diff --git a/color.d b/color.d index 9759ccd..107e40d 100644 --- a/color.d +++ b/color.d @@ -775,8 +775,44 @@ interface MemoryImage { /// Get image pixel. Slow, but returns valid RGBA color (completely transparent for off-image pixels). Color getPixel(int x, int y) const; - // Set image pixel. + /// Set image pixel. void setPixel(int x, int y, in Color clr); + + /// Load image from file. This will import arsd.png and arsd.jpeg to do the actual work, and cost nothing if you don't use it. + static MemoryImage fromImage(T : const(char)[]) (T filename) @trusted { + static if (__traits(compiles, {import arsd.jpeg;})) { + // yay, we have jpeg loader here, try it! + import arsd.jpeg; + bool goodJpeg = false; + try { + int w, h, c; + goodJpeg = detect_jpeg_image_from_file(filename, w, h, c); + if (goodJpeg && (w < 1 || h < 1)) goodJpeg = false; + } catch (Exception) {} // sorry + if (goodJpeg) return readJpeg(filename); + enum HasJpeg = true; + } else { + enum HasJpeg = false; + } + static if (__traits(compiles, {import arsd.png;})) { + // yay, we have png loader here, try it! + import arsd.png; + static if (is(T == string)) { + return readPng(filename); + } else { + // std.stdio sux! + return readPng(filename.idup); + } + enum HasPng = true; + } else { + enum HasPng = false; + } + static if (HasJpeg || HasPng) { + throw new Exception("cannot load image '"~filename.idup~"' in unknown format"); + } else { + static assert(0, "please provide 'arsd.png', 'arsd.jpeg' or both to load images!"); + } + } } /// An image that consists of indexes into a color palette. Use getAsTrueColorImage() if you don't care about palettes diff --git a/image.d b/image.d new file mode 100644 index 0000000..a394171 --- /dev/null +++ b/image.d @@ -0,0 +1,6 @@ +/// this file just imports all available image decoders +module arsd.image; + +public import arsd.color; +public import arsd.png; +public import arsd.jpeg; diff --git a/jpeg.d b/jpeg.d new file mode 100644 index 0000000..443ee13 --- /dev/null +++ b/jpeg.d @@ -0,0 +1,3434 @@ +// jpgd.h - C++ class for JPEG decompression. +// Rich Geldreich +// Alex Evans: Linear memory allocator (taken from jpge.h). +// v1.04, May. 19, 2012: Code tweaks to fix VS2008 static code analysis warnings (all looked harmless) +// D translation by Ketmar // Invisible Vector +// +// This is free and unencumbered software released into the public domain. +// +// Anyone is free to copy, modify, publish, use, compile, sell, or +// distribute this software, either in source code form or as a compiled +// binary, for any purpose, commercial or non-commercial, and by any +// means. +// +// In jurisdictions that recognize copyright laws, the author or authors +// of this software dedicate any and all copyright interest in the +// software to the public domain. We make this dedication for the benefit +// of the public at large and to the detriment of our heirs and +// successors. We intend this dedication to be an overt act of +// relinquishment in perpetuity of all present and future rights to this +// software under copyright law. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR +// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +// OTHER DEALINGS IN THE SOFTWARE. +// +// For more information, please refer to +// +// Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2. +// +// Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling. +// Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain" +// http://vision.ai.uiuc.edu/~dugad/research/dct/index.html +/** + * Loads a JPEG image from a memory buffer or a file. + * req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA). + * On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB). + * Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp. + */ +module arsd.jpeg; + +// Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling). +// This is slower, but results in higher quality on images with highly saturated colors. +version = JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING; + +/// Input stream interface. +/// This delegate is called when the internal input buffer is empty. +/// Parameters: +/// pBuf - input buffer +/// max_bytes_to_read - maximum bytes that can be written to pBuf +/// pEOF_flag - set this to true if at end of stream (no more bytes remaining) +/// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0). +/// Notes: This delegate will be called in a loop until you set *pEOF_flag to true or the internal buffer is full. +alias JpegStreamReadFunc = int delegate (void* pBuf, int max_bytes_to_read, bool* pEOF_flag); + + +// ////////////////////////////////////////////////////////////////////////// // +private: +void *jpgd_malloc (size_t nSize) { import core.stdc.stdlib : malloc; return malloc(nSize); } +void jpgd_free (void *p) { import core.stdc.stdlib : free; if (p !is null) free(p); } + +// Success/failure error codes. +alias jpgd_status = int; +enum /*jpgd_status*/ { + JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1, + JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE, + JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS, + JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH, + JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER, + JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS, + JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE, + JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR, + JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM, +} + +enum { + JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4, + JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384, +} + +// DCT coefficients are stored in this sequence. +static immutable int[64] g_ZAG = [ 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 ]; + +alias JPEG_MARKER = int; +enum /*JPEG_MARKER*/ { + M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8, + M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC, + M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7, + M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF, + M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0, +} + +alias JPEG_SUBSAMPLING = int; +enum /*JPEG_SUBSAMPLING*/ { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 }; + +enum CONST_BITS = 13; +enum PASS1_BITS = 2; +enum SCALEDONE = cast(int)1; + +enum FIX_0_298631336 = cast(int)2446; /* FIX(0.298631336) */ +enum FIX_0_390180644 = cast(int)3196; /* FIX(0.390180644) */ +enum FIX_0_541196100 = cast(int)4433; /* FIX(0.541196100) */ +enum FIX_0_765366865 = cast(int)6270; /* FIX(0.765366865) */ +enum FIX_0_899976223 = cast(int)7373; /* FIX(0.899976223) */ +enum FIX_1_175875602 = cast(int)9633; /* FIX(1.175875602) */ +enum FIX_1_501321110 = cast(int)12299; /* FIX(1.501321110) */ +enum FIX_1_847759065 = cast(int)15137; /* FIX(1.847759065) */ +enum FIX_1_961570560 = cast(int)16069; /* FIX(1.961570560) */ +enum FIX_2_053119869 = cast(int)16819; /* FIX(2.053119869) */ +enum FIX_2_562915447 = cast(int)20995; /* FIX(2.562915447) */ +enum FIX_3_072711026 = cast(int)25172; /* FIX(3.072711026) */ + +int DESCALE() (int x, int n) { pragma(inline, true); return (((x) + (SCALEDONE << ((n)-1))) >> (n)); } +int DESCALE_ZEROSHIFT() (int x, int n) { pragma(inline, true); return (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n)); } +ubyte CLAMP() (int i) { pragma(inline, true); return cast(ubyte)(cast(uint)i > 255 ? (((~i) >> 31) & 0xFF) : i); } + + +// Compiler creates a fast path 1D IDCT for X non-zero columns +struct Row(int NONZERO_COLS) { +pure nothrow @trusted @nogc: + static void idct(int* pTemp, const(jpeg_decoder.jpgd_block_t)* pSrc) { + static if (NONZERO_COLS == 0) { + // nothing + } else static if (NONZERO_COLS == 1) { + immutable int dcval = (pSrc[0] << PASS1_BITS); + pTemp[0] = dcval; + pTemp[1] = dcval; + pTemp[2] = dcval; + pTemp[3] = dcval; + pTemp[4] = dcval; + pTemp[5] = dcval; + pTemp[6] = dcval; + pTemp[7] = dcval; + } else { + // ACCESS_COL() will be optimized at compile time to either an array access, or 0. + //#define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0) + template ACCESS_COL(int x) { + static if (x < NONZERO_COLS) enum ACCESS_COL = "cast(int)pSrc["~x.stringof~"]"; else enum ACCESS_COL = "0"; + } + + immutable int z2 = mixin(ACCESS_COL!2), z3 = mixin(ACCESS_COL!6); + + immutable int z1 = (z2 + z3)*FIX_0_541196100; + immutable int tmp2 = z1 + z3*(-FIX_1_847759065); + immutable int tmp3 = z1 + z2*FIX_0_765366865; + + immutable int tmp0 = (mixin(ACCESS_COL!0) + mixin(ACCESS_COL!4)) << CONST_BITS; + immutable int tmp1 = (mixin(ACCESS_COL!0) - mixin(ACCESS_COL!4)) << CONST_BITS; + + immutable int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; + + immutable int atmp0 = mixin(ACCESS_COL!7), atmp1 = mixin(ACCESS_COL!5), atmp2 = mixin(ACCESS_COL!3), atmp3 = mixin(ACCESS_COL!1); + + immutable int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; + immutable int bz5 = (bz3 + bz4)*FIX_1_175875602; + + immutable int az1 = bz1*(-FIX_0_899976223); + immutable int az2 = bz2*(-FIX_2_562915447); + immutable int az3 = bz3*(-FIX_1_961570560) + bz5; + immutable int az4 = bz4*(-FIX_0_390180644) + bz5; + + immutable int btmp0 = atmp0*FIX_0_298631336 + az1 + az3; + immutable int btmp1 = atmp1*FIX_2_053119869 + az2 + az4; + immutable int btmp2 = atmp2*FIX_3_072711026 + az2 + az3; + immutable int btmp3 = atmp3*FIX_1_501321110 + az1 + az4; + + pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS); + pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS); + pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS); + pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS); + pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS); + pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS); + pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS); + pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS); + } + } +} + + +// Compiler creates a fast path 1D IDCT for X non-zero rows +struct Col (int NONZERO_ROWS) { +pure nothrow @trusted @nogc: + static void idct(ubyte* pDst_ptr, const(int)* pTemp) { + static assert(NONZERO_ROWS > 0); + static if (NONZERO_ROWS == 1) { + int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3); + immutable ubyte dcval_clamped = cast(ubyte)CLAMP(dcval); + pDst_ptr[0*8] = dcval_clamped; + pDst_ptr[1*8] = dcval_clamped; + pDst_ptr[2*8] = dcval_clamped; + pDst_ptr[3*8] = dcval_clamped; + pDst_ptr[4*8] = dcval_clamped; + pDst_ptr[5*8] = dcval_clamped; + pDst_ptr[6*8] = dcval_clamped; + pDst_ptr[7*8] = dcval_clamped; + } else { + // ACCESS_ROW() will be optimized at compile time to either an array access, or 0. + //#define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0) + template ACCESS_ROW(int x) { + static if (x < NONZERO_ROWS) enum ACCESS_ROW = "pTemp["~(x*8).stringof~"]"; else enum ACCESS_ROW = "0"; + } + + immutable int z2 = mixin(ACCESS_ROW!2); + immutable int z3 = mixin(ACCESS_ROW!6); + + immutable int z1 = (z2 + z3)*FIX_0_541196100; + immutable int tmp2 = z1 + z3*(-FIX_1_847759065); + immutable int tmp3 = z1 + z2*FIX_0_765366865; + + immutable int tmp0 = (mixin(ACCESS_ROW!0) + mixin(ACCESS_ROW!4)) << CONST_BITS; + immutable int tmp1 = (mixin(ACCESS_ROW!0) - mixin(ACCESS_ROW!4)) << CONST_BITS; + + immutable int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; + + immutable int atmp0 = mixin(ACCESS_ROW!7), atmp1 = mixin(ACCESS_ROW!5), atmp2 = mixin(ACCESS_ROW!3), atmp3 = mixin(ACCESS_ROW!1); + + immutable int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; + immutable int bz5 = (bz3 + bz4)*FIX_1_175875602; + + immutable int az1 = bz1*(-FIX_0_899976223); + immutable int az2 = bz2*(-FIX_2_562915447); + immutable int az3 = bz3*(-FIX_1_961570560) + bz5; + immutable int az4 = bz4*(-FIX_0_390180644) + bz5; + + immutable int btmp0 = atmp0*FIX_0_298631336 + az1 + az3; + immutable int btmp1 = atmp1*FIX_2_053119869 + az2 + az4; + immutable int btmp2 = atmp2*FIX_3_072711026 + az2 + az3; + immutable int btmp3 = atmp3*FIX_1_501321110 + az1 + az4; + + int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*0] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*7] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*1] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*6] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*2] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*5] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*3] = cast(ubyte)CLAMP(i); + + i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3); + pDst_ptr[8*4] = cast(ubyte)CLAMP(i); + } + } +} + + +static immutable ubyte[512] s_idct_row_table = [ + 1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0, + 4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0, + 6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0, + 6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0, + 8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2, + 8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2, + 8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4, + 8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8, +]; + +static immutable ubyte[64] s_idct_col_table = [ 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 ]; + +void idct() (const(jpeg_decoder.jpgd_block_t)* pSrc_ptr, ubyte* pDst_ptr, int block_max_zag) { + assert(block_max_zag >= 1); + assert(block_max_zag <= 64); + + if (block_max_zag <= 1) + { + int k = ((pSrc_ptr[0] + 4) >> 3) + 128; + k = CLAMP(k); + k = k | (k<<8); + k = k | (k<<16); + + for (int i = 8; i > 0; i--) + { + *cast(int*)&pDst_ptr[0] = k; + *cast(int*)&pDst_ptr[4] = k; + pDst_ptr += 8; + } + return; + } + + int[64] temp; + + const(jpeg_decoder.jpgd_block_t)* pSrc = pSrc_ptr; + int* pTemp = temp.ptr; + + const(ubyte)* pRow_tab = &s_idct_row_table.ptr[(block_max_zag - 1) * 8]; + int i; + for (i = 8; i > 0; i--, pRow_tab++) + { + switch (*pRow_tab) + { + case 0: Row!