
|
// - For byte mode, numChars measures the number of bytes, not Unicode code points.
|
|
// - For ECI mode, numChars must be 0, and the worst-case number of bits is returned.
|
|
// An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
|
|
private int calcSegmentBitLength(qrcodegen_Mode mode, size_t numChars) {
|
|
// All calculations are designed to avoid overflow on all platforms
|
|
if (numChars > cast(uint)INT16_MAX)
|
|
return -1;
|
|
c_long result = cast(c_long)numChars;
|
|
if (mode == qrcodegen_Mode_NUMERIC)
|
|
result = (result * 10 + 2) / 3; // ceil(10/3 * n)
|
|
else if (mode == qrcodegen_Mode_ALPHANUMERIC)
|
|
result = (result * 11 + 1) / 2; // ceil(11/2 * n)
|
|
else if (mode == qrcodegen_Mode_BYTE)
|
|
result *= 8;
|
|
else if (mode == qrcodegen_Mode_KANJI)
|
|
result *= 13;
|
|
else if (mode == qrcodegen_Mode_ECI && numChars == 0)
|
|
result = 3 * 8;
|
|
else { // Invalid argument
|
|
assert(false);
|
|
}
|
|
assert(result >= 0);
|
|
if (result > INT16_MAX)
|
|
return -1;
|
|
return cast(int)result;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns a segment representing the given binary data encoded in
|
|
* byte mode. All input byte arrays are acceptable. Any text string
|
|
* can be converted to UTF-8 bytes and encoded as a byte mode segment.
|
|
*/
|
|
|
|
qrcodegen_Segment qrcodegen_makeBytes(const uint8_t* data, size_t len, uint8_t* buf) {
|
|
assert(data != null || len == 0);
|
|
qrcodegen_Segment result;
|
|
result.mode = qrcodegen_Mode_BYTE;
|
|
result.bitLength = calcSegmentBitLength(result.mode, len);
|
|
assert(result.bitLength != -1);
|
|
result.numChars = cast(int)len;
|
|
if (len > 0)
|
|
memcpy(buf, data, len * (buf[0]).sizeof);
|
|
result.data = buf;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns a segment representing the given string of decimal digits encoded in numeric mode.
|
|
*/
|
|
|
|
qrcodegen_Segment qrcodegen_makeNumeric(const(char)* digits, uint8_t* buf) {
|
|
assert(digits != null);
|
|
qrcodegen_Segment result;
|
|
size_t len = strlen(digits);
|
|
result.mode = qrcodegen_Mode_NUMERIC;
|
|
int bitLen = calcSegmentBitLength(result.mode, len);
|
|
assert(bitLen != -1);
|
|
result.numChars = cast(int)len;
|
|
if (bitLen > 0)
|
|
memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof);
|
|
result.bitLength = 0;
|
|
|
|
uint accumData = 0;
|
|
int accumCount = 0;
|
|
for (; *digits != '\0'; digits++) {
|
|
char c = *digits;
|
|
assert('0' <= c && c <= '9');
|
|
accumData = accumData * 10 + cast(uint)(c - '0');
|
|
accumCount++;
|
|
if (accumCount == 3) {
|
|
appendBitsToBuffer(accumData, 10, buf, &result.bitLength);
|
|
accumData = 0;
|
|
accumCount = 0;
|
|
}
|
|
}
|
|
if (accumCount > 0) // 1 or 2 digits remaining
|
|
appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength);
|
|
assert(result.bitLength == bitLen);
|
|
result.data = buf;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns a segment representing the given text string encoded in alphanumeric mode.
|
|
* The characters allowed are: 0 to 9, A to Z (uppercase only), space,
|
|
* dollar, percent, asterisk, plus, hyphen, period, slash, colon.
|
|
*/
|
|
|
|
qrcodegen_Segment qrcodegen_makeAlphanumeric(const(char)* text, uint8_t* buf) {
|
|
assert(text != null);
|
|
qrcodegen_Segment result;
|
|
size_t len = strlen(text);
|
|
result.mode = qrcodegen_Mode_ALPHANUMERIC;
|
|
int bitLen = calcSegmentBitLength(result.mode, len);
|
|
assert(bitLen != -1);
|
|
result.numChars = cast(int)len;
|
|
if (bitLen > 0)
|
|
memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof);
|
|
result.bitLength = 0;
|
|
|
|
uint accumData = 0;
|
|
int accumCount = 0;
|
|
for (; *text != '\0'; text++) {
|
|
const char *temp = strchr(ALPHANUMERIC_CHARSET, *text);
|
|
assert(temp != null);
|
|
accumData = accumData * 45 + cast(uint)(temp - ALPHANUMERIC_CHARSET);
|
|
accumCount++;
|
|
if (accumCount == 2) {
|
|
appendBitsToBuffer(accumData, 11, buf, &result.bitLength);
|
|
accumData = 0;
|
|
accumCount = 0;
|
|
}
|
|
}
|
|
if (accumCount > 0) // 1 character remaining
|
|
appendBitsToBuffer(accumData, 6, buf, &result.bitLength);
|
|
assert(result.bitLength == bitLen);
|
|
result.data = buf;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Public function - see documentation comment in header file.
