/++ This is a port of the C code from https://www.nayuki.io/page/qr-code-generator-library History: Originally written in C by Project Nayuki. Ported to D by me on July 26, 2021 +/ /* * QR Code generator library (C) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ module arsd.qrcode; /// unittest { import arsd.qrcode; void main() { import arsd.simpledisplay; QrCode code = QrCode("http://arsdnet.net/"); enum drawsize = 4; // you have to have some border around it auto window = new SimpleWindow(code.size * drawsize + 80, code.size * drawsize + 80); { auto painter = window.draw; painter.clear(Color.white); foreach(y; 0 .. code.size) foreach(x; 0 .. code.size) { if(code[x, y]) { painter.outlineColor = Color.black; painter.fillColor = Color.black; } else { painter.outlineColor = Color.white; painter.fillColor = Color.white; } painter.drawRectangle(Point(x * drawsize + 40, y * drawsize + 40), Size(drawsize, drawsize)); } } window.eventLoop(0); } main; // exclude from docs } @system: import core.stdc.stddef; import core.stdc.stdint; import core.stdc.string; import core.stdc.config; import core.stdc.stdlib; import core.stdc.math; /* * This library creates QR Code symbols, which is a type of two-dimension barcode. * Invented by Denso Wave and described in the ISO/IEC 18004 standard. * A QR Code structure is an immutable square grid of black and white cells. * The library provides functions to create a QR Code from text or binary data. * The library covers the QR Code Model 2 specification, supporting all versions (sizes) * from 1 to 40, all 4 error correction levels, and 4 character encoding modes. * * Ways to create a QR Code object: * - High level: Take the payload data and call qrcodegen_encodeText() or qrcodegen_encodeBinary(). * - Low level: Custom-make the list of segments and call * qrcodegen_encodeSegments() or qrcodegen_encodeSegmentsAdvanced(). * (Note that all ways require supplying the desired error correction level and various byte buffers.) */ /*---- Enum and struct types----*/ /* * The error correction level in a QR Code symbol. */ alias qrcodegen_Ecc = int; enum /*qrcodegen_Ecc*/ { // Must be declared in ascending order of error protection // so that an internal qrcodegen function works properly qrcodegen_Ecc_LOW = 0 , // The QR Code can tolerate about 7% erroneous codewords qrcodegen_Ecc_MEDIUM , // The QR Code can tolerate about 15% erroneous codewords qrcodegen_Ecc_QUARTILE, // The QR Code can tolerate about 25% erroneous codewords qrcodegen_Ecc_HIGH , // The QR Code can tolerate about 30% erroneous codewords } /* * The mask pattern used in a QR Code symbol. */ alias qrcodegen_Mask = int; enum /* qrcodegen_Mask */ { // A special value to tell the QR Code encoder to // automatically select an appropriate mask pattern qrcodegen_Mask_AUTO = -1, // The eight actual mask patterns qrcodegen_Mask_0 = 0, qrcodegen_Mask_1, qrcodegen_Mask_2, qrcodegen_Mask_3, qrcodegen_Mask_4, qrcodegen_Mask_5, qrcodegen_Mask_6, qrcodegen_Mask_7, } /* * Describes how a segment's data bits are interpreted. */ alias qrcodegen_Mode = int; enum /*qrcodegen_Mode*/ { qrcodegen_Mode_NUMERIC = 0x1, qrcodegen_Mode_ALPHANUMERIC = 0x2, qrcodegen_Mode_BYTE = 0x4, qrcodegen_Mode_KANJI = 0x8, qrcodegen_Mode_ECI = 0x7, } /* * A segment of character/binary/control data in a QR Code symbol. * The mid-level way to create a segment is to take the payload data * and call a factory function such as qrcodegen_makeNumeric(). * The low-level way to create a segment is to custom-make the bit buffer * and initialize a qrcodegen_Segment struct with appropriate values. * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. * Any segment longer than this is meaningless for the purpose of generating QR Codes. * Moreover, the maximum allowed bit length is 32767 because * the largest QR Code (version 40) has 31329 modules. */ struct qrcodegen_Segment { // The mode indicator of this segment. qrcodegen_Mode mode; // The length of this segment's unencoded data. Measured in characters for // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. // Always zero or positive. Not the same as the data's bit length. int numChars; // The data bits of this segment, packed in bitwise big endian. // Can be null if the bit length is zero. uint8_t *data; // The number of valid data bits used in the buffer. Requires // 0 <= bitLength <= 32767, and bitLength <= (capacity of data array) * 8. // The character count (numChars) must agree with the mode and the bit buffer length. int bitLength; }; /*---- Macro constants and functions ----*/ enum qrcodegen_VERSION_MIN = 1; // The minimum version number supported in the QR Code Model 2 standard enum qrcodegen_VERSION_MAX = 40; // The maximum version number supported in the QR Code Model 2 standard // Calculates the number of bytes needed to store any QR Code up to and including the given version number, // as a compile-time constant. For example, 'uint8_t buffer[qrcodegen_BUFFER_LEN_FOR_VERSION(25)];' // can store any single QR Code from version 1 to 25 (inclusive). The result fits in an int (or int16). // Requires qrcodegen_VERSION_MIN <= n <= qrcodegen_VERSION_MAX. auto qrcodegen_BUFFER_LEN_FOR_VERSION(int n) { return ((((n) * 4 + 17) * ((n) * 4 + 17) + 7) / 8 + 1); } // The worst-case number of bytes needed to store one QR Code, up to and including // version 40. This value equals 3918, which is just under 4 kilobytes. // Use this more convenient value to avoid calculating tighter memory bounds for buffers. auto qrcodegen_BUFFER_LEN_MAX() { return qrcodegen_BUFFER_LEN_FOR_VERSION(qrcodegen_VERSION_MAX); } /*---- Functions (high level) to generate QR Codes ----*/ /* * Encodes the given text string to a QR Code, returning true if encoding succeeded. * If the data is too long to fit in any version in the given range * at the given ECC level, then false is returned. * - The input text must be encoded in UTF-8 and contain no NULs. * - The variables ecl and mask must correspond to enum constant values. * - Requires 1 <= minVersion <= maxVersion <= 40. * - The arrays tempBuffer and qrcode must each have a length * of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion). * - After the function returns, tempBuffer contains no useful data. * - If successful, the resulting QR Code may use numeric, * alphanumeric, or byte mode to encode the text. * - In the most optimistic case, a QR Code at version 40 with low ECC * can hold any UTF-8 string up to 2953 bytes, or any alphanumeric string * up to 4296 characters, or any digit string up to 7089 characters. * These numbers represent the hard upper limit of the QR Code standard. * - Please consult the QR Code specification for information on * data capacities per version, ECC level, and text encoding mode. */ bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode, qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl); /* * Encodes the given binary data to a QR Code, returning true if encoding succeeded. * If the data is too long to fit in any version in the given range * at the given ECC level, then false is returned. * - The input array range dataAndTemp[0 : dataLen] should normally be * valid UTF-8 text, but is not required by the QR Code standard. * - The variables ecl and mask must correspond to enum constant values. * - Requires 1 <= minVersion <= maxVersion <= 40. * - The arrays dataAndTemp and qrcode must each have a length * of at least qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion). * - After the function returns, the contents of dataAndTemp may have changed, * and does not represent useful data anymore. * - If successful, the resulting QR Code will use byte mode to encode the data. * - In the most optimistic case, a QR Code at version 40 with low ECC can hold any byte * sequence up to length 2953. This is the hard upper limit of the QR Code standard. * - Please consult the QR Code specification for information on * data capacities per version, ECC level, and text encoding mode. */ bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode, qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl); /*---- Functions to extract raw data from QR Codes ----*/ /* * QR Code generator library (C) * * Copyright (c) Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ /*---- Forward declarations for private functions ----*/ // Regarding all public and private functions defined in this source file: // - They require all pointer/array arguments to be not null unless the array length is zero. // - They only read input scalar/array arguments, write to output pointer/array // arguments, and return scalar values; they are "pure" functions. // - They don't read mutable global variables or write to any global variables. // - They don't perform I/O, read the clock, print to console, etc. // - They allocate a small and constant amount of stack memory. // - They don't allocate or free any memory on the heap. // - They don't recurse or mutually recurse. All the code // could be inlined into the top-level public functions. // - They run in at most quadratic time with respect to input arguments. // Most functions run in linear time, and some in constant time. // There are no unbounded loops or non-obvious termination conditions. // - They are completely thread-safe if the caller does not give the // same writable buffer to concurrent calls to these functions. /*---- Private tables of constants ----*/ // The set of all legal characters in alphanumeric mode, where each character // value maps to the index in the string. For checking text and encoding segments. static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; // For generating error correction codes. private const int8_t[41][4] ECC_CODEWORDS_PER_BLOCK = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High ]; enum qrcodegen_REED_SOLOMON_DEGREE_MAX = 30; // Based on the table above // For generating error correction codes. private const int8_t[41][4] NUM_ERROR_CORRECTION_BLOCKS = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High ]; // For automatic mask pattern selection. static const int PENALTY_N1 = 3; static const int PENALTY_N2 = 3; static const int PENALTY_N3 = 40; static const int PENALTY_N4 = 10; /*---- High-level QR Code encoding functions ----*/ // Public function - see documentation comment in header file. bool qrcodegen_encodeText(const char *text, uint8_t* tempBuffer, uint8_t* qrcode, qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) { size_t textLen = strlen(text); if (textLen == 0) return qrcodegen_encodeSegmentsAdvanced(null, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion); qrcodegen_Segment seg; if (qrcodegen_isNumeric(text)) { if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen) goto fail; seg = qrcodegen_makeNumeric(text, tempBuffer); } else if (qrcodegen_isAlphanumeric(text)) { if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen) goto fail; seg = qrcodegen_makeAlphanumeric(text, tempBuffer); } else { if (textLen > bufLen) goto fail; for (size_t i = 0; i < textLen; i++) tempBuffer[i] = cast(uint8_t)text[i]; seg.mode = qrcodegen_Mode_BYTE; seg.bitLength = calcSegmentBitLength(seg.mode, textLen); if (seg.bitLength == -1) goto fail; seg.numChars = cast(int)textLen; seg.data = tempBuffer; } return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); fail: qrcode[0] = 0; // Set size to invalid value for safety return false; } // Public function - see documentation comment in header file. bool qrcodegen_encodeBinary(uint8_t* dataAndTemp, size_t dataLen, uint8_t* qrcode, qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl) { qrcodegen_Segment seg; seg.mode = qrcodegen_Mode_BYTE; seg.bitLength = calcSegmentBitLength(seg.mode, dataLen); if (seg.bitLength == -1) { qrcode[0] = 0; // Set size to invalid value for safety return false; } seg.numChars = cast(int)dataLen; seg.data = dataAndTemp; return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode); } // Appends the given number of low-order bits of the given value to the given byte-based // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits. private void appendBitsToBuffer(uint val, int numBits, uint8_t* buffer, int *bitLen) { assert(0 <= numBits && numBits <= 16 && cast(c_ulong)val >> numBits == 0); for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); } /*---- Low-level QR Code encoding functions ----*/ // Public function - see documentation comment in header file. /* * Renders a QR Code representing the given segments at the given error correction level. * The smallest possible QR Code version is automatically chosen for the output. Returns true if * QR Code creation succeeded, or false if the data is too long to fit in any version. The ECC level * of the result may be higher than the ecl argument if it can be done without increasing the version. * This function allows the user to create a custom sequence of segments that switches * between modes (such as alphanumeric and byte) to encode text in less space. * This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary(). * To save memory, the segments' data buffers can alias/overlap tempBuffer, and will * result in them being clobbered, but the QR Code output will still be correct. * But the qrcode array must not overlap tempBuffer or any segment's data buffer. */ bool qrcodegen_encodeSegments(const qrcodegen_Segment* segs, size_t len, qrcodegen_Ecc ecl, uint8_t* tempBuffer, uint8_t* qrcode) { return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl, qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true, tempBuffer, qrcode); } // Public function - see documentation comment in header file. /* * Renders a QR Code representing the given segments with the given encoding parameters. * Returns true if QR Code creation succeeded, or false if the data is too long to fit in the range of versions. * The smallest possible QR Code version within the given range is automatically * chosen for the output. Iff boostEcl is true, then the ECC level of the result * may be higher than the ecl argument if it can be done without increasing the * version. The mask is either between qrcodegen_Mask_0 to 7 to force that mask, or * qrcodegen_Mask_AUTO to automatically choose an appropriate mask (which may be slow). * This function allows the user to create a custom sequence of segments that switches * between modes (such as alphanumeric and byte) to encode text in less space. * This is a low-level API; the high-level API is qrcodegen_encodeText() and qrcodegen_encodeBinary(). * To save memory, the segments' data buffers can alias/overlap tempBuffer, and will * result in them being clobbered, but the QR Code output will still be correct. * But the qrcode array must not overlap tempBuffer or any segment's data buffer. */ bool qrcodegen_encodeSegmentsAdvanced(const qrcodegen_Segment* segs, size_t len, qrcodegen_Ecc ecl, int minVersion, int maxVersion, qrcodegen_Mask mask, bool boostEcl, uint8_t* tempBuffer, uint8_t* qrcode) { assert(segs != null || len == 0); assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); assert(0 <= cast(int)ecl && cast(int)ecl <= 3 && -1 <= cast(int)mask && cast(int)mask <= 7); // Find the minimal version_ number to use int version_, dataUsedBits; for (version_ = minVersion; ; version_++) { int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8; // Number of data bits available dataUsedBits = getTotalBits(segs, len, version_); if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) break; // This version_ number is found to be suitable if (version_ >= maxVersion) { // All version_s in the range could not fit the given data qrcode[0] = 0; // Set size to invalid value for safety return false; } } assert(dataUsedBits != -1); // Increase the error correction level while the data still fits in the current version_ number for (int i = cast(int)qrcodegen_Ecc_MEDIUM; i <= cast(int)qrcodegen_Ecc_HIGH; i++) { // From low to high if (boostEcl && dataUsedBits <= getNumDataCodewords(version_, cast(qrcodegen_Ecc)i) * 8) ecl = cast(qrcodegen_Ecc)i; } // Concatenate all segments to create the data bit string memset(qrcode, 0, cast(size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(version_) * (qrcode[0]).sizeof); int bitLen = 0; for (size_t i = 0; i < len; i++) { const qrcodegen_Segment *seg = &segs[i]; appendBitsToBuffer(cast(uint)seg.mode, 4, qrcode, &bitLen); appendBitsToBuffer(cast(uint)seg.numChars, numCharCountBits(seg.mode, version_), qrcode, &bitLen); for (int j = 0; j < seg.bitLength; j++) { int bit = (seg.data[j >> 3] >> (7 - (j & 7))) & 1; appendBitsToBuffer(cast(uint)bit, 1, qrcode, &bitLen); } } assert(bitLen == dataUsedBits); // Add terminator and pad up to a byte if applicable int dataCapacityBits = getNumDataCodewords(version_, ecl) * 8; assert(bitLen <= dataCapacityBits); int terminatorBits = dataCapacityBits - bitLen; if (terminatorBits > 4) terminatorBits = 4; appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen); appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen); assert(bitLen % 8 == 0); // Pad with alternating bytes until data capacity is reached for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) appendBitsToBuffer(padByte, 8, qrcode, &bitLen); // Draw function and data codeword modules addEccAndInterleave(qrcode, version_, ecl, tempBuffer); initializeFunctionModules(version_, qrcode); drawCodewords(tempBuffer, getNumRawDataModules(version_) / 8, qrcode); drawWhiteFunctionModules(qrcode, version_); initializeFunctionModules(version_, tempBuffer); // Handle masking if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask long minPenalty = long.max; for (int i = 0; i < 8; i++) { qrcodegen_Mask msk = cast(qrcodegen_Mask)i; applyMask(tempBuffer, qrcode, msk); drawFormatBits(ecl, msk, qrcode); long penalty = getPenaltyScore(qrcode); if (penalty < minPenalty) { mask = msk; minPenalty = penalty; } applyMask(tempBuffer, qrcode, msk); // Undoes the mask due to XOR } } assert(0 <= cast(int)mask && cast(int)mask <= 7); applyMask(tempBuffer, qrcode, mask); drawFormatBits(ecl, mask, qrcode); return true; } /*---- Error correction code generation functions ----*/ // Appends error correction bytes to each block of the given data array, then interleaves // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will // be clobbered by this function. The final answer is stored in result[0 : rawCodewords]. private void addEccAndInterleave(uint8_t* data, int version_, qrcodegen_Ecc ecl, uint8_t* result) { // Calculate parameter numbers assert(0 <= cast(int)ecl && cast(int)ecl < 4 && qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX); int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[cast(int)ecl][version_]; int blockEccLen = ECC_CODEWORDS_PER_BLOCK [cast(int)ecl][version_]; int rawCodewords = getNumRawDataModules(version_) / 8; int dataLen = getNumDataCodewords(version_, ecl); int numShortBlocks = numBlocks - rawCodewords % numBlocks; int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; // Split data into blocks, calculate ECC, and interleave // (not concatenate) the bytes into a single sequence uint8_t[qrcodegen_REED_SOLOMON_DEGREE_MAX] rsdiv; reedSolomonComputeDivisor(blockEccLen, rsdiv.ptr); const(uint8_t)* dat = data; for (int i = 0; i < numBlocks; i++) { int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1); uint8_t *ecc = &data[dataLen]; // Temporary storage reedSolomonComputeRemainder(dat, datLen, rsdiv.ptr, blockEccLen, ecc); for (int j = 0, k = i; j < datLen; j++, k += numBlocks) { // Copy data if (j == shortBlockDataLen) k -= numShortBlocks; result[k] = dat[j]; } for (int j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks) // Copy ECC result[k] = ecc[j]; dat += datLen; } } // Returns the number of 8-bit codewords that can be used for storing data (not ECC), // for the given version_ number and error correction level. The result is in the range [9, 2956]. private int getNumDataCodewords(int version_, qrcodegen_Ecc ecl) { int v = version_, e = cast(int)ecl; assert(0 <= e && e < 4); return getNumRawDataModules(v) / 8 - ECC_CODEWORDS_PER_BLOCK [e][v] * NUM_ERROR_CORRECTION_BLOCKS[e][v]; } // Returns the number of data bits that can be stored in a QR Code of the given version_ number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. private int getNumRawDataModules(int ver) { assert(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX); int result = (16 * ver + 128) * ver + 64; if (ver >= 2) { int numAlign = ver / 7 + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) result -= 36; } assert(208 <= result && result <= 29648); return result; } /*---- Reed-Solomon ECC generator functions ----*/ // Computes a Reed-Solomon ECC generator polynomial for the given degree, storing in result[0 : degree]. // This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm. private void reedSolomonComputeDivisor(int degree, uint8_t* result) { assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. memset(result, 0, cast(size_t)degree * (result[0]).sizeof); result[degree - 1] = 1; // Start off with the monomial x^0 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // drop the highest monomial term which is always 1x^degree. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). uint8_t root = 1; for (int i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (int j = 0; j < degree; j++) { result[j] = reedSolomonMultiply(result[j], root); if (j + 1 < degree) result[j] ^= result[j + 1]; } root = reedSolomonMultiply(root, 0x02); } } // Computes the Reed-Solomon error correction codeword for the given data and divisor polynomials. // The remainder when data[0 : dataLen] is divided by divisor[0 : degree] is stored in result[0 : degree]. // All polynomials are in big endian, and the generator has an implicit leading 1 term. private void reedSolomonComputeRemainder(const uint8_t* data, int dataLen, const uint8_t* generator, int degree, uint8_t* result) { assert(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX); memset(result, 0, cast(size_t)degree * (result[0]).sizeof); for (int i = 0; i < dataLen; i++) { // Polynomial division uint8_t factor = data[i] ^ result[0]; memmove(&result[0], &result[1], cast(size_t)(degree - 1) * (result[0]).sizeof); result[degree - 1] = 0; for (int j = 0; j < degree; j++) result[j] ^= reedSolomonMultiply(generator[j], factor); } } // Returns the product of the two given field elements modulo GF(2^8/0x11D). // All inputs are valid. This could be implemented