(0).idct(pTemp, pSrc); break; + case 1: Row!(1).idct(pTemp, pSrc); break; + case 2: Row!(2).idct(pTemp, pSrc); break; + case 3: Row!(3).idct(pTemp, pSrc); break; + case 4: Row!(4).idct(pTemp, pSrc); break; + case 5: Row!(5).idct(pTemp, pSrc); break; + case 6: Row!(6).idct(pTemp, pSrc); break; + case 7: Row!(7).idct(pTemp, pSrc); break; + case 8: Row!(8).idct(pTemp, pSrc); break; + default: assert(0); + } + + pSrc += 8; + pTemp += 8; + } + + pTemp = temp.ptr; + + immutable int nonzero_rows = s_idct_col_table.ptr[block_max_zag - 1]; + for (i = 8; i > 0; i--) + { + switch (nonzero_rows) + { + case 1: Col!(1).idct(pDst_ptr, pTemp); break; + case 2: Col!(2).idct(pDst_ptr, pTemp); break; + case 3: Col!(3).idct(pDst_ptr, pTemp); break; + case 4: Col!(4).idct(pDst_ptr, pTemp); break; + case 5: Col!(5).idct(pDst_ptr, pTemp); break; + case 6: Col!(6).idct(pDst_ptr, pTemp); break; + case 7: Col!(7).idct(pDst_ptr, pTemp); break; + case 8: Col!(8).idct(pDst_ptr, pTemp); break; + default: assert(0); + } + + pTemp++; + pDst_ptr++; + } +} + +void idct_4x4() (const(jpeg_decoder.jpgd_block_t)* pSrc_ptr, ubyte* pDst_ptr) { + int[64] temp; + int* pTemp = temp.ptr; + const(jpeg_decoder.jpgd_block_t)* pSrc = pSrc_ptr; + + for (int i = 4; i > 0; i--) + { + Row!(4).idct(pTemp, pSrc); + pSrc += 8; + pTemp += 8; + } + + pTemp = temp.ptr; + for (int i = 8; i > 0; i--) + { + Col!(4).idct(pDst_ptr, pTemp); + pTemp++; + pDst_ptr++; + } +} + + +// ////////////////////////////////////////////////////////////////////////// // +struct jpeg_decoder { +private import core.stdc.string : memcpy, memset; +private: + static auto JPGD_MIN(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a < b ? a : b); } + static auto JPGD_MAX(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a > b ? a : b); } + + alias jpgd_quant_t = short; + alias jpgd_block_t = short; + alias pDecode_block_func = void function (ref jpeg_decoder, int, int, int); + + static struct huff_tables { + bool ac_table; + uint[256] look_up; + uint[256] look_up2; + ubyte[256] code_size; + uint[512] tree; + } + + static struct coeff_buf { + ubyte* pData; + int block_num_x, block_num_y; + int block_len_x, block_len_y; + int block_size; + } + + static struct mem_block { + mem_block* m_pNext; + size_t m_used_count; + size_t m_size; + char[1] m_data; + } + + mem_block* m_pMem_blocks; + int m_image_x_size; + int m_image_y_size; + JpegStreamReadFunc readfn; + int m_progressive_flag; + ubyte[JPGD_MAX_HUFF_TABLES] m_huff_ac; + ubyte*[JPGD_MAX_HUFF_TABLES] m_huff_num; // pointer to number of Huffman codes per bit size + ubyte*[JPGD_MAX_HUFF_TABLES] m_huff_val; // pointer to Huffman codes per bit size + jpgd_quant_t*[JPGD_MAX_QUANT_TABLES] m_quant; // pointer to quantization tables + int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported) + int m_comps_in_frame; // # of components in frame + int[JPGD_MAX_COMPONENTS] m_comp_h_samp; // component's horizontal sampling factor + int[JPGD_MAX_COMPONENTS] m_comp_v_samp; // component's vertical sampling factor + int[JPGD_MAX_COMPONENTS] m_comp_quant; // component's quantization table selector + int[JPGD_MAX_COMPONENTS] m_comp_ident; // component's ID + int[JPGD_MAX_COMPONENTS] m_comp_h_blocks; + int[JPGD_MAX_COMPONENTS] m_comp_v_blocks; + int m_comps_in_scan; // # of components in scan + int[JPGD_MAX_COMPS_IN_SCAN] m_comp_list; // components in this scan + int[JPGD_MAX_COMPONENTS] m_comp_dc_tab; // component's DC Huffman coding table selector + int[JPGD_MAX_COMPONENTS] m_comp_ac_tab; // component's AC Huffman coding table selector + int m_spectral_start; // spectral selection start + int m_spectral_end; // spectral selection end + int m_successive_low; // successive approximation low + int m_successive_high; // successive approximation high + int m_max_mcu_x_size; // MCU's max. X size in pixels + int m_max_mcu_y_size; // MCU's max. Y size in pixels + int m_blocks_per_mcu; + int m_max_blocks_per_row; + int m_mcus_per_row, m_mcus_per_col; + int[JPGD_MAX_BLOCKS_PER_MCU] m_mcu_org; + int m_total_lines_left; // total # lines left in image + int m_mcu_lines_left; // total # lines left in this MCU + int m_real_dest_bytes_per_scan_line; + int m_dest_bytes_per_scan_line; // rounded up + int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y) + huff_tables*[JPGD_MAX_HUFF_TABLES] m_pHuff_tabs; + coeff_buf*[JPGD_MAX_COMPONENTS] m_dc_coeffs; + coeff_buf*[JPGD_MAX_COMPONENTS] m_ac_coeffs; + int m_eob_run; + int[JPGD_MAX_COMPONENTS] m_block_y_mcu; + ubyte* m_pIn_buf_ofs; + int m_in_buf_left; + int m_tem_flag; + bool m_eof_flag; + ubyte[128] m_in_buf_pad_start; + ubyte[JPGD_IN_BUF_SIZE+128] m_in_buf; + ubyte[128] m_in_buf_pad_end; + int m_bits_left; + uint m_bit_buf; + int m_restart_interval; + int m_restarts_left; + int m_next_restart_num; + int m_max_mcus_per_row; + int m_max_blocks_per_mcu; + int m_expanded_blocks_per_mcu; + int m_expanded_blocks_per_row; + int m_expanded_blocks_per_component; + bool m_freq_domain_chroma_upsample; + int m_max_mcus_per_col; + uint[JPGD_MAX_COMPONENTS] m_last_dc_val; + jpgd_block_t* m_pMCU_coefficients; + int[JPGD_MAX_BLOCKS_PER_MCU] m_mcu_block_max_zag; + ubyte* m_pSample_buf; + int[256] m_crr; + int[256] m_cbb; + int[256] m_crg; + int[256] m_cbg; + ubyte* m_pScan_line_0; + ubyte* m_pScan_line_1; + jpgd_status m_error_code; + bool m_ready_flag; + int m_total_bytes_read; + +public: + // Inspect `error_code` after constructing to determine if the stream is valid or not. You may look at the `width`, `height`, etc. + // methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline. + this (JpegStreamReadFunc rfn) { decode_init(rfn); } + + ~this () { free_all_blocks(); } + + @disable this (this); // no copies + + // Call this method after constructing the object to begin decompression. + // If JPGD_SUCCESS is returned you may then call decode() on each scanline. + int begin_decoding () { + if (m_ready_flag) return JPGD_SUCCESS; + if (m_error_code) return JPGD_FAILED; + try { + decode_start(); + m_ready_flag = true; + return JPGD_SUCCESS; + } catch (Exception) {} + return JPGD_FAILED; + } + + // Returns the next scan line. + // For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (`bytes_per_pixel` will return 1). + // Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and `bytes_per_pixel` will return 4). + // Returns JPGD_SUCCESS if a scan line has been returned. + // Returns JPGD_DONE if all scan lines have been returned. + // Returns JPGD_FAILED if an error occurred. Inspect `error_code` for a more info. + int decode (/*const void** */void** pScan_line, uint* pScan_line_len) { + if (m_error_code || !m_ready_flag) return JPGD_FAILED; + if (m_total_lines_left == 0) return JPGD_DONE; + try { + if (m_mcu_lines_left == 0) { + if (m_progressive_flag) load_next_row(); else decode_next_row(); + // Find the EOI marker if that was the last row. + if (m_total_lines_left <= m_max_mcu_y_size) find_eoi(); + m_mcu_lines_left = m_max_mcu_y_size; + } + if (m_freq_domain_chroma_upsample) { + expanded_convert(); + *pScan_line = m_pScan_line_0; + } else { + switch (m_scan_type) { + case JPGD_YH2V2: + if ((m_mcu_lines_left & 1) == 0) { + H2V2Convert(); + *pScan_line = m_pScan_line_0; + } else { + *pScan_line = m_pScan_line_1; + } + break; + case JPGD_YH2V1: + H2V1Convert(); + *pScan_line = m_pScan_line_0; + break; + case JPGD_YH1V2: + if ((m_mcu_lines_left & 1) == 0) { + H1V2Convert(); + *pScan_line = m_pScan_line_0; + } else { + *pScan_line = m_pScan_line_1; + } + break; + case JPGD_YH1V1: + H1V1Convert(); + *pScan_line = m_pScan_line_0; + break; + case JPGD_GRAYSCALE: + gray_convert(); + *pScan_line = m_pScan_line_0; + break; + default: + } + } + *pScan_line_len = m_real_dest_bytes_per_scan_line; + --m_mcu_lines_left; + --m_total_lines_left; + return JPGD_SUCCESS; + } catch (Exception) {} + return JPGD_FAILED; + } + + @property const pure nothrow @safe @nogc { + jpgd_status error_code () { pragma(inline, true); return m_error_code; } + + int width () { pragma(inline, true); return m_image_x_size; } + int height () { pragma(inline, true); return m_image_y_size; } + + int num_components () { pragma(inline, true); return m_comps_in_frame; } + + int bytes_per_pixel () { pragma(inline, true); return m_dest_bytes_per_pixel; } + int bytes_per_scan_line () { pragma(inline, true); return m_image_x_size * bytes_per_pixel(); } + + // Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file). + int total_bytes_read () { pragma(inline, true); return m_total_bytes_read; } + } + +private: + // Retrieve one character from the input stream. + uint get_char () { + // Any bytes remaining in buffer? + if (!m_in_buf_left) { + // Try to get more bytes. + prep_in_buffer(); + // Still nothing to get? + if (!m_in_buf_left) { + // Pad the end of the stream with 0xFF 0xD9 (EOI marker) + int t = m_tem_flag; + m_tem_flag ^= 1; + return (t ? 0xD9 : 0xFF); + } + } + uint c = *m_pIn_buf_ofs++; + --m_in_buf_left; + return c; + } + + // Same as previous method, except can indicate if the character is a pad character or not. + uint get_char (bool* pPadding_flag) { + if (!m_in_buf_left) { + prep_in_buffer(); + if (!m_in_buf_left) { + *pPadding_flag = true; + int t = m_tem_flag; + m_tem_flag ^= 1; + return (t ? 0xD9 : 0xFF); + } + } + *pPadding_flag = false; + uint c = *m_pIn_buf_ofs++; + --m_in_buf_left; + return c; + } + + // Inserts a previously retrieved character back into the input buffer. + void stuff_char (ubyte q) { + *(--m_pIn_buf_ofs) = q; + m_in_buf_left++; + } + + // Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered. + ubyte get_octet () { + bool padding_flag; + int c = get_char(&padding_flag); + if (c == 0xFF) { + if (padding_flag) return 0xFF; + c = get_char(&padding_flag); + if (padding_flag) { stuff_char(0xFF); return 0xFF; } + if (c == 0x00) return 0xFF; + stuff_char(cast(ubyte)(c)); + stuff_char(0xFF); + return 0xFF; + } + return cast(ubyte)(c); + } + + // Retrieves a variable number of bits from the input stream. Does not recognize markers. + uint get_bits (int num_bits) { + if (!num_bits) return 0; + uint i = m_bit_buf >> (32 - num_bits); + if ((m_bits_left -= num_bits) <= 0) { + m_bit_buf <<= (num_bits += m_bits_left); + uint c1 = get_char(); + uint c2 = get_char(); + m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2; + m_bit_buf <<= -m_bits_left; + m_bits_left += 16; + assert(m_bits_left >= 0); + } else { + m_bit_buf <<= num_bits; + } + return i; + } + + // Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered. + uint get_bits_no_markers (int num_bits) { + if (!num_bits) return 0; + uint i = m_bit_buf >> (32 - num_bits); + if ((m_bits_left -= num_bits) <= 0) { + m_bit_buf <<= (num_bits += m_bits_left); + if (m_in_buf_left < 2 || m_pIn_buf_ofs[0] == 0xFF || m_pIn_buf_ofs[1] == 0xFF) { + uint c1 = get_octet(); + uint c2 = get_octet(); + m_bit_buf |= (c1 << 8) | c2; + } else { + m_bit_buf |= (cast(uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1]; + m_in_buf_left -= 2; + m_pIn_buf_ofs += 2; + } + m_bit_buf <<= -m_bits_left; + m_bits_left += 16; + assert(m_bits_left >= 0); + } else { + m_bit_buf <<= num_bits; + } + return i; + } + + // Decodes a Huffman encoded symbol. + int huff_decode (huff_tables *pH) { + int symbol; + // Check first 8-bits: do we have a complete symbol? + if ((symbol = pH.look_up.ptr[m_bit_buf >> 24]) < 0) { + // Decode more bits, use a tree traversal to find symbol. + int ofs = 23; + do { + symbol = pH.tree.ptr[-cast(int)(symbol + ((m_bit_buf >> ofs) & 1))]; + --ofs; + } while (symbol < 0); + get_bits_no_markers(8 + (23 - ofs)); + } else { + get_bits_no_markers(pH.code_size.ptr[symbol]); + } + return symbol; + } + + // Decodes a Huffman encoded symbol. + int huff_decode (huff_tables *pH, ref int extra_bits) { + int symbol; + // Check first 8-bits: do we have a complete symbol? + if ((symbol = pH.look_up2.ptr[m_bit_buf >> 24]) < 0) { + // Use a tree traversal to find symbol. + int ofs = 23; + do { + symbol = pH.tree.ptr[-cast(int)(symbol + ((m_bit_buf >> ofs) & 1))]; + --ofs; + } while (symbol < 0); + get_bits_no_markers(8 + (23 - ofs)); + extra_bits = get_bits_no_markers(symbol & 0xF); + } else { + assert(((symbol >> 8) & 31) == pH.code_size.ptr[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0)); + if (symbol & 0x8000) { + get_bits_no_markers((symbol >> 8) & 31); + extra_bits = symbol >> 16; + } else { + int code_size = (symbol >> 8) & 31; + int num_extra_bits = symbol & 0xF; + int bits = code_size + num_extra_bits; + if (bits <= (m_bits_left + 16)) { + extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1); + } else { + get_bits_no_markers(code_size); + extra_bits = get_bits_no_markers(num_extra_bits); + } + } + symbol &= 0xFF; + } + return symbol; + } + + // Tables and macro used to fully decode the DPCM differences. + static immutable int[16] s_extend_test = [ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 ]; + static immutable int[16] s_extend_offset = [ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 ]; + static immutable int[18] s_extend_mask = [ 0, (1<<0), (1<<1), (1<<2), (1<<3), (1<<4), (1<<5), (1<<6), (1<<7), (1<<8), (1<<9), (1<<10), (1<<11), (1<<12), (1<<13), (1<<14), (1<<15), (1<<16) ]; + // The logical AND's in this macro are to shut up static code analysis (aren't really necessary - couldn't find another way to do this) + //#define JPGD_HUFF_EXTEND(x, s) (((x) < s_extend_test[s & 15]) ? ((x) + s_extend_offset[s & 15]) : (x)) + static JPGD_HUFF_EXTEND (int x, int s) nothrow @trusted @nogc { pragma(inline, true); return (((x) < s_extend_test.ptr[s & 15]) ? ((x) + s_extend_offset.ptr[s & 15]) : (x)); } + + // Clamps a value between 0-255. + //static ubyte clamp (int i) { if (cast(uint)(i) > 255) i = (((~i) >> 31) & 0xFF); return cast(ubyte)(i); } + alias clamp = CLAMP; + + static struct DCT_Upsample { + static: + static struct Matrix44 { + pure nothrow @trusted @nogc: + alias Element_Type = int; + enum { NUM_ROWS = 4, NUM_COLS = 4 } + + Element_Type[NUM_COLS][NUM_ROWS] v; + + this() (in auto ref Matrix44 m) { + foreach (immutable r; 0..NUM_ROWS) v[r][] = m.v[r][]; + } + + //@property int rows () const { pragma(inline, true); return NUM_ROWS; } + //@property int cols () const { pragma(inline, true); return NUM_COLS; } + + ref inout(Element_Type) at (int r, int c) inout { pragma(inline, true); return v.ptr[r].ptr[c]; } + + ref Matrix44 opOpAssign(string op:"+") (in auto ref Matrix44 a) { + foreach (int r; 0..NUM_ROWS) { + at(r, 0) += a.at(r, 0); + at(r, 1) += a.at(r, 1); + at(r, 2) += a.at(r, 2); + at(r, 3) += a.at(r, 3); + } + return this; + } + + ref Matrix44 opOpAssign(string op:"-") (in auto ref Matrix44 a) { + foreach (int r; 0..NUM_ROWS) { + at(r, 0) -= a.at(r, 0); + at(r, 1) -= a.at(r, 1); + at(r, 2) -= a.at(r, 2); + at(r, 3) -= a.at(r, 3); + } + return this; + } + + Matrix44 opBinary(string op:"+") (in auto ref Matrix44 b) const { + alias a = this; + Matrix44 ret; + foreach (int r; 0..NUM_ROWS) { + ret.at(r, 0) = a.at(r, 0) + b.at(r, 0); + ret.at(r, 1) = a.at(r, 1) + b.at(r, 1); + ret.at(r, 2) = a.at(r, 2) + b.at(r, 2); + ret.at(r, 3) = a.at(r, 3) + b.at(r, 3); + } + return ret; + } + + Matrix44 opBinary(string op:"-") (in auto ref Matrix44 b) const { + alias a = this; + Matrix44 ret; + foreach (int r; 0..NUM_ROWS) { + ret.at(r, 0) = a.at(r, 0) - b.at(r, 0); + ret.at(r, 1) = a.at(r, 1) - b.at(r, 1); + ret.at(r, 2) = a.at(r, 2) - b.at(r, 2); + ret.at(r, 3) = a.at(r, 3) - b.at(r, 3); + } + return ret; + } + + static void add_and_store() (jpgd_block_t* pDst, in auto ref Matrix44 a, in auto ref Matrix44 b) { + foreach (int r; 0..4) { + pDst[0*8 + r] = cast(jpgd_block_t)(a.at(r, 0) + b.at(r, 0)); + pDst[1*8 + r] = cast(jpgd_block_t)(a.at(r, 1) + b.at(r, 1)); + pDst[2*8 + r] = cast(jpgd_block_t)(a.at(r, 2) + b.at(r, 2)); + pDst[3*8 + r] = cast(jpgd_block_t)(a.at(r, 3) + b.at(r, 3)); + } + } + + static void sub_and_store() (jpgd_block_t* pDst, in auto ref Matrix44 a, in auto ref Matrix44 b) { + foreach (int r; 0..4) { + pDst[0*8 + r] = cast(jpgd_block_t)(a.at(r, 0) - b.at(r, 0)); + pDst[1*8 + r] = cast(jpgd_block_t)(a.at(r, 1) - b.at(r, 1)); + pDst[2*8 + r] = cast(jpgd_block_t)(a.at(r, 2) - b.at(r, 2)); + pDst[3*8 + r] = cast(jpgd_block_t)(a.at(r, 3) - b.at(r, 3)); + } + } + } + + enum FRACT_BITS = 10; + enum SCALE = 1 << FRACT_BITS; + + alias Temp_Type = int; + //TODO: convert defines to mixins + //#define D(i) (((i) + (SCALE >> 1)) >> FRACT_BITS) + //#define F(i) ((int)((i) * SCALE + .5f)) + // Any decent C++ compiler will optimize this at compile time to a 0, or an array access. + //#define AT(c, r) ((((c)>=NUM_COLS)||((r)>=NUM_ROWS)) ? 0 : pSrc[(c)+(r)*8]) + + static int D(T) (T i) { pragma(inline, true); return (((i) + (SCALE >> 1)) >> FRACT_BITS); } + enum F(float i) = (cast(int)((i) * SCALE + 0.5f)); + + // NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix + static struct P_Q(int NUM_ROWS, int NUM_COLS) { + static void calc (ref Matrix44 P, ref Matrix44 Q, const(jpgd_block_t)* pSrc) { + //auto AT (int c, int r) nothrow @trusted @nogc { return (c >= NUM_COLS || r >= NUM_ROWS ? 0 : pSrc[c+r*8]); } + template AT(int c, int r) { + static if (c >= NUM_COLS || r >= NUM_ROWS) enum AT = "0"; else enum AT = "pSrc["~c.stringof~"+"~r.stringof~"*8]"; + } + // 4x8 = 4x8 times 8x8, matrix 0 is constant + immutable Temp_Type X000 = mixin(AT!(0, 0)); + immutable Temp_Type X001 = mixin(AT!(0, 1)); + immutable Temp_Type X002 = mixin(AT!(0, 2)); + immutable Temp_Type X003 = mixin(AT!(0, 3)); + immutable Temp_Type X004 = mixin(AT!(0, 4)); + immutable Temp_Type X005 = mixin(AT!(0, 5)); + immutable Temp_Type X006 = mixin(AT!(0, 6)); + immutable Temp_Type X007 = mixin(AT!(0, 7)); + immutable Temp_Type X010 = D(F!(0.415735f) * mixin(AT!(1, 0)) + F!(0.791065f) * mixin(AT!(3, 0)) + F!(-0.352443f) * mixin(AT!(5, 0)) + F!(0.277785f) * mixin(AT!(7, 0))); + immutable Temp_Type X011 = D(F!(0.415735f) * mixin(AT!(1, 1)) + F!(0.791065f) * mixin(AT!(3, 1)) + F!(-0.352443f) * mixin(AT!(5, 1)) + F!(0.277785f) * mixin(AT!(7, 1))); + immutable Temp_Type X012 = D(F!(0.415735f) * mixin(AT!(1, 2)) + F!(0.791065f) * mixin(AT!(3, 2)) + F!(-0.352443f) * mixin(AT!(5, 2)) + F!(0.277785f) * mixin(AT!(7, 2))); + immutable Temp_Type X013 = D(F!(0.415735f) * mixin(AT!(1, 3)) + F!(0.791065f) * mixin(AT!(3, 3)) + F!(-0.352443f) * mixin(AT!(5, 3)) + F!(0.277785f) * mixin(AT!(7, 3))); + immutable Temp_Type X014 = D(F!(0.415735f) * mixin(AT!(1, 4)) + F!(0.791065f) * mixin(AT!(3, 4)) + F!(-0.352443f) * mixin(AT!(5, 4)) + F!(0.277785f) * mixin(AT!(7, 4))); + immutable Temp_Type X015 = D(F!(0.415735f) * mixin(AT!(1, 5)) + F!(0.791065f) * mixin(AT!(3, 5)) + F!(-0.352443f) * mixin(AT!(5, 5)) + F!(0.277785f) * mixin(AT!(7, 5))); + immutable Temp_Type X016 = D(F!(0.415735f) * mixin(AT!(1, 6)) + F!(0.791065f) * mixin(AT!(3, 6)) + F!(-0.352443f) * mixin(AT!(5, 6)) + F!(0.277785f) * mixin(AT!(7, 6))); + immutable Temp_Type X017 = D(F!(0.415735f) * mixin(AT!(1, 7)) + F!(0.791065f) * mixin(AT!(3, 7)) + F!(-0.352443f) * mixin(AT!(5, 7)) + F!(0.277785f) * mixin(AT!(7, 7))); + immutable Temp_Type X020 = mixin(AT!(4, 0)); + immutable Temp_Type X021 = mixin(AT!(4, 1)); + immutable Temp_Type X022 = mixin(AT!(4, 2)); + immutable Temp_Type X023 = mixin(AT!(4, 3)); + immutable Temp_Type X024 = mixin(AT!(4, 4)); + immutable Temp_Type X025 = mixin(AT!(4, 5)); + immutable Temp_Type X026 = mixin(AT!(4, 6)); + immutable Temp_Type X027 = mixin(AT!(4, 7)); + immutable Temp_Type X030 = D(F!(0.022887f) * mixin(AT!(1, 0)) + F!(-0.097545f) * mixin(AT!(3, 0)) + F!(0.490393f) * mixin(AT!(5, 0)) + F!(0.865723f) * mixin(AT!(7, 0))); + immutable Temp_Type X031 = D(F!(0.022887f) * mixin(AT!(1, 1)) + F!(-0.097545f) * mixin(AT!(3, 1)) + F!(0.490393f) * mixin(AT!(5, 1)) + F!(0.865723f) * mixin(AT!(7, 1))); + immutable Temp_Type X032 = D(F!(0.022887f) * mixin(AT!(1, 2)) + F!(-0.097545f) * mixin(AT!(3, 2)) + F!(0.490393f) * mixin(AT!(5, 2)) + F!(0.865723f) * mixin(AT!(7, 2))); + immutable Temp_Type X033 = D(F!(0.022887f) * mixin(AT!(1, 3)) + F!(-0.097545f) * mixin(AT!(3, 3)) + F!(0.490393f) * mixin(AT!(5, 3)) + F!(0.865723f) * mixin(AT!(7, 3))); + immutable Temp_Type X034 = D(F!(0.022887f) * mixin(AT!(1, 4)) + F!(-0.097545f) * mixin(AT!(3, 4)) + F!(0.490393f) * mixin(AT!(5, 4)) + F!(0.865723f) * mixin(AT!(7, 4))); + immutable Temp_Type X035 = D(F!(0.022887f) * mixin(AT!(1, 5)) + F!(-0.097545f) * mixin(AT!(3, 5)) + F!(0.490393f) * mixin(AT!(5, 5)) + F!(0.865723f) * mixin(AT!(7, 5))); + immutable Temp_Type X036 = D(F!(0.022887f) * mixin(AT!(1, 6)) + F!(-0.097545f) * mixin(AT!(3, 6)) + F!(0.490393f) * mixin(AT!(5, 6)) + F!(0.865723f) * mixin(AT!(7, 6))); + immutable Temp_Type X037 = D(F!(0.022887f) * mixin(AT!(1, 7)) + F!(-0.097545f) * mixin(AT!(3, 7)) + F!(0.490393f) * mixin(AT!(5, 7)) + F!(0.865723f) * mixin(AT!(7, 7))); + + // 4x4 = 4x8 times 8x4, matrix 1 is constant + P.at(0, 0) = X000; + P.at(0, 1) = D(X001 * F!(0.415735f) + X003 * F!(0.791065f) + X005 * F!(-0.352443f) + X007 * F!(0.277785f)); + P.at(0, 2) = X004; + P.at(0, 3) = D(X001 * F!(0.022887f) + X003 * F!(-0.097545f) + X005 * F!(0.490393f) + X007 * F!(0.865723f)); + P.at(1, 0) = X010; + P.at(1, 1) = D(X011 * F!(0.415735f) + X013 * F!(0.791065f) + X015 * F!(-0.352443f) + X017 * F!(0.277785f)); + P.at(1, 2) = X014; + P.at(1, 3) = D(X011 * F!(0.022887f) + X013 * F!(-0.097545f) + X015 * F!(0.490393f) + X017 * F!(0.865723f)); + P.at(2, 0) = X020; + P.at(2, 1) = D(X021 * F!(0.415735f) + X023 * F!(0.791065f) + X025 * F!(-0.352443f) + X027 * F!(0.277785f)); + P.at(2, 2) = X024; + P.at(2, 3) = D(X021 * F!(0.022887f) + X023 * F!(-0.097545f) + X025 * F!(0.490393f) + X027 * F!(0.865723f)); + P.at(3, 0) = X030; + P.at(3, 1) = D(X031 * F!(0.415735f) + X033 * F!(0.791065f) + X035 * F!(-0.352443f) + X037 * F!(0.277785f)); + P.at(3, 2) = X034; + P.at(3, 3) = D(X031 * F!(0.022887f) + X033 * F!(-0.097545f) + X035 * F!(0.490393f) + X037 * F!(0.865723f)); + // 40 muls 24 adds + + // 4x4 = 4x8 times 8x4, matrix 1 is constant + Q.at(0, 0) = D(X001 * F!(0.906127f) + X003 * F!(-0.318190f) + X005 * F!(0.212608f) + X007 * F!(-0.180240f)); + Q.at(0, 1) = X002; + Q.at(0, 2) = D(X001 * F!(-0.074658f) + X003 * F!(0.513280f) + X005 * F!(0.768178f) + X007 * F!(-0.375330f)); + Q.at(0, 3) = X006; + Q.at(1, 0) = D(X011 * F!(0.906127f) + X013 * F!(-0.318190f) + X015 * F!(0.212608f) + X017 * F!(-0.180240f)); + Q.at(1, 1) = X012; + Q.at(1, 2) = D(X011 * F!(-0.074658f) + X013 * F!(0.513280f) + X015 * F!(0.768178f) + X017 * F!(-0.375330f)); + Q.at(1, 3) = X016; + Q.at(2, 0) = D(X021 * F!(0.906127f) + X023 * F!(-0.318190f) + X025 * F!(0.212608f) + X027 * F!(-0.180240f)); + Q.at(2, 1) = X022; + Q.at(2, 2) = D(X021 * F!(-0.074658f) + X023 * F!(0.513280f) + X025 * F!(0.768178f) + X027 * F!(-0.375330f)); + Q.at(2, 3) = X026; + Q.at(3, 0) = D(X031 * F!(0.906127f) + X033 * F!(-0.318190f) + X035 * F!(0.212608f) + X037 * F!(-0.180240f)); + Q.at(3, 1) = X032; + Q.at(3, 2) = D(X031 * F!(-0.074658f) + X033 * F!(0.513280f) + X035 * F!(0.768178f) + X037 * F!(-0.375330f)); + Q.at(3, 3) = X036; + // 40 muls 24 adds + } + } + + static struct R_S(int NUM_ROWS, int NUM_COLS) { + static void calc(ref Matrix44 R, ref Matrix44 S, const(jpgd_block_t)* pSrc) { + //auto AT (int c, int r) nothrow @trusted @nogc { return (c >= NUM_COLS || r >= NUM_ROWS ? 0 : pSrc[c+r*8]); } + template AT(int c, int r) { + static if (c >= NUM_COLS || r >= NUM_ROWS) enum AT = "0"; else enum AT = "pSrc["~c.stringof~"+"~r.stringof~"*8]"; + } + // 4x8 = 4x8 times 8x8, matrix 0 is constant + immutable Temp_Type X100 = D(F!(0.906127f) * mixin(AT!(1, 0)) + F!(-0.318190f) * mixin(AT!(3, 0)) + F!(0.212608f) * mixin(AT!(5, 0)) + F!(-0.180240f) * mixin(AT!(7, 0))); + immutable Temp_Type X101 = D(F!(0.906127f) * mixin(AT!(1, 1)) + F!(-0.318190f) * mixin(AT!(3, 1)) + F!(0.212608f) * mixin(AT!(5, 1)) + F!(-0.180240f) * mixin(AT!(7, 1))); + immutable Temp_Type X102 = D(F!(0.906127f) * mixin(AT!(1, 2)) + F!(-0.318190f) * mixin(AT!(3, 2)) + F!(0.212608f) * mixin(AT!(5, 2)) + F!(-0.180240f) * mixin(AT!(7, 2))); + immutable Temp_Type X103 = D(F!(0.906127f) * mixin(AT!(1, 3)) + F!(-0.318190f) * mixin(AT!(3, 3)) + F!(0.212608f) * mixin(AT!(5, 3)) + F!(-0.180240f) * mixin(AT!(7, 3))); + immutable Temp_Type X104 = D(F!(0.906127f) * mixin(AT!(1, 4)) + F!(-0.318190f) * mixin(AT!(3, 4)) + F!(0.212608f) * mixin(AT!(5, 4)) + F!(-0.180240f) * mixin(AT!(7, 4))); + immutable Temp_Type X105 = D(F!(0.906127f) * mixin(AT!(1, 5)) + F!(-0.318190f) * mixin(AT!(3, 5)) + F!(0.212608f) * mixin(AT!(5, 5)) + F!(-0.180240f) * mixin(AT!(7, 5))); + immutable Temp_Type X106 = D(F!(0.906127f) * mixin(AT!(1, 6)) + F!(-0.318190f) * mixin(AT!(3, 6)) + F!(0.212608f) * mixin(AT!(5, 6)) + F!(-0.180240f) * mixin(AT!(7, 6))); + immutable Temp_Type X107 = D(F!(0.906127f) * mixin(AT!(1, 7)) + F!(-0.318190f) * mixin(AT!(3, 7)) + F!(0.212608f) * mixin(AT!(5, 7)) + F!(-0.180240f) * mixin(AT!(7, 7))); + immutable Temp_Type X110 = mixin(AT!(2, 0)); + immutable Temp_Type X111 = mixin(AT!