|
|
|
|
/*
|
|
* Returns a segment representing an Extended Channel Interpretation
|
|
* (ECI) designator with the given assignment value.
|
|
*/
|
|
|
|
qrcodegen_Segment qrcodegen_makeEci(c_long assignVal, uint8_t* buf) {
|
|
qrcodegen_Segment result;
|
|
result.mode = qrcodegen_Mode_ECI;
|
|
result.numChars = 0;
|
|
result.bitLength = 0;
|
|
if (assignVal < 0)
|
|
assert(false);
|
|
else if (assignVal < (1 << 7)) {
|
|
memset(buf, 0, 1 * (buf[0]).sizeof);
|
|
appendBitsToBuffer(cast(uint)assignVal, 8, buf, &result.bitLength);
|
|
} else if (assignVal < (1 << 14)) {
|
|
memset(buf, 0, 2 * (buf[0]).sizeof);
|
|
appendBitsToBuffer(2, 2, buf, &result.bitLength);
|
|
appendBitsToBuffer(cast(uint)assignVal, 14, buf, &result.bitLength);
|
|
} else if (assignVal < 1000000L) {
|
|
memset(buf, 0, 3 * (buf[0]).sizeof);
|
|
appendBitsToBuffer(6, 3, buf, &result.bitLength);
|
|
appendBitsToBuffer(cast(uint)(assignVal >> 10), 11, buf, &result.bitLength);
|
|
appendBitsToBuffer(cast(uint)(assignVal & 0x3FF), 10, buf, &result.bitLength);
|
|
} else
|
|
assert(false);
|
|
result.data = buf;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Calculates the number of bits needed to encode the given segments at the given version_.
|
|
// Returns a non-negative number if successful. Otherwise returns -1 if a segment has too
|
|
// many characters to fit its length field, or the total bits exceeds INT16_MAX.
|
|
private int getTotalBits(const qrcodegen_Segment* segs, size_t len, int version_) {
|
|
assert(segs != null || len == 0);
|
|
long result = 0;
|
|
for (size_t i = 0; i < len; i++) {
|
|
int numChars = segs[i].numChars;
|
|
int bitLength = segs[i].bitLength;
|
|
assert(0 <= numChars && numChars <= INT16_MAX);
|
|
assert(0 <= bitLength && bitLength <= INT16_MAX);
|
|
int ccbits = numCharCountBits(segs[i].mode, version_);
|
|
assert(0 <= ccbits && ccbits <= 16);
|
|
if (numChars >= (1L << ccbits))
|
|
return -1; // The segment's length doesn't fit the field's bit width
|
|
result += 4L + ccbits + bitLength;
|
|
if (result > INT16_MAX)
|
|
return -1; // The sum might overflow an int type
|
|
}
|
|
assert(0 <= result && result <= INT16_MAX);
|
|
return cast(int)result;
|
|
}
|
|
|
|
|
|
// Returns the bit width of the character count field for a segment in the given mode
|
|
// in a QR Code at the given version_ number. The result is in the range [0, 16].
|
|
static int numCharCountBits(qrcodegen_Mode mode, int version_) {
|
|
assert(qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX);
|
|
int i = (version_ + 7) / 17;
|
|
switch (mode) {
|
|
case qrcodegen_Mode_NUMERIC : { static immutable int[] temp1 = [10, 12, 14]; return temp1[i]; }
|
|
case qrcodegen_Mode_ALPHANUMERIC: { static immutable int[] temp2 = [ 9, 11, 13]; return temp2[i]; }
|
|
case qrcodegen_Mode_BYTE : { static immutable int[] temp3 = [ 8, 16, 16]; return temp3[i]; }
|
|
case qrcodegen_Mode_KANJI : { static immutable int[] temp4 = [ 8, 10, 12]; return temp4[i]; }
|
|
case qrcodegen_Mode_ECI : return 0;
|
|
default: assert(false); // Dummy value
|
|
}
|
|
}
|
|
|
|
/++
|
|
|
|
+/
|
|
struct QrCode {
|
|
ubyte[qrcodegen_BUFFER_LEN_MAX] qrcode;
|
|
|
|
this(string text) {
|
|
ubyte[qrcodegen_BUFFER_LEN_MAX] tempBuffer;
|
|
bool ok = qrcodegen_encodeText((text ~ "\0").ptr, tempBuffer.ptr, qrcode.ptr,
|
|
qrcodegen_Ecc_MEDIUM, qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true);
|
|
if(!ok)
|
|
throw new Exception("qr code generation failed");
|
|
}
|
|
|
|
/++
|
|
The size of the square of the code. It is size x size.
|
|
+/
|
|
int size() {
|
|
return qrcodegen_getSize(qrcode.ptr);
|
|
}
|
|
|
|
/++
|
|
Returns true if it is a dark square, false if it is a light one.
|
|
+/
|
|
bool opIndex(int x, int y) {
|
|
return qrcodegen_getModule(qrcode.ptr, x, y);
|
|
}
|
|
}
|
|
|