as a 256*256 lookup table. private uint8_t reedSolomonMultiply(uint8_t x, uint8_t y) { // Russian peasant multiplication uint8_t z = 0; for (int i = 7; i >= 0; i--) { z = cast(uint8_t)((z << 1) ^ ((z >> 7) * 0x11D)); z ^= ((y >> i) & 1) * x; } return z; } /*---- Drawing function modules ----*/ // Clears the given QR Code grid with white modules for the given // version_'s size, then marks every function module as black. private void initializeFunctionModules(int version_, uint8_t* qrcode) { // Initialize QR Code int qrsize = version_ * 4 + 17; memset(qrcode, 0, cast(size_t)((qrsize * qrsize + 7) / 8 + 1) * (qrcode[0]).sizeof); qrcode[0] = cast(uint8_t)qrsize; // Fill horizontal and vertical timing patterns fillRectangle(6, 0, 1, qrsize, qrcode); fillRectangle(0, 6, qrsize, 1, qrcode); // Fill 3 finder patterns (all corners except bottom right) and format bits fillRectangle(0, 0, 9, 9, qrcode); fillRectangle(qrsize - 8, 0, 8, 9, qrcode); fillRectangle(0, qrsize - 8, 9, 8, qrcode); // Fill numerous alignment patterns uint8_t[7] alignPatPos; int numAlign = getAlignmentPatternPositions(version_, alignPatPos); for (int i = 0; i < numAlign; i++) { for (int j = 0; j < numAlign; j++) { // Don't draw on the three finder corners if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))) fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); } } // Fill version_ blocks if (version_ >= 7) { fillRectangle(qrsize - 11, 0, 3, 6, qrcode); fillRectangle(0, qrsize - 11, 6, 3, qrcode); } } // Draws white function modules and possibly some black modules onto the given QR Code, without changing // non-function modules. This does not draw the format bits. This requires all function modules to be previously // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules. static void drawWhiteFunctionModules(uint8_t* qrcode, int version_) { // Draw horizontal and vertical timing patterns int qrsize = qrcodegen_getSize(qrcode); for (int i = 7; i < qrsize - 7; i += 2) { setModule(qrcode, 6, i, false); setModule(qrcode, i, 6, false); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) for (int dy = -4; dy <= 4; dy++) { for (int dx = -4; dx <= 4; dx++) { int dist = abs(dx); if (abs(dy) > dist) dist = abs(dy); if (dist == 2 || dist == 4) { setModuleBounded(qrcode, 3 + dx, 3 + dy, false); setModuleBounded(qrcode, qrsize - 4 + dx, 3 + dy, false); setModuleBounded(qrcode, 3 + dx, qrsize - 4 + dy, false); } } } // Draw numerous alignment patterns uint8_t[7] alignPatPos; int numAlign = getAlignmentPatternPositions(version_, alignPatPos); for (int i = 0; i < numAlign; i++) { for (int j = 0; j < numAlign; j++) { if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) continue; // Don't draw on the three finder corners for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) setModule(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0); } } } // Draw version_ blocks if (version_ >= 7) { // Calculate error correction code and pack bits int rem = version_; // version_ is uint6, in the range [7, 40] for (int i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); c_long bits = cast(c_long)version_ << 12 | rem; // uint18 assert(bits >> 18 == 0); // Draw two copies for (int i = 0; i < 6; i++) { for (int j = 0; j < 3; j++) { int k = qrsize - 11 + j; setModule(qrcode, k, i, (bits & 1) != 0); setModule(qrcode, i, k, (bits & 1) != 0); bits >>= 1; } } } } // Draws two copies of the format bits (with its own error correction code) based // on the given mask and error correction level. This always draws all modules of // the format bits, unlike drawWhiteFunctionModules() which might skip black modules. static void drawFormatBits(qrcodegen_Ecc ecl, qrcodegen_Mask mask, uint8_t* qrcode) { // Calculate error correction code and pack bits assert(0 <= cast(int)mask && cast(int)mask <= 7); static const int[] table = [1, 0, 3, 2]; int data = table[cast(int)ecl] << 3 | cast(int)mask; // errCorrLvl is uint2, mask is uint3 int rem = data; for (int i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >> 9) * 0x537); int bits = (data << 10 | rem) ^ 0x5412; // uint15 assert(bits >> 15 == 0); // Draw first copy for (int i = 0; i <= 5; i++) setModule(qrcode, 8, i, getBit(bits, i)); setModule(qrcode, 8, 7, getBit(bits, 6)); setModule(qrcode, 8, 8, getBit(bits, 7)); setModule(qrcode, 7, 8, getBit(bits, 8)); for (int i = 9; i < 15; i++) setModule(qrcode, 14 - i, 8, getBit(bits, i)); // Draw second copy int qrsize = qrcodegen_getSize(qrcode); for (int i = 0; i < 8; i++) setModule(qrcode, qrsize - 1 - i, 8, getBit(bits, i)); for (int i = 8; i < 15; i++) setModule(qrcode, 8, qrsize - 15 + i, getBit(bits, i)); setModule(qrcode, 8, qrsize - 8, true); // Always black } // Calculates and stores an ascending list of positions of alignment patterns // for this version_ number, returning the length of the list (in the range [0,7]). // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes. private int getAlignmentPatternPositions(int version_, ref uint8_t[7] result) { if (version_ == 1) return 0; int numAlign = version_ / 7 + 2; int step = (version_ == 32) ? 