(2, 1)); + immutable Temp_Type X112 = mixin(AT!(2, 2)); + immutable Temp_Type X113 = mixin(AT!(2, 3)); + immutable Temp_Type X114 = mixin(AT!(2, 4)); + immutable Temp_Type X115 = mixin(AT!(2, 5)); + immutable Temp_Type X116 = mixin(AT!(2, 6)); + immutable Temp_Type X117 = mixin(AT!(2, 7)); + immutable Temp_Type X120 = D(F!(-0.074658f) * mixin(AT!(1, 0)) + F!(0.513280f) * mixin(AT!(3, 0)) + F!(0.768178f) * mixin(AT!(5, 0)) + F!(-0.375330f) * mixin(AT!(7, 0))); + immutable Temp_Type X121 = D(F!(-0.074658f) * mixin(AT!(1, 1)) + F!(0.513280f) * mixin(AT!(3, 1)) + F!(0.768178f) * mixin(AT!(5, 1)) + F!(-0.375330f) * mixin(AT!(7, 1))); + immutable Temp_Type X122 = D(F!(-0.074658f) * mixin(AT!(1, 2)) + F!(0.513280f) * mixin(AT!(3, 2)) + F!(0.768178f) * mixin(AT!(5, 2)) + F!(-0.375330f) * mixin(AT!(7, 2))); + immutable Temp_Type X123 = D(F!(-0.074658f) * mixin(AT!(1, 3)) + F!(0.513280f) * mixin(AT!(3, 3)) + F!(0.768178f) * mixin(AT!(5, 3)) + F!(-0.375330f) * mixin(AT!(7, 3))); + immutable Temp_Type X124 = D(F!(-0.074658f) * mixin(AT!(1, 4)) + F!(0.513280f) * mixin(AT!(3, 4)) + F!(0.768178f) * mixin(AT!(5, 4)) + F!(-0.375330f) * mixin(AT!(7, 4))); + immutable Temp_Type X125 = D(F!(-0.074658f) * mixin(AT!(1, 5)) + F!(0.513280f) * mixin(AT!(3, 5)) + F!(0.768178f) * mixin(AT!(5, 5)) + F!(-0.375330f) * mixin(AT!(7, 5))); + immutable Temp_Type X126 = D(F!(-0.074658f) * mixin(AT!(1, 6)) + F!(0.513280f) * mixin(AT!(3, 6)) + F!(0.768178f) * mixin(AT!(5, 6)) + F!(-0.375330f) * mixin(AT!(7, 6))); + immutable Temp_Type X127 = D(F!(-0.074658f) * mixin(AT!(1, 7)) + F!(0.513280f) * mixin(AT!(3, 7)) + F!(0.768178f) * mixin(AT!(5, 7)) + F!(-0.375330f) * mixin(AT!(7, 7))); + immutable Temp_Type X130 = mixin(AT!(6, 0)); + immutable Temp_Type X131 = mixin(AT!(6, 1)); + immutable Temp_Type X132 = mixin(AT!(6, 2)); + immutable Temp_Type X133 = mixin(AT!(6, 3)); + immutable Temp_Type X134 = mixin(AT!(6, 4)); + immutable Temp_Type X135 = mixin(AT!(6, 5)); + immutable Temp_Type X136 = mixin(AT!(6, 6)); + immutable Temp_Type X137 = mixin(AT!(6, 7)); + // 80 muls 48 adds + + // 4x4 = 4x8 times 8x4, matrix 1 is constant + R.at(0, 0) = X100; + R.at(0, 1) = D(X101 * F!(0.415735f) + X103 * F!(0.791065f) + X105 * F!(-0.352443f) + X107 * F!(0.277785f)); + R.at(0, 2) = X104; + R.at(0, 3) = D(X101 * F!(0.022887f) + X103 * F!(-0.097545f) + X105 * F!(0.490393f) + X107 * F!(0.865723f)); + R.at(1, 0) = X110; + R.at(1, 1) = D(X111 * F!(0.415735f) + X113 * F!(0.791065f) + X115 * F!(-0.352443f) + X117 * F!(0.277785f)); + R.at(1, 2) = X114; + R.at(1, 3) = D(X111 * F!(0.022887f) + X113 * F!(-0.097545f) + X115 * F!(0.490393f) + X117 * F!(0.865723f)); + R.at(2, 0) = X120; + R.at(2, 1) = D(X121 * F!(0.415735f) + X123 * F!(0.791065f) + X125 * F!(-0.352443f) + X127 * F!(0.277785f)); + R.at(2, 2) = X124; + R.at(2, 3) = D(X121 * F!(0.022887f) + X123 * F!(-0.097545f) + X125 * F!(0.490393f) + X127 * F!(0.865723f)); + R.at(3, 0) = X130; + R.at(3, 1) = D(X131 * F!(0.415735f) + X133 * F!(0.791065f) + X135 * F!(-0.352443f) + X137 * F!(0.277785f)); + R.at(3, 2) = X134; + R.at(3, 3) = D(X131 * F!(0.022887f) + X133 * F!(-0.097545f) + X135 * F!(0.490393f) + X137 * F!(0.865723f)); + // 40 muls 24 adds + // 4x4 = 4x8 times 8x4, matrix 1 is constant + S.at(0, 0) = D(X101 * F!(0.906127f) + X103 * F!(-0.318190f) + X105 * F!(0.212608f) + X107 * F!(-0.180240f)); + S.at(0, 1) = X102; + S.at(0, 2) = D(X101 * F!(-0.074658f) + X103 * F!(0.513280f) + X105 * F!(0.768178f) + X107 * F!(-0.375330f)); + S.at(0, 3) = X106; + S.at(1, 0) = D(X111 * F!(0.906127f) + X113 * F!(-0.318190f) + X115 * F!(0.212608f) + X117 * F!(-0.180240f)); + S.at(1, 1) = X112; + S.at(1, 2) = D(X111 * F!(-0.074658f) + X113 * F!(0.513280f) + X115 * F!(0.768178f) + X117 * F!(-0.375330f)); + S.at(1, 3) = X116; + S.at(2, 0) = D(X121 * F!(0.906127f) + X123 * F!(-0.318190f) + X125 * F!(0.212608f) + X127 * F!(-0.180240f)); + S.at(2, 1) = X122; + S.at(2, 2) = D(X121 * F!(-0.074658f) + X123 * F!(0.513280f) + X125 * F!(0.768178f) + X127 * F!(-0.375330f)); + S.at(2, 3) = X126; + S.at(3, 0) = D(X131 * F!(0.906127f) + X133 * F!(-0.318190f) + X135 * F!(0.212608f) + X137 * F!(-0.180240f)); + S.at(3, 1) = X132; + S.at(3, 2) = D(X131 * F!(-0.074658f) + X133 * F!(0.513280f) + X135 * F!(0.768178f) + X137 * F!(-0.375330f)); + S.at(3, 3) = X136; + // 40 muls 24 adds + } + } + } // end namespace DCT_Upsample + + // Unconditionally frees all allocated m_blocks. + void free_all_blocks () { + //m_pStream = null; + readfn = null; + for (mem_block *b = m_pMem_blocks; b; ) { + mem_block* n = b.m_pNext; + jpgd_free(b); + b = n; + } + m_pMem_blocks = null; + } + + // This method handles all errors. It will never return. + // It could easily be changed to use C++ exceptions. + /*JPGD_NORETURN*/ void stop_decoding (jpgd_status status) { + m_error_code = status; + free_all_blocks(); + //longjmp(m_jmp_state, status); + throw new Exception("jpeg decoding error"); + } + + void* alloc (size_t nSize, bool zero=false) { + nSize = (JPGD_MAX(nSize, 1) + 3) & ~3; + char *rv = null; + for (mem_block *b = m_pMem_blocks; b; b = b.m_pNext) + { + if ((b.m_used_count + nSize) <= b.m_size) + { + rv = b.m_data.ptr + b.m_used_count; + b.m_used_count += nSize; + break; + } + } + if (!rv) + { + int capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047); + mem_block *b = cast(mem_block*)jpgd_malloc(mem_block.sizeof + capacity); + if (!b) { stop_decoding(JPGD_NOTENOUGHMEM); } + b.m_pNext = m_pMem_blocks; m_pMem_blocks = b; + b.m_used_count = nSize; + b.m_size = capacity; + rv = b.m_data.ptr; + } + if (zero) memset(rv, 0, nSize); + return rv; + } + + void word_clear (void *p, ushort c, uint n) { + ubyte *pD = cast(ubyte*)p; + immutable ubyte l = c & 0xFF, h = (c >> 8) & 0xFF; + while (n) + { + pD[0] = l; pD[1] = h; pD += 2; + n--; + } + } + + // Refill the input buffer. + // This method will sit in a loop until (A) the buffer is full or (B) + // the stream's read() method reports and end of file condition. + void prep_in_buffer () { + m_in_buf_left = 0; + m_pIn_buf_ofs = m_in_buf.ptr; + + if (m_eof_flag) + return; + + do + { + int bytes_read = readfn(m_in_buf.ptr + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag); + if (bytes_read == -1) + stop_decoding(JPGD_STREAM_READ); + + m_in_buf_left += bytes_read; + } while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag)); + + m_total_bytes_read += m_in_buf_left; + + // Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid). + // (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.) + word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64); + } + + // Read a Huffman code table. + void read_dht_marker () { + int i, index, count; + ubyte[17] huff_num; + ubyte[256] huff_val; + + uint num_left = get_bits(16); + + if (num_left < 2) + stop_decoding(JPGD_BAD_DHT_MARKER); + + num_left -= 2; + + while (num_left) + { + index = get_bits(8); + + huff_num.ptr[0] = 0; + + count = 0; + + for (i = 1; i <= 16; i++) + { + huff_num.ptr[i] = cast(ubyte)(get_bits(8)); + count += huff_num.ptr[i]; + } + + if (count > 255) + stop_decoding(JPGD_BAD_DHT_COUNTS); + + for (i = 0; i < count; i++) + huff_val.ptr[i] = cast(ubyte)(get_bits(8)); + + i = 1 + 16 + count; + + if (num_left < cast(uint)i) + stop_decoding(JPGD_BAD_DHT_MARKER); + + num_left -= i; + + if ((index & 0x10) > 0x10) + stop_decoding(JPGD_BAD_DHT_INDEX); + + index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1); + + if (index >= JPGD_MAX_HUFF_TABLES) + stop_decoding(JPGD_BAD_DHT_INDEX); + + if (!m_huff_num.ptr[index]) + m_huff_num.ptr[index] = cast(ubyte*)alloc(17); + + if (!m_huff_val.ptr[index]) + m_huff_val.ptr[index] = cast(ubyte*)alloc(256); + + m_huff_ac.ptr[index] = (index & 0x10) != 0; + memcpy(m_huff_num.ptr[index], huff_num.ptr, 17); + memcpy(m_huff_val.ptr[index], huff_val.ptr, 256); + } + } + + // Read a quantization table. + void read_dqt_marker () { + int n, i, prec; + uint num_left; + uint temp; + + num_left = get_bits(16); + + if (num_left < 2) + stop_decoding(JPGD_BAD_DQT_MARKER); + + num_left -= 2; + + while (num_left) + { + n = get_bits(8); + prec = n >> 4; + n &= 0x0F; + + if (n >= JPGD_MAX_QUANT_TABLES) + stop_decoding(JPGD_BAD_DQT_TABLE); + + if (!m_quant.ptr[n]) + m_quant.ptr[n] = cast(jpgd_quant_t*)alloc(64 * jpgd_quant_t.sizeof); + + // read quantization entries, in zag order + for (i = 0; i < 64; i++) + { + temp = get_bits(8); + + if (prec) + temp = (temp << 8) + get_bits(8); + + m_quant.ptr[n][i] = cast(jpgd_quant_t)(temp); + } + + i = 64 + 1; + + if (prec) + i += 64; + + if (num_left < cast(uint)i) + stop_decoding(JPGD_BAD_DQT_LENGTH); + + num_left -= i; + } + } + + // Read the start of frame (SOF) marker. + void read_sof_marker () { + int i; + uint num_left; + + num_left = get_bits(16); + + if (get_bits(8) != 8) /* precision: sorry, only 8-bit precision is supported right now */ + stop_decoding(JPGD_BAD_PRECISION); + + m_image_y_size = get_bits(16); + + if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT)) + stop_decoding(JPGD_BAD_HEIGHT); + + m_image_x_size = get_bits(16); + + if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH)) + stop_decoding(JPGD_BAD_WIDTH); + + m_comps_in_frame = get_bits(8); + + if (m_comps_in_frame > JPGD_MAX_COMPONENTS) + stop_decoding(JPGD_TOO_MANY_COMPONENTS); + + if (num_left != cast(uint)(m_comps_in_frame * 3 + 8)) + stop_decoding(JPGD_BAD_SOF_LENGTH); + + for (i = 0; i < m_comps_in_frame; i++) + { + m_comp_ident.ptr[i] = get_bits(8); + m_comp_h_samp.ptr[i] = get_bits(4); + m_comp_v_samp.ptr[i] = get_bits(4); + m_comp_quant.ptr[i] = get_bits(8); + } + } + + // Used to skip unrecognized markers. + void skip_variable_marker () { + uint num_left; + + num_left = get_bits(16); + + if (num_left < 2) + stop_decoding(JPGD_BAD_VARIABLE_MARKER); + + num_left -= 2; + + while (num_left) + { + get_bits(8); + num_left--; + } + } + + // Read a define restart interval (DRI) marker. + void read_dri_marker () { + if (get_bits(16) != 4) + stop_decoding(JPGD_BAD_DRI_LENGTH); + + m_restart_interval = get_bits(16); + } + + // Read a start of scan (SOS) marker. + void read_sos_marker () { + uint num_left; + int i, ci, n, c, cc; + + num_left = get_bits(16); + + n = get_bits(8); + + m_comps_in_scan = n; + + num_left -= 3; + + if ( (num_left != cast(uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) ) + stop_decoding(JPGD_BAD_SOS_LENGTH); + + for (i = 0; i < n; i++) + { + cc = get_bits(8); + c = get_bits(8); + num_left -= 2; + + for (ci = 0; ci < m_comps_in_frame; ci++) + if (cc == m_comp_ident.ptr[ci]) + break; + + if (ci >= m_comps_in_frame) + stop_decoding(JPGD_BAD_SOS_COMP_ID); + + m_comp_list.ptr[i] = ci; + m_comp_dc_tab.ptr[ci] = (c >> 4) & 15; + m_comp_ac_tab.ptr[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1); + } + + m_spectral_start = get_bits(8); + m_spectral_end = get_bits(8); + m_successive_high = get_bits(4); + m_successive_low = get_bits(4); + + if (!m_progressive_flag) + { + m_spectral_start = 0; + m_spectral_end = 63; + } + + num_left -= 3; + + /* read past whatever is num_left */ + while (num_left) + { + get_bits(8); + num_left--; + } + } + + // Finds the next marker. + int next_marker () { + uint c, bytes; + + bytes = 0; + + do + { + do + { + bytes++; + c = get_bits(8); + } while (c != 0xFF); + + do + { + c = get_bits(8); + } while (c == 0xFF); + + } while (c == 0); + + // If bytes > 0 here, there where extra bytes before the marker (not good). + + return c; + } + + // Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is + // encountered. + int process_markers () { + int c; + + for ( ; ; ) { + c = next_marker(); + + switch (c) + { + case M_SOF0: + case M_SOF1: + case M_SOF2: + case M_SOF3: + case M_SOF5: + case M_SOF6: + case M_SOF7: + //case M_JPG: + case M_SOF9: + case M_SOF10: + case M_SOF11: + case M_SOF13: + case M_SOF14: + case M_SOF15: + case M_SOI: + case M_EOI: + case M_SOS: + return c; + case M_DHT: + read_dht_marker(); + break; + // No arithmitic support - dumb patents! + case M_DAC: + stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); + break; + case M_DQT: + read_dqt_marker(); + break; + case M_DRI: + read_dri_marker(); + break; + //case M_APP0: /* no need to read the JFIF marker */ + + case M_JPG: + case M_RST0: /* no parameters */ + case M_RST1: + case M_RST2: + case M_RST3: + case M_RST4: + case M_RST5: + case M_RST6: + case M_RST7: + case M_TEM: + stop_decoding(JPGD_UNEXPECTED_MARKER); + break; + default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */ + skip_variable_marker(); + break; + } + } + } + + // Finds the start of image (SOI) marker. + // This code is rather defensive: it only checks the first 512 bytes to avoid + // false positives. + void locate_soi_marker () { + uint lastchar, thischar; + uint bytesleft; + + lastchar = get_bits(8); + + thischar = get_bits(8); + + /* ok if it's a normal JPEG file without a special header */ + + if ((lastchar == 0xFF) && (thischar == M_SOI)) + return; + + bytesleft = 