DCD/actypes.d

483 lines
14 KiB
D

/**
* This file is part of DCD, a development tool for the D programming language.
* Copyright (C) 2014 Brian Schott
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
module actypes;
import stdx.d.lexer;
import stdx.d.ast;
import std.algorithm;
import std.stdio;
import std.array;
import messages;
import std.array;
import std.typecons;
import std.container;
/**
* Compares symbols by their name
*/
bool comparitor(const(ACSymbol)* a, const(ACSymbol)* b) pure nothrow
{
return a.name < b.name;
}
/**
* Any special information about a variable declaration symbol.
*/
enum SymbolQualifier : ubyte
{
/// _none
none,
/// the symbol is an _array
array,
/// the symbol is a associative array
assocArray,
/// the symbol is a function or delegate pointer
func
}
/**
* Autocompletion symbol
*/
struct ACSymbol
{
public:
@disable this();
/**
* Params:
* name = the symbol's name
*/
this(string name)
{
this.name = name;
this.parts = new RedBlackTree!(ACSymbol*, comparitor, true);
}
/**
* Params:
* name = the symbol's name
* kind = the symbol's completion kind
*/
this(string name, CompletionKind kind)
{
this.name = name;
this.kind = kind;
this.parts = new RedBlackTree!(ACSymbol*, comparitor, true);
}
/**
* Params:
* name = the symbol's name
* kind = the symbol's completion kind
* resolvedType = the resolved type of the symbol
*/
this(string name, CompletionKind kind, ACSymbol* type)
{
this.name = name;
this.kind = kind;
this.type = type;
this.parts = new RedBlackTree!(ACSymbol*, comparitor, true);
}
/**
* Gets all parts whose name matches the given string.
*/
ACSymbol*[] getPartsByName(string name)
{
import std.range;
ACSymbol s = ACSymbol(name);
return parts.equalRange(&s).array();
}
/**
* Symbols that compose this symbol, such as enum members, class variables,
* methods, etc.
*/
RedBlackTree!(ACSymbol*, comparitor, true) parts;
/**
* Symbol's name
*/
string name;
/**
* Calltip to display if this is a function
*/
string callTip;
/**
* Module containing the symbol.
*/
string symbolFile;
/**
* Documentation for the symbol.
*/
string doc;
/**
* The symbol that represents the type.
*/
ACSymbol* type;
/**
* Symbol location
*/
size_t location;
/**
* The kind of symbol
*/
CompletionKind kind;
/**
* Symbol qualifier
*/
SymbolQualifier qualifier;
}
/**
* Contains symbols and supports lookup of symbols by cursor position.
*/
struct Scope
{
/**
* Params:
* begin = the beginning byte index
* end = the ending byte index
*/
this (size_t begin, size_t end)
{
this.startLocation = begin;
this.endLocation = end;
this.symbols = new RedBlackTree!(ACSymbol*, comparitor, true);
}
/**
* Params:
* cursorPosition = the cursor position in bytes
* Returns:
* the innermost scope that contains the given cursor position
*/
Scope* getScopeByCursor(size_t cursorPosition) const
{
if (cursorPosition < startLocation) return null;
if (cursorPosition > endLocation) return null;
foreach (child; children)
{
auto childScope = child.getScopeByCursor(cursorPosition);
if (childScope !is null)
return childScope;
}
return cast(typeof(return)) &this;
}
/**
* Params:
* cursorPosition = the cursor position in bytes
* Returns:
* all symbols in the scope containing the cursor position, as well as
* the symbols in parent scopes of that scope.