26 : (version_*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2; for (int i = numAlign - 1, pos = version_ * 4 + 10; i >= 1; i--, pos -= step) result[i] = cast(uint8_t)pos; result[0] = 6; return numAlign; } // Sets every pixel in the range [left : left + width] * [top : top + height] to black. static void fillRectangle(int left, int top, int width, int height, uint8_t* qrcode) { for (int dy = 0; dy < height; dy++) { for (int dx = 0; dx < width; dx++) setModule(qrcode, left + dx, top + dy, true); } } /*---- Drawing data modules and masking ----*/ // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits). static void drawCodewords(const uint8_t* data, int dataLen, uint8_t* qrcode) { int qrsize = qrcodegen_getSize(qrcode); int i = 0; // Bit index into the data // Do the funny zigzag scan for (int right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; for (int vert = 0; vert < qrsize; vert++) { // Vertical counter for (int j = 0; j < 2; j++) { int x = right - j; // Actual x coordinate bool upward = ((right + 1) & 2) == 0; int y = upward ? qrsize - 1 - vert : vert; // Actual y coordinate if (!getModule(qrcode, x, y) && i < dataLen * 8) { bool black = getBit(data[i >> 3], 7 - (i & 7)); setModule(qrcode, x, y, black); i++; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/white by the constructor and are left unchanged by this method } } } assert(i == dataLen * 8); } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code needs exactly one (not zero, two, etc.) mask applied. static void applyMask(const uint8_t* functionModules, uint8_t* qrcode, qrcodegen_Mask mask) { assert(0 <= cast(int)mask && cast(int)mask <= 7); // Disallows qrcodegen_Mask_AUTO int qrsize = qrcodegen_getSize(qrcode); for (int y = 0; y < qrsize; y++) { for (int x = 0; x < qrsize; x++) { if (getModule(functionModules, x, y)) continue; bool invert; switch (cast(int)mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (x / 3 + y / 2) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: assert(false); } bool val = getModule(qrcode, x, y); setModule(qrcode, x, y, val ^ invert); } } } // Calculates and returns the penalty score based on state of the given QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. static long getPenaltyScore(const uint8_t* qrcode) { int qrsize = qrcodegen_getSize(qrcode); long result = 0; // Adjacent modules in row having same color, and finder-like patterns for (int y = 0; y < qrsize; y++) { bool runColor = false; int runX = 0; int[7] runHistory = 0; for (int x = 0; x < qrsize; x++) { if (getModule(qrcode, x, y) == runColor) { runX++; if (runX == 5) result += PENALTY_N1; else if (runX > 5) result++; } else { finderPenaltyAddHistory(runX, runHistory, qrsize); if (!runColor) result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3; runColor = getModule(qrcode, x, y); runX = 1; } } result += finderPenaltyTerminateAndCount(runColor, runX, runHistory, qrsize) * PENALTY_N3; } // Adjacent modules in column having same color, and finder-like patterns for (int x = 0; x < qrsize; x++) { bool runColor = false; int runY = 0; int[7] runHistory = 0; for (int y = 0; y < qrsize; y++) { if (getModule(qrcode, x, y) == runColor) { runY++; if (runY == 5) result += PENALTY_N1; else if (runY > 5) result++; } else { finderPenaltyAddHistory(runY, runHistory, qrsize); if (!runColor) result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3; runColor = getModule(qrcode, x, y); runY = 1; } } result += finderPenaltyTerminateAndCount(runColor, runY, runHistory, qrsize) * PENALTY_N3; } // 2*2 blocks of modules having same color for (int y = 0; y < qrsize - 1; y++) { for (int x = 0; x < qrsize - 1; x++) { bool color = getModule(qrcode, x, y); if ( color == getModule(qrcode, x + 1, y) && color == getModule(qrcode, x, y + 1) && color == getModule(qrcode, x + 1, y + 1)) result += PENALTY_N2; } } // Balance of black and white modules int black = 0; for (int y = 0; y < qrsize; y++) { for (int x = 0; x < qrsize; x++) { if (getModule(qrcode, x, y)) black++; } } int total = qrsize * qrsize; // Note that size is odd, so black/total != 1/2 // Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)% int k = cast(int)((labs(black * 20 - total * 10) + total - 1) / total) - 1; result += k * PENALTY_N4; return result; } // Can only be called immediately after a white run is added, and // returns either 0, 1, or 2. A helper function for getPenaltyScore(). static int finderPenaltyCountPatterns(const int[7] runHistory, int qrsize) { int n = runHistory[1]; assert(n <= qrsize * 3); bool core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n; // The maximum QR Code size is 177, hence the black run length n <= 177. // Arithmetic is promoted to int, so n*4 will not overflow. return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0); } // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore(). static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, ref int[7] runHistory, int qrsize) { if (currentRunColor) { // Terminate black run finderPenaltyAddHistory(currentRunLength, runHistory, qrsize); currentRunLength = 0; } currentRunLength += qrsize; // Add white border to final run finderPenaltyAddHistory(currentRunLength, runHistory, qrsize); return finderPenaltyCountPatterns(runHistory, qrsize); } // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore(). static void finderPenaltyAddHistory(int currentRunLength, ref int[7] runHistory, int qrsize) { if (runHistory[0] == 0) currentRunLength += qrsize; // Add white border to initial run memmove(&runHistory[1], &runHistory[0], 6 * (runHistory[0]).sizeof); runHistory[0] = currentRunLength; } /*---- Basic QR Code information ----*/ // Public function - see documentation comment in header file. /* * Returns the side length of the given QR Code, assuming that encoding succeeded. * The result is in the range [21, 177]. Note that the length of the array buffer * is related to the side length - every 'uint8_t qrcode[]' must have length at least * qrcodegen_BUFFER_LEN_FOR_VERSION(version), which equals ceil(size^2 / 8 + 1). */ int qrcodegen_getSize(const uint8_t* qrcode) { assert(qrcode != null); int