4096; //512; + + for ( ; ; ) + { + if (--bytesleft == 0) + stop_decoding(JPGD_NOT_JPEG); + + lastchar = thischar; + + thischar = get_bits(8); + + if (lastchar == 0xFF) + { + if (thischar == M_SOI) + break; + else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end + stop_decoding(JPGD_NOT_JPEG); + } + } + + // Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad. + thischar = (m_bit_buf >> 24) & 0xFF; + + if (thischar != 0xFF) + stop_decoding(JPGD_NOT_JPEG); + } + + // Find a start of frame (SOF) marker. + void locate_sof_marker () { + locate_soi_marker(); + + int c = process_markers(); + + switch (c) + { + case M_SOF2: + m_progressive_flag = true; + goto case; + case M_SOF0: /* baseline DCT */ + case M_SOF1: /* extended sequential DCT */ + read_sof_marker(); + break; + case M_SOF9: /* Arithmitic coding */ + stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); + break; + default: + stop_decoding(JPGD_UNSUPPORTED_MARKER); + break; + } + } + + // Find a start of scan (SOS) marker. + int locate_sos_marker () { + int c; + + c = process_markers(); + + if (c == M_EOI) + return false; + else if (c != M_SOS) + stop_decoding(JPGD_UNEXPECTED_MARKER); + + read_sos_marker(); + + return true; + } + + // Reset everything to default/uninitialized state. + void initit (JpegStreamReadFunc rfn) { + m_pMem_blocks = null; + m_error_code = JPGD_SUCCESS; + m_ready_flag = false; + m_image_x_size = m_image_y_size = 0; + readfn = rfn; + m_progressive_flag = false; + + memset(m_huff_ac.ptr, 0, m_huff_ac.sizeof); + memset(m_huff_num.ptr, 0, m_huff_num.sizeof); + memset(m_huff_val.ptr, 0, m_huff_val.sizeof); + memset(m_quant.ptr, 0, m_quant.sizeof); + + m_scan_type = 0; + m_comps_in_frame = 0; + + memset(m_comp_h_samp.ptr, 0, m_comp_h_samp.sizeof); + memset(m_comp_v_samp.ptr, 0, m_comp_v_samp.sizeof); + memset(m_comp_quant.ptr, 0, m_comp_quant.sizeof); + memset(m_comp_ident.ptr, 0, m_comp_ident.sizeof); + memset(m_comp_h_blocks.ptr, 0, m_comp_h_blocks.sizeof); + memset(m_comp_v_blocks.ptr, 0, m_comp_v_blocks.sizeof); + + m_comps_in_scan = 0; + memset(m_comp_list.ptr, 0, m_comp_list.sizeof); + memset(m_comp_dc_tab.ptr, 0, m_comp_dc_tab.sizeof); + memset(m_comp_ac_tab.ptr, 0, m_comp_ac_tab.sizeof); + + m_spectral_start = 0; + m_spectral_end = 0; + m_successive_low = 0; + m_successive_high = 0; + m_max_mcu_x_size = 0; + m_max_mcu_y_size = 0; + m_blocks_per_mcu = 0; + m_max_blocks_per_row = 0; + m_mcus_per_row = 0; + m_mcus_per_col = 0; + m_expanded_blocks_per_component = 0; + m_expanded_blocks_per_mcu = 0; + m_expanded_blocks_per_row = 0; + m_freq_domain_chroma_upsample = false; + + memset(m_mcu_org.ptr, 0, m_mcu_org.sizeof); + + m_total_lines_left = 0; + m_mcu_lines_left = 0; + m_real_dest_bytes_per_scan_line = 0; + m_dest_bytes_per_scan_line = 0; + m_dest_bytes_per_pixel = 0; + + memset(m_pHuff_tabs.ptr, 0, m_pHuff_tabs.sizeof); + + memset(m_dc_coeffs.ptr, 0, m_dc_coeffs.sizeof); + memset(m_ac_coeffs.ptr, 0, m_ac_coeffs.sizeof); + memset(m_block_y_mcu.ptr, 0, m_block_y_mcu.sizeof); + + m_eob_run = 0; + + memset(m_block_y_mcu.ptr, 0, m_block_y_mcu.sizeof); + + m_pIn_buf_ofs = m_in_buf.ptr; + m_in_buf_left = 0; + m_eof_flag = false; + m_tem_flag = 0; + + memset(m_in_buf_pad_start.ptr, 0, m_in_buf_pad_start.sizeof); + memset(m_in_buf.ptr, 0, m_in_buf.sizeof); + memset(m_in_buf_pad_end.ptr, 0, m_in_buf_pad_end.sizeof); + + m_restart_interval = 0; + m_restarts_left = 0; + m_next_restart_num = 0; + + m_max_mcus_per_row = 0; + m_max_blocks_per_mcu = 0; + m_max_mcus_per_col = 0; + + memset(m_last_dc_val.ptr, 0, m_last_dc_val.sizeof); + m_pMCU_coefficients = null; + m_pSample_buf = null; + + m_total_bytes_read = 0; + + m_pScan_line_0 = null; + m_pScan_line_1 = null; + + // Ready the input buffer. + prep_in_buffer(); + + // Prime the bit buffer. + m_bits_left = 16; + m_bit_buf = 0; + + get_bits(16); + get_bits(16); + + for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++) + m_mcu_block_max_zag.ptr[i] = 64; + } + + enum SCALEBITS = 16; + enum ONE_HALF = (cast(int) 1 << (SCALEBITS-1)); + enum FIX(float x) = (cast(int)((x) * (1L<> SCALEBITS; + m_cbb.ptr[i] = ( FIX!(1.77200f) * k + ONE_HALF) >> SCALEBITS; + m_crg.ptr[i] = (-FIX!(0.71414f)) * k; + m_cbg.ptr[i] = (-FIX!(0.34414f)) * k + ONE_HALF; + } + } + + // This method throws back into the stream any bytes that where read + // into the bit buffer during initial marker scanning. + void fix_in_buffer () { + // In case any 0xFF's where pulled into the buffer during marker scanning. + assert((m_bits_left & 7) == 0); + + if (m_bits_left == 16) + stuff_char(cast(ubyte)(m_bit_buf & 0xFF)); + + if (m_bits_left >= 8) + stuff_char(cast(ubyte)((m_bit_buf >> 8) & 0xFF)); + + stuff_char(cast(ubyte)((m_bit_buf >> 16) & 0xFF)); + stuff_char(cast(ubyte)((m_bit_buf >> 24) & 0xFF)); + + m_bits_left = 16; + get_bits_no_markers(16); + get_bits_no_markers(16); + } + + void transform_mcu (int mcu_row) { + jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; + ubyte* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64; + + for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) + { + idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag.ptr[mcu_block]); + pSrc_ptr += 64; + pDst_ptr += 64; + } + } + + static immutable ubyte[64] s_max_rc = [ + 17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86, + 102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136, + 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, + 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136 + ]; + + void transform_mcu_expand (int mcu_row) { + jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; + ubyte* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64; + + // Y IDCT + int mcu_block; + for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++) + { + idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag.ptr[mcu_block]); + pSrc_ptr += 64; + pDst_ptr += 64; + } + + // Chroma IDCT, with upsampling + jpgd_block_t[64] temp_block; + + for (int i = 0; i < 2; i++) + { + DCT_Upsample.Matrix44 P, Q, R, S; + + assert(m_mcu_block_max_zag.ptr[mcu_block] >= 1); + assert(m_mcu_block_max_zag.ptr[mcu_block] <= 64); + + int max_zag = m_mcu_block_max_zag.ptr[mcu_block++] - 1; + if (max_zag <= 0) max_zag = 0; // should never happen, only here to shut up static analysis + switch (s_max_rc.ptr[max_zag]) + { + case 1*16+1: + DCT_Upsample.P_Q!(1, 1).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(1, 1).calc(R, S, pSrc_ptr); + break; + case 1*16+2: + DCT_Upsample.P_Q!(1, 2).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(1, 2).calc(R, S, pSrc_ptr); + break; + case 2*16+2: + DCT_Upsample.P_Q!(2, 2).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(2, 2).calc(R, S, pSrc_ptr); + break; + case 3*16+2: + DCT_Upsample.P_Q!(3, 2).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(3, 2).calc(R, S, pSrc_ptr); + break; + case 3*16+3: + DCT_Upsample.P_Q!(3, 3).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(3, 3).calc(R, S, pSrc_ptr); + break; + case 3*16+4: + DCT_Upsample.P_Q!(3, 4).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(3, 4).calc(R, S, pSrc_ptr); + break; + case 4*16+4: + DCT_Upsample.P_Q!(4, 4).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(4, 4).calc(R, S, pSrc_ptr); + break; + case 5*16+4: + DCT_Upsample.P_Q!(5, 4).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(5, 4).calc(R, S, pSrc_ptr); + break; + case 5*16+5: + DCT_Upsample.P_Q!(5, 5).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(5, 5).calc(R, S, pSrc_ptr); + break; + case 5*16+6: + DCT_Upsample.P_Q!(5, 6).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(5, 6).calc(R, S, pSrc_ptr); + break; + case 6*16+6: + DCT_Upsample.P_Q!(6, 6).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(6, 6).calc(R, S, pSrc_ptr); + break; + case 7*16+6: + DCT_Upsample.P_Q!(7, 6).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(7, 6).calc(R, S, pSrc_ptr); + break; + case 7*16+7: + DCT_Upsample.P_Q!(7, 7).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(7, 7).calc(R, S, pSrc_ptr); + break; + case 7*16+8: + DCT_Upsample.P_Q!(7, 8).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(7, 8).calc(R, S, pSrc_ptr); + break; + case 8*16+8: + DCT_Upsample.P_Q!(8, 8).calc(P, Q, pSrc_ptr); + DCT_Upsample.R_S!(8, 8).calc(R, S, pSrc_ptr); + break; + default: + assert(false); + } + + auto a = DCT_Upsample.Matrix44(P + Q); + P -= Q; + DCT_Upsample.Matrix44* b = &P; + auto c = DCT_Upsample.Matrix44(R + S); + R -= S; + DCT_Upsample.Matrix44* d = &R; + + DCT_Upsample.Matrix44.add_and_store(temp_block.ptr, a, c); + idct_4x4(temp_block.ptr, pDst_ptr); + pDst_ptr += 64; + + DCT_Upsample.Matrix44.sub_and_store(temp_block.ptr, a, c); + idct_4x4(temp_block.ptr, pDst_ptr); + pDst_ptr += 64; + + DCT_Upsample.Matrix44.add_and_store(temp_block.ptr, *b, *d); + idct_4x4(temp_block.ptr, pDst_ptr); + pDst_ptr += 64; + + DCT_Upsample.Matrix44.sub_and_store(temp_block.ptr, *b, *d); + idct_4x4(temp_block.ptr, pDst_ptr); + pDst_ptr += 64; + + pSrc_ptr += 64; + } + } + + // Loads and dequantizes the next row of (already decoded) coefficients. + // Progressive images only. + void load_next_row () { + int i; + jpgd_block_t *p; + jpgd_quant_t *q; + int mcu_row, mcu_block, row_block = 0; + int component_num, component_id; + int[JPGD_MAX_COMPONENTS] block_x_mcu; + + memset(block_x_mcu.ptr, 0, JPGD_MAX_COMPONENTS * int.sizeof); + + for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) + { + int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; + + for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) + { + component_id = m_mcu_org.ptr[mcu_block]; + q = m_quant.ptr[m_comp_quant.ptr[component_id]]; + + p = m_pMCU_coefficients + 64 * mcu_block; + + jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs.ptr[component_id], block_x_mcu.ptr[component_id] + block_x_mcu_ofs, m_block_y_mcu.ptr[component_id] + block_y_mcu_ofs); + jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs.ptr[component_id], block_x_mcu.ptr[component_id] + block_x_mcu_ofs, m_block_y_mcu.ptr[component_id] + block_y_mcu_ofs); + p[0] = pDC[0]; + memcpy(&p[1], &pAC[1], 63 * jpgd_block_t.sizeof); + + for (i = 63; i > 0; i--) + if (p[g_ZAG[i]]) + break; + + m_mcu_block_max_zag.ptr[mcu_block] = i + 1; + + for ( ; i >= 0; i--) + if (p[g_ZAG[i]]) + p[g_ZAG[i]] = cast(jpgd_block_t)(p[g_ZAG[i]] * q[i]); + + row_block++; + + if (m_comps_in_scan == 1) + block_x_mcu.ptr[component_id]++; + else + { + if (++block_x_mcu_ofs == m_comp_h_samp.ptr[component_id]) + { + block_x_mcu_ofs = 0; + + if (++block_y_mcu_ofs == m_comp_v_samp.ptr[component_id]) + { + block_y_mcu_ofs = 0; + + block_x_mcu.ptr[component_id] += m_comp_h_samp.ptr[component_id]; + } + } + } + } + + if (m_freq_domain_chroma_upsample) + transform_mcu_expand(mcu_row); + else + transform_mcu(mcu_row); + } + + if (m_comps_in_scan == 1) + m_block_y_mcu.ptr[m_comp_list.ptr[0]]++; + else + { + for (component_num = 0; component_num < m_comps_in_scan; component_num++) + { + component_id = m_comp_list.ptr[component_num]; + + m_block_y_mcu.ptr[component_id] += m_comp_v_samp.ptr[component_id]; + } + } + } + + // Restart interval processing. + void process_restart () { + int i; + int c = 0; + + // Align to a byte boundry + // FIXME: Is this really necessary? get_bits_no_markers() never reads in markers! + //get_bits_no_markers(m_bits_left & 7); + + // Let's scan a little bit to find the marker, but not _too_ far. + // 1536 is a "fudge factor" that determines how much to scan. + for (i = 1536; i > 0; i--) + if (get_char() == 0xFF) + break; + + if (i == 0) + stop_decoding(JPGD_BAD_RESTART_MARKER); + + for ( ; i > 0; i--) + if ((c = get_char()) != 0xFF) + break; + + if (i == 0) + stop_decoding(JPGD_BAD_RESTART_MARKER); + + // Is it the expected marker? If not, something bad happened. + if (c != (m_next_restart_num + M_RST0)) + stop_decoding(JPGD_BAD_RESTART_MARKER); + + // Reset each component's DC prediction values. + memset(&m_last_dc_val, 0, m_comps_in_frame * uint.sizeof); + + m_eob_run = 0; + + m_restarts_left = m_restart_interval; + + m_next_restart_num = (m_next_restart_num + 1) & 7; + + // Get the bit buffer going again... + + m_bits_left = 16; + get_bits_no_markers(16); + get_bits_no_markers(16); + } + + static int dequantize_ac (int c, int q) { pragma(inline, true); c *= q; return c; } + + // Decodes and dequantizes the next row of coefficients. + void decode_next_row () { + int row_block = 0; + + for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) + { + if ((m_restart_interval) && (m_restarts_left == 0)) + process_restart(); + + jpgd_block_t* p = m_pMCU_coefficients; + for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64) + { + int component_id = m_mcu_org.ptr[mcu_block]; + jpgd_quant_t* q = m_quant.ptr[m_comp_quant.ptr[component_id]]; + + int r, s; + s = huff_decode(m_pHuff_tabs.ptr[m_comp_dc_tab.ptr[component_id]], r); + s = JPGD_HUFF_EXTEND(r, s); + + m_last_dc_val.ptr[component_id] = (s += m_last_dc_val.ptr[component_id]); + + p[0] = cast(jpgd_block_t)(s * q[0]); + + int prev_num_set = m_mcu_block_max_zag.ptr[mcu_block]; + + huff_tables *pH = m_pHuff_tabs.ptr[m_comp_ac_tab.ptr[component_id]]; + + int k; + for (k = 1; k < 64; k++) + { + int extra_bits; + s = huff_decode(pH, extra_bits); + + r = s >> 4; + s &= 15; + + if (s) + { + if (r) + { + if ((k + r) > 63) + stop_decoding(JPGD_DECODE_ERROR); + + if (k < prev_num_set) + { + int n = JPGD_MIN(r, prev_num_set - k); + int kt = k; + while (n--) + p[g_ZAG[kt++]] = 0; + } + + k += r; + } + + s = JPGD_HUFF_EXTEND(extra_bits, s); + + assert(k < 64); + + p[g_ZAG[k]] = cast(jpgd_block_t)(dequantize_ac(s, q[k])); //s * q[k]; + } + else + { + if (r == 15) + { + if ((k + 16) > 64) + stop_decoding(JPGD_DECODE_ERROR); + + if (k < prev_num_set) + { + int n = JPGD_MIN(16, prev_num_set - k); + int kt = k; + while (n--) + { + assert(kt <= 63); + p[g_ZAG[kt++]] = 0; + } + } + + k += 16 - 1; // - 1 because the loop counter is k + assert(p[g_ZAG[k]] == 0); + } + else + break; + } + } + + if (k < prev_num_set) + { + int kt = k; + while (kt < prev_num_set) + p[g_ZAG[kt++]] = 0; + } + + m_mcu_block_max_zag.ptr[mcu_block] = k; + + row_block++; + } + + if (m_freq_domain_chroma_upsample) + transform_mcu_expand(mcu_row); + else + transform_mcu(mcu_row); + + m_restarts_left--; + } + } + + // YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB + void H1V1Convert () { + int row = m_max_mcu_y_size - m_mcu_lines_left; + ubyte *d = m_pScan_line_0; + ubyte *s = m_pSample_buf + row * 8; + + for (int i = m_max_mcus_per_row; i > 0; i--) + { + for (int j = 0; j < 8; j++) + { + int y = s[j]; + int cb = s[64+j]; + int cr = s[128+j]; + + d[0] = clamp(y + m_crr.ptr[cr]); + d[1] = clamp(y + ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16)); + d[2] = clamp(y + m_cbb.ptr[cb]); + d[3] = 255; + + d += 4; + } + + s += 64*3; + } + } + + // YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB + void H2V1Convert () { + int row = m_max_mcu_y_size - m_mcu_lines_left; + ubyte *d0 = m_pScan_line_0; + ubyte *y = m_pSample_buf + row * 8; + ubyte *c = m_pSample_buf + 2*64 + row * 8; + + for (int i = m_max_mcus_per_row; i > 0; i--) + { + for (int l = 0; l < 2; l++) + { + for (int j = 0; j < 4; j++) + { + int cb = c[0]; + int cr = c[64]; + + int rc = m_crr.ptr[cr]; + int gc = ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16); + int bc = m_cbb.ptr[cb]; + + int yy = y[j<<1]; + d0[0] = clamp(yy+rc); + d0[1] = clamp(yy+gc); + d0[2] = clamp(yy+bc); + d0[3] = 255; + + yy = y[(j<<1)+1]; + d0[4] = clamp(yy+rc); + d0[5] = clamp(yy+gc); + d0[6] = clamp(yy+bc); + d0[7] = 255; + + d0 += 8; + + c++; + } + y += 64; + } + + y += 64*4 - 64*2; + c += 64*4 - 8; + } + } + + // YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB + void H1V2Convert () { + int row = m_max_mcu_y_size - m_mcu_lines_left; + ubyte *d0 = m_pScan_line_0; + ubyte *d1 = m_pScan_line_1; + ubyte *y; + ubyte *c; + + if (row < 8) + y = m_pSample_buf + row * 8; + else + y = m_pSample_buf + 64*1 + (row & 7) * 8; + + c = m_pSample_buf + 64*2 + (row >> 1) * 8; + + for (int i = m_max_mcus_per_row; i > 0; i--) + { + for (int j = 0; j < 8; j++) + { + int cb = c[0+j]; + int cr = c[64+j]; + + int rc = m_crr.ptr[cr]; + int gc = ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16); + int bc = m_cbb.ptr[cb]; + + int yy = y[j]; + d0[0] = clamp(yy+rc); + d0[1] = clamp(yy+gc); + d0[2] = clamp(yy+bc); + d0[3] = 255; + + yy = y[8+j]; + d1[0] = clamp(yy+rc); + d1[1] = clamp(yy+gc); + d1[2] = clamp(yy+bc); + d1[3] = 255; + + d0 += 4; + d1 += 4; + } + + y += 64*4; + c += 64*4; + } + } + + // YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB + void H2V2Convert () { + int row = m_max_mcu_y_size - m_mcu_lines_left; + ubyte *d0 = m_pScan_line_0; + ubyte *d1 = m_pScan_line_1; + ubyte *y; + ubyte *c; + + if (row < 8) + y = m_pSample_buf + row * 8; + else + y = m_pSample_buf + 64*2 + (row & 7) * 8; + + c = m_pSample_buf + 64*4 + (row >> 1) * 8; + + for (int i = m_max_mcus_per_row; i > 0; i--) + { + for (int l = 0; l < 2; l++) + { + for (int j = 0; j < 8; j += 2) + { + int cb = c[0]; + int cr = c[64]; + + int rc = m_crr.ptr[cr]; + int gc = ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16); + int bc = m_cbb.ptr[cb]; + + int yy = y[j]; + d0[0] = clamp(yy+rc); + d0[1] = clamp(yy+gc); + d0[2] = clamp(yy+bc); + d0[3] = 255; + + yy = y[j+1]; + d0[4] = clamp(yy+rc); + d0[5] = clamp(yy+gc); + d0[6] = clamp(yy+bc); + d0[7] = 255; + + yy = y[j+8]; + d1[0] = clamp(yy+rc); + d1[1] = clamp(yy+gc); + d1[2] = clamp(yy+bc); + d1[3] = 255; + + yy = y[j+8+1]; + d1[4] = clamp(yy+rc); + d1[5] = clamp(yy+gc); + d1[6] = clamp(yy+bc); + d1[7] = 255; + + d0 += 8; + d1 += 8; + + c++; + } + y += 64; + } + + y += 64*6 - 64*2; + c += 64*6 - 8; + } + } + + // Y (1 block per MCU) to 8-bit grayscale + void gray_convert () { + int row = m_max_mcu_y_size - m_mcu_lines_left; + ubyte *d = m_pScan_line_0; + ubyte *s = m_pSample_buf + row * 8; + + for (int i = m_max_mcus_per_row; i > 0; i--) + { + *cast(uint*)d = *cast(uint*)s; + *cast(uint*)(&d[4]) = *cast(uint*)(&s[4]); + + s += 64; + d += 8; + } + } + + void expanded_convert () { + int row = m_max_mcu_y_size - m_mcu_lines_left; + + ubyte* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp.ptr[0] + (row & 7) * 8; + + ubyte* d = m_pScan_line_0; + + for (int i = m_max_mcus_per_row; i > 0; i--) + { + for (int k = 0; k < m_max_mcu_x_size; k += 8) + { + immutable int Y_ofs = k * 8; + immutable int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component; + immutable int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2; + for (int j = 0; j < 8; j++) + { + int y = Py[Y_ofs + j]; + int cb = Py[Cb_ofs + j]; + int cr = Py[Cr_ofs + j]; + + d[0] = clamp(y + m_crr.ptr[cr]); + d[1] = clamp(y + ((m_crg.ptr[cr] + m_cbg.ptr[cb]) >> 16)); + d[2] = clamp(y + m_cbb.ptr[cb]); + d[3] = 255; + + d += 4; + } + } + + Py += 64 * m_expanded_blocks_per_mcu; + } + } + + // Find end of image (EOI) marker, so we can return to the user the exact size of the input stream. + void find_eoi () { + if (!m_progressive_flag) + { + // Attempt to read the EOI marker. + //get_bits_no_markers(m_bits_left & 7); + + // Prime the bit buffer + m_bits_left = 16; + get_bits(16); + get_bits(16); + + // The next marker _should_ be EOI + process_markers(); + } + + m_total_bytes_read -= m_in_buf_left; + } + + // Creates the tables needed for efficient Huffman decoding. + void make_huff_table (int index, huff_tables *pH) { + int p, i, l, si; + ubyte[257] huffsize; + uint[257] huffcode; + uint code; + uint subtree; + int code_size; + int lastp; + int nextfreeentry; + int currententry; + + pH.ac_table = m_huff_ac.ptr[index] != 0; + + p = 0; + + for (l = 1; l <= 16; l++) + { + for (i = 1; i <= m_huff_num.ptr[index][l]; i++) + huffsize.ptr[p++] = cast(ubyte)(l); + } + + huffsize.ptr[p] = 0; + + lastp = p; + + code = 0; + si = huffsize.ptr[0]; + p = 0; + + while (huffsize.ptr[p]) + { + while (huffsize.ptr[p] == si) + { + huffcode.ptr[p++] = code; + code++; + } + + code <<= 1; + si++; + } + + memset(pH.look_up.ptr, 0, pH.look_up.sizeof); + memset(pH.look_up2.ptr, 0, pH.look_up2.sizeof); + memset(pH.tree.ptr, 0, pH.tree.sizeof); + memset(pH.code_size.ptr, 0, pH.code_size.sizeof); + + nextfreeentry = -1; + + p = 0; + + while (p < lastp) + { + i = m_huff_val.ptr[index][p]; + code = huffcode.ptr[p]; + code_size = huffsize.ptr[p]; + + pH.code_size.ptr[i] = cast(ubyte)(code_size); + + if (code_size <= 8) + { + code <<= (8 - code_size); + + for (l = 1 << (8 - code_size); l > 0; l--) + { + assert(i < 256); + + pH.look_up.ptr[code] = i; + + bool has_extrabits = false; + int extra_bits = 0; + int num_extra_bits = i & 15; + + int bits_to_fetch = code_size; + if (num_extra_bits) + { + int total_codesize = code_size + num_extra_bits; + if (total_codesize <= 8) + { + has_extrabits = true; + extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize)); + assert(extra_bits <= 0x7FFF); + bits_to_fetch += num_extra_bits; + } + } + + if (!has_extrabits) + pH.look_up2.ptr[code] = i | (bits_to_fetch << 8); + else + pH.look_up2.ptr[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8); + + code++; + } + } + else + { + subtree = (code >> (code_size - 8)) & 0xFF; + + currententry = pH.look_up.ptr[subtree]; + + if (currententry == 0) + { + pH.look_up.ptr[subtree] = currententry = nextfreeentry; + pH.look_up2.ptr[subtree] = currententry = nextfreeentry; + + nextfreeentry -= 2; + } + + code <<= (16 - (code_size - 8)); + + for (l = code_size; l > 9; l--) + { + if ((code & 0x8000) == 0) + currententry--; + + if (pH.tree.ptr[-currententry - 1] == 0) + { + pH.tree.ptr[-currententry - 1] = nextfreeentry; + + currententry = nextfreeentry; + + nextfreeentry -= 2; + } + else + currententry = pH.tree.ptr[-currententry - 1]; + + code <<= 1; + } + + if ((code & 0x8000) == 0) + currententry--; + + pH.tree.ptr[-currententry - 1] = i; + } + + p++; + } + } + + // Verifies the quantization tables needed for this scan are available. + void check_quant_tables () { + for (int i = 0; i < m_comps_in_scan; i++) + if (m_quant.ptr[m_comp_quant.ptr[m_comp_list.ptr[i]]] == null) + stop_decoding(JPGD_UNDEFINED_QUANT_TABLE); + } + + // Verifies that all the Huffman tables needed for this scan are available. + void check_huff_tables () { + for (int i = 0; i < m_comps_in_scan; i++) + { + if ((m_spectral_start == 0) && (m_huff_num.ptr[m_comp_dc_tab.ptr[m_comp_list.ptr[i]]] == null)) + stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); + + if ((m_spectral_end > 0) && (m_huff_num.ptr[m_comp_ac_tab.ptr[m_comp_list.ptr[i]]] == null)) + stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); + } + + for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++) + if (m_huff_num.ptr[i]) + { + if (!m_pHuff_tabs.ptr[i]) + m_pHuff_tabs.ptr[i] = cast(huff_tables*)alloc(huff_tables.sizeof); + + make_huff_table(i, m_pHuff_tabs.ptr[i]); + } + } + + // Determines the component order inside each MCU. + // Also calcs how many MCU's are on each row, etc. + void calc_mcu_block_order () { + int component_num, component_id; + int max_h_samp = 0, max_v_samp = 0; + + for (component_id = 0; component_id < m_comps_in_frame; component_id++) + { + if (m_comp_h_samp.ptr[component_id] > max_h_samp) + max_h_samp = m_comp_h_samp.ptr[component_id]; + + if (m_comp_v_samp.ptr[component_id] > max_v_samp) + max_v_samp = m_comp_v_samp.ptr[component_id]; + } + + for (component_id = 0; component_id < m_comps_in_frame; component_id++) + { + m_comp_h_blocks.ptr[component_id] = ((((m_image_x_size * m_comp_h_samp.ptr[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8; + m_comp_v_blocks.ptr[component_id] = ((((m_image_y_size * m_comp_v_samp.ptr[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8; + } + + if (m_comps_in_scan == 1) + { + m_mcus_per_row = m_comp_h_blocks.ptr[m_comp_list.ptr[0]]; + m_mcus_per_col = m_comp_v_blocks.ptr[m_comp_list.ptr[0]]; + } + else + { + m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp; + m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp; + } + + if (m_comps_in_scan == 1) + { + m_mcu_org.ptr[0] = m_comp_list.ptr[0]; + + m_blocks_per_mcu = 1; + } + else + { + m_blocks_per_mcu = 0; + + for (component_num = 0; component_num < m_comps_in_scan; component_num++) + { + int num_blocks; + + component_id = m_comp_list.ptr[component_num]; + + num_blocks = m_comp_h_samp.ptr[component_id] * m_comp_v_samp.ptr[component_id]; + + while (num_blocks--) + m_mcu_org.ptr[m_blocks_per_mcu++] = component_id; + } + } + } + + // Starts a new scan. + int init_scan () { + if (!locate_sos_marker()) + return false; + + calc_mcu_block_order(); + + check_huff_tables(); + + check_quant_tables(); + + memset(m_last_dc_val.ptr, 0, m_comps_in_frame * uint.sizeof); + + m_eob_run = 0; + + if (m_restart_interval) + { + m_restarts_left = m_restart_interval; + m_next_restart_num = 0; + } + + fix_in_buffer(); + + return true; + } + + // Starts a frame. Determines if the number of components or sampling factors + // are supported. + void init_frame () { + int i; + + if (m_comps_in_frame == 1) + { + if ((m_comp_h_samp.ptr[0] != 1) || (m_comp_v_samp.ptr[0] != 1)) + stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); + + m_scan_type = JPGD_GRAYSCALE; + m_max_blocks_per_mcu = 1; + m_max_mcu_x_size = 8; + m_max_mcu_y_size = 8; + } + else if (m_comps_in_frame == 3) + { + if ( ((m_comp_h_samp.ptr[1] != 1) || (m_comp_v_samp.ptr[1] != 1)) || + ((m_comp_h_samp.ptr[2] != 1) || (m_comp_v_samp.ptr[2] != 1)) ) + stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); + + if ((m_comp_h_samp.ptr[0] == 1) && (m_comp_v_samp.ptr[0] == 1)) + { + m_scan_type = JPGD_YH1V1; + + m_max_blocks_per_mcu = 3; + m_max_mcu_x_size = 8; + m_max_mcu_y_size = 8; + } + else if ((m_comp_h_samp.ptr[0] == 2) && (m_comp_v_samp.ptr[0] == 1)) + { + m_scan_type = JPGD_YH2V1; + m_max_blocks_per_mcu = 4; + m_max_mcu_x_size = 