*/
ACSymbol*[] getSymbolsInCursorScope(size_t cursorPosition) const
{
auto s = getScopeByCursor(cursorPosition);
if (s is null)
return [];
auto symbols = s.symbols;
Scope* sc = s.parent;
while (sc !is null)
{
foreach (sym; sc.symbols)
symbols.insert(sym);
sc = sc.parent;
}
return symbols.array();
}
/**
* Params:
* name = the symbol name to search for
* Returns:
* all symbols in this scope or parent scopes with the given name
*/
ACSymbol*[] getSymbolsByName(string name) const
{
import std.range;
ACSymbol s = ACSymbol(name);
RedBlackTree!(ACSymbol*, comparitor, true) t = cast() symbols;
auto r = t.equalRange(&s).array();
if (r.length > 0)
return cast(typeof(return)) r;
if (parent is null)
return [];
return parent.getSymbolsByName(name);
}
/**
* Params:
* name = the symbol name to search for
* cursorPosition = the cursor position in bytes
* Returns:
* all symbols with the given name in the scope containing the cursor
* and its parent scopes
*/
ACSymbol*[] getSymbolsByNameAndCursor(string name, size_t cursorPosition) const
{
auto s = getScopeByCursor(cursorPosition);
if (s is null)
return [];
return s.getSymbolsByName(name);
}
/// Imports contained in this scope
ImportInformation[] importInformation;
/// The scope that contains this one
Scope* parent;
/// Child scopes
Scope*[] children;
/// Start location of this scope in bytes
size_t startLocation;
/// End location of this scope in bytes
size_t endLocation;
/// Symbols contained in this scope
RedBlackTree!(ACSymbol*, comparitor, true) symbols;
}
/**
* Import information
*/
struct ImportInformation
{
/// Import statement parts
string[] importParts;
/// module relative path
string modulePath;
/// symbols to import from this module
Tuple!(string, string)[] importedSymbols;
/// true if the import is public
bool isPublic;
}
/**
* Symbols for the built in types
*/
RedBlackTree!(ACSymbol*, comparitor, true) builtinSymbols;
/**
* Array properties
*/
RedBlackTree!(ACSymbol*, comparitor, true) arraySymbols;
/**
* Associative array properties
*/
RedBlackTree!(ACSymbol*, comparitor, true) assocArraySymbols;
/**
* Enum, union, class, and interface properties
*/
RedBlackTree!(ACSymbol*, comparitor, true) aggregateSymbols;
/**
* Class properties
*/
RedBlackTree!(ACSymbol*, comparitor, true) classSymbols;
/**
* Type of the _argptr variable
*/
Type argptrType;
/**
* Type of _arguments
*/
Type argumentsType;
/**
* Initializes builtin types and the various properties of builtin types
*/
static this()
{
auto bSym = new RedBlackTree!(ACSymbol*, comparitor, true);
auto arrSym = new RedBlackTree!(ACSymbol*, comparitor, true);
auto asarrSym = new RedBlackTree!(ACSymbol*, comparitor, true);
auto aggSym = new RedBlackTree!(ACSymbol*, comparitor, true);
auto clSym = new RedBlackTree!(ACSymbol*, comparitor, true);
auto bool_ = new ACSymbol("bool", CompletionKind.keyword);
auto int_ = new ACSymbol("int", CompletionKind.keyword);
auto long_ = new ACSymbol("long", CompletionKind.keyword);
auto byte_ = new ACSymbol("byte", CompletionKind.keyword);
auto char_ = new ACSymbol("char", CompletionKind.keyword);
auto dchar_ = new ACSymbol("dchar", CompletionKind.keyword);
auto short_ = new ACSymbol("short", CompletionKind.keyword);
auto ubyte_ = new ACSymbol("ubyte", CompletionKind.keyword);
auto uint_ = new ACSymbol("uint", CompletionKind.keyword);
auto ulong_ = new ACSymbol("ulong", CompletionKind.keyword);
auto ushort_ = new ACSymbol("ushort", CompletionKind.keyword);
auto wchar_ = new ACSymbol("wchar", CompletionKind.keyword);
auto alignof_ = new ACSymbol("alignof", CompletionKind.keyword, ulong_);
auto mangleof_ = new ACSymbol("mangleof", CompletionKind.keyword);
auto sizeof_ = new ACSymbol("sizeof", CompletionKind.keyword, ulong_);
auto stringof_ = new ACSymbol("init", CompletionKind.keyword);
auto init = new ACSymbol("stringof", CompletionKind.keyword);
arrSym.insert(alignof_);
arrSym.insert(new ACSymbol("dup", CompletionKind.keyword));
arrSym.insert(new ACSymbol("idup", CompletionKind.keyword));
arrSym.insert(init);
arrSym.insert(new ACSymbol("length", CompletionKind.keyword, ulong_));
arrSym.insert(mangleof_);
arrSym.insert(new ACSymbol("ptr", CompletionKind.keyword));
arrSym.insert(new ACSymbol("reverse", CompletionKind.keyword));
arrSym.insert(sizeof_);
arrSym.insert(new ACSymbol("sort", CompletionKind.keyword));
arrSym.insert(stringof_);
asarrSym.insert(alignof_);
asarrSym.insert(new ACSymbol("byKey", CompletionKind.keyword));
asarrSym.insert(new ACSymbol("byValue", CompletionKind.keyword));
asarrSym.insert(new ACSymbol("dup", CompletionKind.keyword));
asarrSym.insert(new ACSymbol("get", CompletionKind.keyword));
asarrSym.insert(new ACSymbol("init", CompletionKind.keyword));
asarrSym.insert(new ACSymbol("keys", CompletionKind.keyword));