result = qrcode[0]; assert((qrcodegen_VERSION_MIN * 4 + 17) <= result && result <= (qrcodegen_VERSION_MAX * 4 + 17)); return result; } // Public function - see documentation comment in header file. /* * Returns the color of the module (pixel) at the given coordinates, which is false * for white or true for black. The top left corner has the coordinates (x=0, y=0). * If the given coordinates are out of bounds, then false (white) is returned. */ bool qrcodegen_getModule(const uint8_t* qrcode, int x, int y) { assert(qrcode != null); int qrsize = qrcode[0]; return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y); } // Gets the module at the given coordinates, which must be in bounds. private bool getModule(const uint8_t* qrcode, int x, int y) { int qrsize = qrcode[0]; assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); int index = y * qrsize + x; return getBit(qrcode[(index >> 3) + 1], index & 7); } // Sets the module at the given coordinates, which must be in bounds. private void setModule(uint8_t* qrcode, int x, int y, bool isBlack) { int qrsize = qrcode[0]; assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); int index = y * qrsize + x; int bitIndex = index & 7; int byteIndex = (index >> 3) + 1; if (isBlack) qrcode[byteIndex] |= 1 << bitIndex; else qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF; } // Sets the module at the given coordinates, doing nothing if out of bounds. private void setModuleBounded(uint8_t* qrcode, int x, int y, bool isBlack) { int qrsize = qrcode[0]; if (0 <= x && x < qrsize && 0 <= y && y < qrsize) setModule(qrcode, x, y, isBlack); } // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14. static bool getBit(int x, int i) { return ((x >> i) & 1) != 0; } /*---- Segment handling ----*/ // Public function - see documentation comment in header file. /* * Tests whether the given string can be encoded as a segment in alphanumeric mode. * A string is encodable iff each character is in the following set: 0 to 9, A to Z * (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. */ bool qrcodegen_isAlphanumeric(const(char)* text) { assert(text != null); for (; *text != '\0'; text++) { if (strchr(ALPHANUMERIC_CHARSET, *text) == null) return false; } return true; } // Public function - see documentation comment in header file. /* * Tests whether the given string can be encoded as a segment in numeric mode. * A string is encodable iff each character is in the range 0 to 9. */ bool qrcodegen_isNumeric(const(char)* text) { assert(text != null); for (; *text != '\0'; text++) { if (*text < '0' || *text > '9') return false; } return true; } // Public function - see documentation comment in header file. /* * Returns the number of bytes (uint8_t) needed for the data buffer of a segment * containing the given number of characters using the given mode. Notes: * - Returns SIZE_MAX on failure, i.e. numChars > INT16_MAX or * the number of needed bits exceeds INT16_MAX (i.e. 32767). * - Otherwise, all valid results are in the range [0, ceil(INT16_MAX / 8)], i.e. at most 4096. * - It is okay for the user to allocate more bytes for the buffer than needed. * - For byte mode, numChars measures the number of bytes, not Unicode code points. * - For ECI mode, numChars must be 0, and the worst-case number of bytes is returned. * An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. */ size_t qrcodegen_calcSegmentBufferSize(qrcodegen_Mode mode, size_t numChars) { int temp = calcSegmentBitLength(mode, numChars); if (temp == -1) return SIZE_MAX; assert(0 <= temp && temp <= INT16_MAX); return (cast(size_t)temp + 7) / 8; } // Returns the number of data bits needed to represent a segment // containing the given number of characters using the given mode. Notes: // - Returns -1 on failure, i.e. numChars > INT16_MAX or // the number of needed bits exceeds INT16_MAX (i.e. 32767). // - Otherwise, all valid results are in the range [0, INT16_MAX]. // - For byte mode, numChars measures the number of bytes, not Unicode code points. // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned. // An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. private int calcSegmentBitLength(qrcodegen_Mode mode, size_t numChars) { // All calculations are designed to avoid overflow on all platforms if (numChars > cast(uint)INT16_MAX) return -1; c_long result = cast(c_long)numChars; if (mode == qrcodegen_Mode_NUMERIC) result = (result * 10 + 2) / 3; // ceil(10/3 * n) else if (mode == qrcodegen_Mode_ALPHANUMERIC) result = (result * 11 + 1) / 2; // ceil(11/2 * n) else if (mode == qrcodegen_Mode_BYTE) result *= 8; else if (mode == qrcodegen_Mode_KANJI) result *= 13; else if (mode == qrcodegen_Mode_ECI && numChars == 0) result = 3 * 8; else { // Invalid argument assert(false); } assert(result >= 0); if (result > INT16_MAX) return -1; return cast(int)result; } // Public function - see documentation comment in header file. /* * Returns a segment representing the given binary data encoded in * byte mode. All input byte arrays are acceptable. Any text string * can be converted to UTF-8 bytes and encoded as a byte mode segment. */ qrcodegen_Segment qrcodegen_makeBytes(const uint8_t* data, size_t len, uint8_t* buf) { assert(data != null || len == 0); qrcodegen_Segment result; result.mode = qrcodegen_Mode_BYTE; result.bitLength = calcSegmentBitLength(result.mode, len); assert(result.bitLength != -1); result.numChars = cast(int)len; if (len > 0) memcpy(buf, data, len * (buf[0]).sizeof); result.data = buf; return result; } // Public function - see documentation comment in header file. /* * Returns a segment representing the