16; + m_max_mcu_y_size = 8; + } + else if ((m_comp_h_samp.ptr[0] == 1) && (m_comp_v_samp.ptr[0] == 2)) + { + m_scan_type = JPGD_YH1V2; + m_max_blocks_per_mcu = 4; + m_max_mcu_x_size = 8; + m_max_mcu_y_size = 16; + } + else if ((m_comp_h_samp.ptr[0] == 2) && (m_comp_v_samp.ptr[0] == 2)) + { + m_scan_type = JPGD_YH2V2; + m_max_blocks_per_mcu = 6; + m_max_mcu_x_size = 16; + m_max_mcu_y_size = 16; + } + else + stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); + } + else + stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); + + m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size; + m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size; + + // These values are for the *destination* pixels: after conversion. + if (m_scan_type == JPGD_GRAYSCALE) + m_dest_bytes_per_pixel = 1; + else + m_dest_bytes_per_pixel = 4; + + m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel; + + m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel); + + // Initialize two scan line buffers. + m_pScan_line_0 = cast(ubyte*)alloc(m_dest_bytes_per_scan_line, true); + if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2)) + m_pScan_line_1 = cast(ubyte*)alloc(m_dest_bytes_per_scan_line, true); + + m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu; + + // Should never happen + if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW) + stop_decoding(JPGD_ASSERTION_ERROR); + + // Allocate the coefficient buffer, enough for one MCU + m_pMCU_coefficients = cast(jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * jpgd_block_t.sizeof); + + for (i = 0; i < m_max_blocks_per_mcu; i++) + m_mcu_block_max_zag.ptr[i] = 64; + + m_expanded_blocks_per_component = m_comp_h_samp.ptr[0] * m_comp_v_samp.ptr[0]; + m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame; + m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu; + // Freq. domain chroma upsampling is only supported for H2V2 subsampling factor (the most common one I've seen). + m_freq_domain_chroma_upsample = false; + version(JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING) { + m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3); + } + + if (m_freq_domain_chroma_upsample) + m_pSample_buf = cast(ubyte*)alloc(m_expanded_blocks_per_row * 64); + else + m_pSample_buf = cast(ubyte*)alloc(m_max_blocks_per_row * 64); + + m_total_lines_left = m_image_y_size; + + m_mcu_lines_left = 0; + + create_look_ups(); + } + + // The coeff_buf series of methods originally stored the coefficients + // into a "virtual" file which was located in EMS, XMS, or a disk file. A cache + // was used to make this process more efficient. Now, we can store the entire + // thing in RAM. + coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y) { + coeff_buf* cb = cast(coeff_buf*)alloc(coeff_buf.sizeof); + + cb.block_num_x = block_num_x; + cb.block_num_y = block_num_y; + cb.block_len_x = block_len_x; + cb.block_len_y = block_len_y; + cb.block_size = (block_len_x * block_len_y) * jpgd_block_t.sizeof; + cb.pData = cast(ubyte*)alloc(cb.block_size * block_num_x * block_num_y, true); + return cb; + } + + jpgd_block_t* coeff_buf_getp (coeff_buf *cb, int block_x, int block_y) { + assert((block_x < cb.block_num_x) && (block_y < cb.block_num_y)); + return cast(jpgd_block_t*)(cb.pData + block_x * cb.block_size + block_y * (cb.block_size * cb.block_num_x)); + } + + // The following methods decode the various types of m_blocks encountered + // in progressively encoded images. + static void decode_block_dc_first (ref jpeg_decoder pD, int component_id, int block_x, int block_y) { + int s, r; + jpgd_block_t *p = pD.coeff_buf_getp(pD.m_dc_coeffs.ptr[component_id], block_x, block_y); + + if ((s = pD.huff_decode(pD.m_pHuff_tabs.ptr[pD.m_comp_dc_tab.ptr[component_id]])) != 0) + { + r = pD.get_bits_no_markers(s); + s = JPGD_HUFF_EXTEND(r, s); + } + + pD.m_last_dc_val.ptr[component_id] = (s += pD.m_last_dc_val.ptr[component_id]); + + p[0] = cast(jpgd_block_t)(s << pD.m_successive_low); + } + + static void decode_block_dc_refine (ref jpeg_decoder pD, int component_id, int block_x, int block_y) { + if (pD.get_bits_no_markers(1)) + { + jpgd_block_t *p = pD.coeff_buf_getp(pD.m_dc_coeffs.ptr[component_id], block_x, block_y); + + p[0] |= (1 << pD.m_successive_low); + } + } + + static void decode_block_ac_first (ref jpeg_decoder pD, int component_id, int block_x, int block_y) { + int k, s, r; + + if (pD.m_eob_run) + { + pD.m_eob_run--; + return; + } + + jpgd_block_t *p = pD.coeff_buf_getp(pD.m_ac_coeffs.ptr[component_id], block_x, block_y); + + for (k = pD.m_spectral_start; k <= pD.m_spectral_end; k++) + { + s = pD.huff_decode(pD.m_pHuff_tabs.ptr[pD.m_comp_ac_tab.ptr[component_id]]); + + r = s >> 4; + s &= 15; + + if (s) + { + if ((k += r) > 63) + pD.stop_decoding(JPGD_DECODE_ERROR); + + r = pD.get_bits_no_markers(s); + s = JPGD_HUFF_EXTEND(r, s); + + p[g_ZAG[k]] = cast(jpgd_block_t)(s << pD.m_successive_low); + } + else + { + if (r == 15) + { + if ((k += 15) > 63) + pD.stop_decoding(JPGD_DECODE_ERROR); + } + else + { + pD.m_eob_run = 1 << r; + + if (r) + pD.m_eob_run += pD.get_bits_no_markers(r); + + pD.m_eob_run--; + + break; + } + } + } + } + + static void decode_block_ac_refine (ref jpeg_decoder pD, int component_id, int block_x, int block_y) { + int s, k, r; + int p1 = 1 << pD.m_successive_low; + int m1 = (-1) << pD.m_successive_low; + jpgd_block_t *p = pD.coeff_buf_getp(pD.m_ac_coeffs.ptr[component_id], block_x, block_y); + + assert(pD.m_spectral_end <= 63); + + k = pD.m_spectral_start; + + if (pD.m_eob_run == 0) + { + for ( ; k <= pD.m_spectral_end; k++) + { + s = pD.huff_decode(pD.m_pHuff_tabs.ptr[pD.m_comp_ac_tab.ptr[component_id]]); + + r = s >> 4; + s &= 15; + + if (s) + { + if (s != 1) + pD.stop_decoding(JPGD_DECODE_ERROR); + + if (pD.get_bits_no_markers(1)) + s = p1; + else + s = m1; + } + else + { + if (r != 15) + { + pD.m_eob_run = 1 << r; + + if (r) + pD.m_eob_run += pD.get_bits_no_markers(r); + + break; + } + } + + do + { + jpgd_block_t *this_coef = p + g_ZAG[k & 63]; + + if (*this_coef != 0) + { + if (pD.get_bits_no_markers(1)) + { + if ((*this_coef & p1) == 0) + { + if (*this_coef >= 0) + *this_coef = cast(jpgd_block_t)(*this_coef + p1); + else + *this_coef = cast(jpgd_block_t)(*this_coef + m1); + } + } + } + else + { + if (--r < 0) + break; + } + + k++; + + } while (k <= pD.m_spectral_end); + + if ((s) && (k < 64)) + { + p[g_ZAG[k]] = cast(jpgd_block_t)(s); + } + } + } + + if (pD.m_eob_run > 0) + { + for ( ; k <= pD.m_spectral_end; k++) + { + jpgd_block_t *this_coef = p + g_ZAG[k & 63]; // logical AND to shut up static code analysis + + if (*this_coef != 0) + { + if (pD.get_bits_no_markers(1)) + { + if ((*this_coef & p1) == 0) + { + if (*this_coef >= 0) + *this_coef = cast(jpgd_block_t)(*this_coef + p1); + else + *this_coef = cast(jpgd_block_t)(*this_coef + m1); + } + } + } + } + + pD.m_eob_run--; + } + } + + // Decode a scan in a progressively encoded image. + void decode_scan (pDecode_block_func decode_block_func) { + int mcu_row, mcu_col, mcu_block; + int[JPGD_MAX_COMPONENTS] block_x_mcu; + int[JPGD_MAX_COMPONENTS] m_block_y_mcu; + + memset(m_block_y_mcu.ptr, 0, m_block_y_mcu.sizeof); + + for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++) + { + int component_num, component_id; + + memset(block_x_mcu.ptr, 0, block_x_mcu.sizeof); + + for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) + { + int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; + + if ((m_restart_interval) && (m_restarts_left == 0)) + process_restart(); + + for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) + { + component_id = m_mcu_org.ptr[mcu_block]; + + decode_block_func(this, component_id, block_x_mcu.ptr[component_id] + block_x_mcu_ofs, m_block_y_mcu.ptr[component_id] + block_y_mcu_ofs); + + if (m_comps_in_scan == 1) + block_x_mcu.ptr[component_id]++; + else + { + if (++block_x_mcu_ofs == m_comp_h_samp.ptr[component_id]) + { + block_x_mcu_ofs = 0; + + if (++block_y_mcu_ofs == m_comp_v_samp.ptr[component_id]) + { + block_y_mcu_ofs = 0; + block_x_mcu.ptr[component_id] += m_comp_h_samp.ptr[component_id]; + } + } + } + } + + m_restarts_left--; + } + + if (m_comps_in_scan == 1) + m_block_y_mcu.ptr[m_comp_list.ptr[0]]++; + else + { + for (component_num = 0; component_num < m_comps_in_scan; component_num++) + { + component_id = m_comp_list.ptr[component_num]; + m_block_y_mcu.ptr[component_id] += m_comp_v_samp.ptr[component_id]; + } + } + } + } + + // Decode a progressively encoded image. + void init_progressive () { + int i; + + if (m_comps_in_frame == 4) + stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); + + // Allocate the coefficient buffers. + for (i = 0; i < m_comps_in_frame; i++) + { + m_dc_coeffs.ptr[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp.ptr[i], m_max_mcus_per_col * m_comp_v_samp.ptr[i], 1, 1); + m_ac_coeffs.ptr[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp.ptr[i], m_max_mcus_per_col * m_comp_v_samp.ptr[i], 8, 8); + } + + for ( ; ; ) + { + int dc_only_scan, refinement_scan; + pDecode_block_func decode_block_func; + + if (!init_scan()) + break; + + dc_only_scan = (m_spectral_start == 0); + refinement_scan = (m_successive_high != 0); + + if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63)) + stop_decoding(JPGD_BAD_SOS_SPECTRAL); + + if (dc_only_scan) + { + if (m_spectral_end) + stop_decoding(JPGD_BAD_SOS_SPECTRAL); + } + else if (m_comps_in_scan != 1) /* AC scans can only contain one component */ + stop_decoding(JPGD_BAD_SOS_SPECTRAL); + + if ((refinement_scan) && (m_successive_low != m_successive_high - 1)) + stop_decoding(JPGD_BAD_SOS_SUCCESSIVE); + + if (dc_only_scan) + { + if (refinement_scan) + decode_block_func = &decode_block_dc_refine; + else + decode_block_func = &decode_block_dc_first; + } + else + { + if (refinement_scan) + decode_block_func = &decode_block_ac_refine; + else + decode_block_func = &decode_block_ac_first; + } + + decode_scan(decode_block_func); + + m_bits_left = 16; + get_bits(16); + get_bits(16); + } + + m_comps_in_scan = m_comps_in_frame; + + for (i = 0; i < m_comps_in_frame; i++) + m_comp_list.ptr[i] = i; + + calc_mcu_block_order(); + } + + void init_sequential () { + if (!init_scan()) + stop_decoding(JPGD_UNEXPECTED_MARKER); + } + + void decode_start () { + init_frame(); + + if (m_progressive_flag) + init_progressive(); + else + init_sequential(); + } + + void decode_init (JpegStreamReadFunc rfn) { + initit(rfn); + locate_sof_marker(); + } +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// read JPEG image header, determine dimensions and number of components. +/// return `false` if image is not JPEG (i hope). +public bool detect_jpeg_image_from_stream (scope JpegStreamReadFunc rfn, out int width, out int height, out int actual_comps) { + if (rfn is null) return false; + auto decoder = jpeg_decoder(rfn); + version(jpegd_test) { import core.stdc.stdio : printf; printf("%u bytes read.\n", cast(uint)decoder.total_bytes_read); } + if (decoder.error_code != JPGD_SUCCESS) return false; + width = decoder.width; + height = decoder.height; + actual_comps = decoder.num_components; + return true; +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// read JPEG image header, determine dimensions and number of components. +/// return `false` if image is not JPEG (i hope). +public bool detect_jpeg_image_from_file (const(char)[] filename, out int width, out int height, out int actual_comps) { + import core.stdc.stdio; + + FILE* m_pFile; + bool m_eof_flag, m_error_flag; + + if (filename.length == 0) throw new Exception("cannot open unnamed file"); + if (filename.length < 2048) { + import core.stdc.stdlib : alloca; + auto tfn = (cast(char*)alloca(filename.length+1))[0..filename.length+1]; + tfn[0..filename.length] = filename[]; + tfn[filename.length] = 0; + m_pFile = fopen(tfn.ptr, "rb"); + } else { + import core.stdc.stdlib : malloc, free; + auto tfn = (cast(char*)malloc(filename.length+1))[0..filename.length+1]; + if (tfn !is null) { + scope(exit) free(tfn.ptr); + m_pFile = fopen(tfn.ptr, "rb"); + } + } + if (m_pFile is null) throw new Exception("cannot open file '"~filename.idup~"'"); + scope(exit) if (m_pFile) fclose(m_pFile); + + return detect_jpeg_image_from_stream( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + if (m_pFile is null) return -1; + if (m_eof_flag) { + *pEOF_flag = true; + return 0; + } + if (m_error_flag) return -1; + int bytes_read = cast(int)(fread(pBuf, 1, max_bytes_to_read, m_pFile)); + if (bytes_read < max_bytes_to_read) { + if (ferror(m_pFile)) { + m_error_flag = true; + return -1; + } + m_eof_flag = true; + *pEOF_flag = true; + } + return bytes_read; + }, + width, height, actual_comps); +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// read JPEG image header, determine dimensions and number of components. +/// return `false` if image is not JPEG (i hope). +public bool detect_jpeg_image_from_memory (const(void)[] buf, out int width, out int height, out int actual_comps) { + bool m_eof_flag; + size_t bufpos; + auto b = cast(const(ubyte)*)buf.ptr; + + return detect_jpeg_image_from_stream( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + import core.stdc.string : memcpy; + if (bufpos >= buf.length) { + *pEOF_flag = true; + return 0; + } + if (buf.length-bufpos < max_bytes_to_read) max_bytes_to_read = cast(int)(buf.length-bufpos); + memcpy(pBuf, b, max_bytes_to_read); + b += max_bytes_to_read; + return max_bytes_to_read; + }, + width, height, actual_comps); +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image, what else? +/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value. +public ubyte[] decompress_jpeg_image_from_stream(bool useMalloc=false) (scope JpegStreamReadFunc rfn, out int width, out int height, out int actual_comps, int req_comps=-1) { + import core.stdc.string : memcpy; + + //actual_comps = 0; + if (rfn is null) return null; + if (req_comps != -1 && req_comps != 1 && req_comps != 3 && req_comps != 4) return null; + + auto decoder = jpeg_decoder(rfn); + if (decoder.error_code != JPGD_SUCCESS) return null; + version(jpegd_test) scope(exit) { import core.stdc.stdio : printf; printf("%u bytes read.