asarrSym.insert(new ACSymbol("length", CompletionKind.keyword, ulong_));
asarrSym.insert(mangleof_);
asarrSym.insert(new ACSymbol("rehash", CompletionKind.keyword));
asarrSym.insert(sizeof_);
asarrSym.insert(stringof_);
asarrSym.insert(init);
asarrSym.insert(new ACSymbol("values", CompletionKind.keyword));
foreach (s; [bool_, int_, long_, byte_, char_, dchar_, short_, ubyte_, uint_,
ulong_, ushort_, wchar_])
{
s.parts.insert(new ACSymbol("init", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("min", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("max", CompletionKind.keyword, s));
s.parts.insert(alignof_);
s.parts.insert(sizeof_);
s.parts.insert(stringof_);
s.parts.insert(mangleof_);
s.parts.insert(init);
}
auto cdouble_ = new ACSymbol("cdouble", CompletionKind.keyword);
auto cent_ = new ACSymbol("cent", CompletionKind.keyword);
auto cfloat_ = new ACSymbol("cfloat", CompletionKind.keyword);
auto creal_ = new ACSymbol("creal", CompletionKind.keyword);
auto double_ = new ACSymbol("double", CompletionKind.keyword);
auto float_ = new ACSymbol("float", CompletionKind.keyword);
auto idouble_ = new ACSymbol("idouble", CompletionKind.keyword);
auto ifloat_ = new ACSymbol("ifloat", CompletionKind.keyword);
auto ireal_ = new ACSymbol("ireal", CompletionKind.keyword);
auto real_ = new ACSymbol("real", CompletionKind.keyword);
auto ucent_ = new ACSymbol("ucent", CompletionKind.keyword);
foreach (s; [cdouble_, cent_, cfloat_, creal_, double_, float_,
idouble_, ifloat_, ireal_, real_, ucent_])
{
s.parts.insert(alignof_);
s.parts.insert(new ACSymbol("dig", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("epsilon", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("infinity", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("init", CompletionKind.keyword, s));
s.parts.insert(mangleof_);
s.parts.insert(new ACSymbol("mant_dig", CompletionKind.keyword, int_));
s.parts.insert(new ACSymbol("max", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("max_10_exp", CompletionKind.keyword, int_));
s.parts.insert(new ACSymbol("max_exp", CompletionKind.keyword, int_));
s.parts.insert(new ACSymbol("min", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("min_exp", CompletionKind.keyword, int_));
s.parts.insert(new ACSymbol("min_10_exp", CompletionKind.keyword, int_));
s.parts.insert(new ACSymbol("min_normal", CompletionKind.keyword, s));
s.parts.insert(new ACSymbol("nan", CompletionKind.keyword, s));
s.parts.insert(sizeof_);
s.parts.insert(stringof_);
}
aggSym.insert(new ACSymbol("tupleof", CompletionKind.variableName));
aggSym.insert(mangleof_);
aggSym.insert(alignof_);
aggSym.insert(sizeof_);
aggSym.insert(stringof_);
aggSym.insert(init);
clSym.insert(new ACSymbol("classInfo", CompletionKind.variableName));
clSym.insert(new ACSymbol("tupleof", CompletionKind.variableName));
clSym.insert(new ACSymbol("__vptr", CompletionKind.variableName));
clSym.insert(new ACSymbol("__monitor", CompletionKind.variableName));
clSym.insert(mangleof_);
clSym.insert(alignof_);
clSym.insert(sizeof_);
clSym.insert(stringof_);
clSym.insert(init);
ireal_.parts.insert(new ACSymbol("im", CompletionKind.keyword, real_));
ifloat_.parts.insert(new ACSymbol("im", CompletionKind.keyword, float_));
idouble_.parts.insert(new ACSymbol("im", CompletionKind.keyword, double_));
ireal_.parts.insert(new ACSymbol("re", CompletionKind.keyword, real_));
ifloat_.parts.insert(new ACSymbol("re", CompletionKind.keyword, float_));
idouble_.parts.insert(new ACSymbol("re", CompletionKind.keyword, double_));
auto void_ = new ACSymbol("void", CompletionKind.keyword);
bSym.insert([bool_, int_, long_, byte_, char_, dchar_, short_, ubyte_, uint_,
ulong_, ushort_, wchar_, cdouble_, cent_, cfloat_, creal_, double_,
float_, idouble_, ifloat_, ireal_, real_, ucent_, void_]);
// _argptr has type void*
argptrType = new Type;
argptrType.type2 = new Type2;
argptrType.type2.builtinType = tok!"void";
TypeSuffix argptrTypeSuffix = new TypeSuffix;
argptrTypeSuffix.star = true;
argptrType.typeSuffixes ~= argptrTypeSuffix;
// _arguments has type TypeInfo[]
argumentsType = new Type;
argumentsType = new Type;
argumentsType.type2 = new Type2;
argumentsType.type2.symbol = new Symbol;
argumentsType.type2.symbol.identifierOrTemplateChain = new IdentifierOrTemplateChain;
IdentifierOrTemplateInstance i = new IdentifierOrTemplateInstance;
i.identifier.text = "TypeInfo";
i.identifier.type = tok!"identifier";
argumentsType.type2.symbol.identifierOrTemplateChain.identifiersOrTemplateInstances ~= i;
TypeSuffix argumentsTypeSuffix = new TypeSuffix;
argumentsTypeSuffix.array = true;
argumentsType.typeSuffixes ~= argptrTypeSuffix;
builtinSymbols = bSym;
arraySymbols = arrSym;
assocArraySymbols = asarrSym;
aggregateSymbols = aggSym;
classSymbols = clSym;
}