given string of decimal digits encoded in numeric mode. */ qrcodegen_Segment qrcodegen_makeNumeric(const(char)* digits, uint8_t* buf) { assert(digits != null); qrcodegen_Segment result; size_t len = strlen(digits); result.mode = qrcodegen_Mode_NUMERIC; int bitLen = calcSegmentBitLength(result.mode, len); assert(bitLen != -1); result.numChars = cast(int)len; if (bitLen > 0) memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof); result.bitLength = 0; uint accumData = 0; int accumCount = 0; for (; *digits != '\0'; digits++) { char c = *digits; assert('0' <= c && c <= '9'); accumData = accumData * 10 + cast(uint)(c - '0'); accumCount++; if (accumCount == 3) { appendBitsToBuffer(accumData, 10, buf, &result.bitLength); accumData = 0; accumCount = 0; } } if (accumCount > 0) // 1 or 2 digits remaining appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength); assert(result.bitLength == bitLen); result.data = buf; return result; } // Public function - see documentation comment in header file. /* * Returns a segment representing the given text string encoded in alphanumeric mode. * The characters allowed are: 0 to 9, A to Z (uppercase only), space, * dollar, percent, asterisk, plus, hyphen, period, slash, colon. */ qrcodegen_Segment qrcodegen_makeAlphanumeric(const(char)* text, uint8_t* buf) { assert(text != null); qrcodegen_Segment result; size_t len = strlen(text); result.mode = qrcodegen_Mode_ALPHANUMERIC; int bitLen = calcSegmentBitLength(result.mode, len); assert(bitLen != -1); result.numChars = cast(int)len; if (bitLen > 0) memset(buf, 0, (cast(size_t)bitLen + 7) / 8 * (buf[0]).sizeof); result.bitLength = 0; uint accumData = 0; int accumCount = 0; for (; *text != '\0'; text++) { const char *temp = strchr(ALPHANUMERIC_CHARSET, *text); assert(temp != null); accumData = accumData * 45 + cast(uint)(temp - ALPHANUMERIC_CHARSET); accumCount++; if (accumCount == 2) { appendBitsToBuffer(accumData, 11, buf, &result.bitLength); accumData = 0; accumCount = 0; } } if (accumCount > 0) // 1 character remaining appendBitsToBuffer(accumData, 6, buf, &result.bitLength); assert(result.bitLength == bitLen); result.data = buf; return result; } // Public function - see documentation comment in header file. /* * Returns a segment representing an Extended Channel Interpretation * (ECI) designator with the given assignment value. */ qrcodegen_Segment qrcodegen_makeEci(c_long assignVal, uint8_t* buf) { qrcodegen_Segment result; result.mode = qrcodegen_Mode_ECI; result.numChars = 0; result.bitLength = 0; if (assignVal < 0) assert(false); else if (assignVal < (1 << 7)) { memset(buf, 0, 1 * (buf[0]).sizeof); appendBitsToBuffer(cast(uint)assignVal, 8, buf, &result.bitLength); } else if (assignVal < (1 << 14)) { memset(buf, 0, 2 * (buf[0]).sizeof); appendBitsToBuffer(2, 2, buf, &result.bitLength); appendBitsToBuffer(cast(uint)assignVal, 14, buf, &result.bitLength); } else if (assignVal < 1000000L) { memset(buf, 0, 3 * (buf[0]).sizeof); appendBitsToBuffer(6, 3, buf, &result.bitLength); appendBitsToBuffer(cast(uint)(assignVal >> 10), 11, buf, &result.bitLength); appendBitsToBuffer(cast(uint)(assignVal & 0x3FF), 10, buf, &result.bitLength); } else assert(false); result.data = buf; return result; } // Calculates the number of bits needed to encode the given segments at the given version_. // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too // many characters to fit its length field, or the total bits exceeds INT16_MAX. private int getTotalBits(const qrcodegen_Segment* segs, size_t len, int version_) { assert(segs != null || len == 0); long result = 0; for (size_t i = 0; i < len; i++) { int numChars = segs[i].numChars; int bitLength = segs[i].bitLength; assert(0 <= numChars && numChars <= INT16_MAX); assert(0 <= bitLength && bitLength <= INT16_MAX); int ccbits = numCharCountBits(segs[i].mode, version_); assert(0 <= ccbits && ccbits <= 16); if (numChars >= (1L << ccbits)) return -1; // The segment's length doesn't fit the field's bit width result += 4L + ccbits + bitLength; if (result > INT16_MAX) return -1; // The sum might overflow an int type } assert(0 <= result && result <= INT16_MAX); return cast(int)result; } // Returns the bit width of the character count field for a segment in the given mode // in a QR Code at the given version_ number. The result is in the range [0, 16]. static int numCharCountBits(qrcodegen_Mode mode, int version_) { assert(qrcodegen_VERSION_MIN <= version_ && version_ <= qrcodegen_VERSION_MAX); int i = (version_ + 7) / 17; switch (mode) { case qrcodegen_Mode_NUMERIC : { static immutable int[] temp1 = [10, 12, 14]; return temp1[i]; } case qrcodegen_Mode_ALPHANUMERIC: { static immutable int[] temp2 = [ 9, 11, 13]; return temp2[i]; } case qrcodegen_Mode_BYTE : { static immutable int[] temp3 = [ 8, 16, 16]; return temp3[i]; } case qrcodegen_Mode_KANJI : { static immutable int[] temp4 = [ 8, 10, 12]; return temp4[i]; } case qrcodegen_Mode_ECI : return 0; default: assert(false); // Dummy value } } /++ +/ struct QrCode { ubyte[qrcodegen_BUFFER_LEN_MAX] qrcode; this(string text) { ubyte[qrcodegen_BUFFER_LEN_MAX] tempBuffer; bool ok = qrcodegen_encodeText((text ~ "\0").ptr, tempBuffer.ptr, qrcode.ptr, qrcodegen_Ecc_MEDIUM, qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true); if(!ok) throw new Exception("qr code generation failed"); } /++ The size of the square of the code. It is size x size. +/ int size() { return qrcodegen_getSize(qrcode.ptr); } /++ Returns true if it is a dark square, false if it is a light one. +/ bool opIndex(int x, int y) { return qrcodegen_getModule(qrcode.ptr, x, y); } }