\n", cast(uint)decoder.total_bytes_read); } + + immutable int image_width = decoder.width; + immutable int image_height = decoder.height; + width = image_width; + height = image_height; + actual_comps = decoder.num_components; + if (req_comps < 0) req_comps = decoder.num_components; + + if (decoder.begin_decoding() != JPGD_SUCCESS) return null; + + immutable int dst_bpl = image_width*req_comps; + + static if (useMalloc) { + ubyte* pImage_data = cast(ubyte*)jpgd_malloc(dst_bpl*image_height); + if (pImage_data is null) return null; + auto idata = pImage_data[0..dst_bpl*image_height]; + } else { + auto idata = new ubyte[](dst_bpl*image_height); + auto pImage_data = idata.ptr; + } + + for (int y = 0; y < image_height; ++y) { + const(ubyte)* pScan_line; + uint scan_line_len; + if (decoder.decode(/*(const void**)*/cast(void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) { + jpgd_free(pImage_data); + return null; + } + + ubyte* pDst = pImage_data+y*dst_bpl; + + if ((req_comps == 1 && decoder.num_components == 1) || (req_comps == 4 && decoder.num_components == 3)) { + memcpy(pDst, pScan_line, dst_bpl); + } else if (decoder.num_components == 1) { + if (req_comps == 3) { + for (int x = 0; x < image_width; ++x) { + ubyte luma = pScan_line[x]; + pDst[0] = luma; + pDst[1] = luma; + pDst[2] = luma; + pDst += 3; + } + } else { + for (int x = 0; x < image_width; ++x) { + ubyte luma = pScan_line[x]; + pDst[0] = luma; + pDst[1] = luma; + pDst[2] = luma; + pDst[3] = 255; + pDst += 4; + } + } + } else if (decoder.num_components == 3) { + if (req_comps == 1) { + immutable int YR = 19595, YG = 38470, YB = 7471; + for (int x = 0; x < image_width; ++x) { + int r = pScan_line[x*4+0]; + int g = pScan_line[x*4+1]; + int b = pScan_line[x*4+2]; + *pDst++ = cast(ubyte)((r * YR + g * YG + b * YB + 32768) >> 16); + } + } else { + for (int x = 0; x < image_width; ++x) { + pDst[0] = pScan_line[x*4+0]; + pDst[1] = pScan_line[x*4+1]; + pDst[2] = pScan_line[x*4+2]; + pDst += 3; + } + } + } + } + + return idata; +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image from disk file. +/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value. +public ubyte[] decompress_jpeg_image_from_file(bool useMalloc=false) (const(char)[] filename, out int width, out int height, out int actual_comps, int req_comps=-1) { + import core.stdc.stdio; + + FILE* m_pFile; + bool m_eof_flag, m_error_flag; + + if (filename.length == 0) throw new Exception("cannot open unnamed file"); + if (filename.length < 2048) { + import core.stdc.stdlib : alloca; + auto tfn = (cast(char*)alloca(filename.length+1))[0..filename.length+1]; + tfn[0..filename.length] = filename[]; + tfn[filename.length] = 0; + m_pFile = fopen(tfn.ptr, "rb"); + } else { + import core.stdc.stdlib : malloc, free; + auto tfn = (cast(char*)malloc(filename.length+1))[0..filename.length+1]; + if (tfn !is null) { + scope(exit) free(tfn.ptr); + m_pFile = fopen(tfn.ptr, "rb"); + } + } + if (m_pFile is null) throw new Exception("cannot open file '"~filename.idup~"'"); + scope(exit) if (m_pFile) fclose(m_pFile); + + return decompress_jpeg_image_from_stream!useMalloc( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + if (m_pFile is null) return -1; + if (m_eof_flag) { + *pEOF_flag = true; + return 0; + } + if (m_error_flag) return -1; + int bytes_read = cast(int)(fread(pBuf, 1, max_bytes_to_read, m_pFile)); + if (bytes_read < max_bytes_to_read) { + if (ferror(m_pFile)) { + m_error_flag = true; + return -1; + } + m_eof_flag = true; + *pEOF_flag = true; + } + return bytes_read; + }, + width, height, actual_comps, req_comps); +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image from memory buffer. +/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value. +public ubyte[] decompress_jpeg_image_from_memory(bool useMalloc=false) (const(void)[] buf, out int width, out int height, out int actual_comps, int req_comps=-1) { + bool m_eof_flag; + size_t bufpos; + auto b = cast(const(ubyte)*)buf.ptr; + + return decompress_jpeg_image_from_stream!useMalloc( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + import core.stdc.string : memcpy; + if (bufpos >= buf.length) { + *pEOF_flag = true; + return 0; + } + if (buf.length-bufpos < max_bytes_to_read) max_bytes_to_read = cast(int)(buf.length-bufpos); + memcpy(pBuf, b, max_bytes_to_read); + b += max_bytes_to_read; + return max_bytes_to_read; + }, + width, height, actual_comps, req_comps); +} + + +// ////////////////////////////////////////////////////////////////////////// // +// if we have access "iv.vfs", add some handy API +static if (__traits(compiles, { import iv.vfs; })) enum JpegHasIVVFS = true; else enum JpegHasIVVFS = false; + +static if (JpegHasIVVFS) { +import iv.vfs; + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image from disk file. +/// you can specify required color components in `req_comps` (3 for RGB or 4 for RGBA), or leave it as is to use image value. +public ubyte[] decompress_jpeg_image_from_file(bool useMalloc=false) (VFile fl, out int width, out int height, out int actual_comps, int req_comps=-1) { + return decompress_jpeg_image_from_stream!useMalloc( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + if (!fl.isOpen) return -1; + if (fl.eof) { + *pEOF_flag = true; + return 0; + } + auto rd = fl.rawRead(pBuf[0..max_bytes_to_read]); + if (fl.eof) *pEOF_flag = true; + return cast(int)rd.length; + }, + width, height, actual_comps, req_comps); +} +// vfs API +} + + +// ////////////////////////////////////////////////////////////////////////// // +// if we have access "arsd.color", add some handy API +static if (__traits(compiles, { import arsd.color; })) enum JpegHasArsd = true; else enum JpegHasArsd = false; + +static if (JpegHasArsd) { +import arsd.color; + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image, what else? +public MemoryImage readJpegFromStream (scope JpegStreamReadFunc rfn) { + import core.stdc.string : memcpy; + enum req_comps = 4; + + if (rfn is null) return null; + + auto decoder = jpeg_decoder(rfn); + if (decoder.error_code != JPGD_SUCCESS) return null; + version(jpegd_test) scope(exit) { import core.stdc.stdio : printf; printf("%u bytes read.\n", cast(uint)decoder.total_bytes_read); } + + immutable int image_width = decoder.width; + immutable int image_height = decoder.height; + //width = image_width; + //height = image_height; + //actual_comps = decoder.num_components; + + if (decoder.begin_decoding() != JPGD_SUCCESS || image_width < 1 || image_height < 1) return null; + + immutable int dst_bpl = image_width*req_comps; + auto img = new TrueColorImage(image_width, image_height); + ubyte* pImage_data = img.imageData.bytes.ptr; + + for (int y = 0; y < image_height; ++y) { + const(ubyte)* pScan_line; + uint scan_line_len; + if (decoder.decode(/*(const void**)*/cast(void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) { + jpgd_free(pImage_data); + return null; + } + + ubyte* pDst = pImage_data+y*dst_bpl; + + if ((req_comps == 1 && decoder.num_components == 1) || (req_comps == 4 && decoder.num_components == 3)) { + memcpy(pDst, pScan_line, dst_bpl); + } else if (decoder.num_components == 1) { + if (req_comps == 3) { + for (int x = 0; x < image_width; ++x) { + ubyte luma = pScan_line[x]; + pDst[0] = luma; + pDst[1] = luma; + pDst[2] = luma; + pDst += 3; + } + } else { + for (int x = 0; x < image_width; ++x) { + ubyte luma = pScan_line[x]; + pDst[0] = luma; + pDst[1] = luma; + pDst[2] = luma; + pDst[3] = 255; + pDst += 4; + } + } + } else if (decoder.num_components == 3) { + if (req_comps == 1) { + immutable int YR = 19595, YG = 38470, YB = 7471; + for (int x = 0; x < image_width; ++x) { + int r = pScan_line[x*4+0]; + int g = pScan_line[x*4+1]; + int b = pScan_line[x*4+2]; + *pDst++ = cast(ubyte)((r * YR + g * YG + b * YB + 32768) >> 16); + } + } else { + for (int x = 0; x < image_width; ++x) { + pDst[0] = pScan_line[x*4+0]; + pDst[1] = pScan_line[x*4+1]; + pDst[2] = pScan_line[x*4+2]; + pDst += 3; + } + } + } + } + + return img; +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image from disk file. +public MemoryImage readJpeg (const(char)[] filename) { + import core.stdc.stdio; + + FILE* m_pFile; + bool m_eof_flag, m_error_flag; + + if (filename.length == 0) throw new Exception("cannot open unnamed file"); + if (filename.length < 2048) { + import core.stdc.stdlib : alloca; + auto tfn = (cast(char*)alloca(filename.length+1))[0..filename.length+1]; + tfn[0..filename.length] = filename[]; + tfn[filename.length] = 0; + m_pFile = fopen(tfn.ptr, "rb"); + } else { + import core.stdc.stdlib : malloc, free; + auto tfn = (cast(char*)malloc(filename.length+1))[0..filename.length+1]; + if (tfn !is null) { + scope(exit) free(tfn.ptr); + m_pFile = fopen(tfn.ptr, "rb"); + } + } + if (m_pFile is null) throw new Exception("cannot open file '"~filename.idup~"'"); + scope(exit) if (m_pFile) fclose(m_pFile); + + return readJpegFromStream( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + if (m_pFile is null) return -1; + if (m_eof_flag) { + *pEOF_flag = true; + return 0; + } + if (m_error_flag) return -1; + int bytes_read = cast(int)(fread(pBuf, 1, max_bytes_to_read, m_pFile)); + if (bytes_read < max_bytes_to_read) { + if (ferror(m_pFile)) { + m_error_flag = true; + return -1; + } + m_eof_flag = true; + *pEOF_flag = true; + } + return bytes_read; + } + ); +} + + +// ////////////////////////////////////////////////////////////////////////// // +/// decompress JPEG image from memory buffer. +public MemoryImage readJpegFromMemory (const(void)[] buf) { + bool m_eof_flag; + size_t bufpos; + auto b = cast(const(ubyte)*)buf.ptr; + + return readJpegFromStream( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + import core.stdc.string : memcpy; + if (bufpos >= buf.length) { + *pEOF_flag = true; + return 0; + } + if (buf.length-bufpos < max_bytes_to_read) max_bytes_to_read = cast(int)(buf.length-bufpos); + memcpy(pBuf, b, max_bytes_to_read); + b += max_bytes_to_read; + return max_bytes_to_read; + } + ); +} +// done with arsd API +} + + +static if (JpegHasIVVFS) { +public MemoryImage readJpeg (VFile fl) { + return readJpegFromStream( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + if (!fl.isOpen) return -1; + if (fl.eof) { + *pEOF_flag = true; + return 0; + } + auto rd = fl.rawRead(pBuf[0..max_bytes_to_read]); + if (fl.eof) *pEOF_flag = true; + return cast(int)rd.length; + } + ); +} + +public bool detectJpeg (VFile fl, out int width, out int height, out int actual_comps) { + return detect_jpeg_image_from_stream( + delegate int (void* pBuf, int max_bytes_to_read, bool *pEOF_flag) { + if (!fl.isOpen) return -1; + if (fl.eof) { + *pEOF_flag = true; + return 0; + } + auto rd = fl.rawRead(pBuf[0..max_bytes_to_read]); + if (fl.eof) *pEOF_flag = true; + return cast(int)rd.length; + }, + width, height, actual_comps); +} +// vfs API +} + + +// ////////////////////////////////////////////////////////////////////////// // +version(jpegd_test) { +import arsd.color; +import arsd.png; + +void main (string[] args) { + import std.stdio; + int width, height, comps; + { + assert(detect_jpeg_image_from_file((args.length > 1 ? args[1] : "image.jpg"), width, height, comps)); + writeln(width, "x", height, "x", comps); + auto img = readJpeg((args.length > 1 ? args[1] : "image.jpg")); + writeln(img.width, "x", img.height); + writePng("z00.png", img); + } + { + ubyte[] file; + { + auto fl = File(args.length > 1 ? args[1] : "image.jpg"); + file.length = cast(int)fl.size; + fl.rawRead(file[]); + } + assert(detect_jpeg_image_from_memory(file[], width, height, comps)); + writeln(width, "x", height, "x", comps); + auto img = readJpegFromMemory(file[]); + writeln(img.width, "x", img.height); + writePng("z01.png", img); + } +} +}