DCD/constants-gen/traits.dd

1449 lines
35 KiB
Plaintext

Ddoc
$(SPEC_S Traits,
$(HEADERNAV_TOC)
$(P Traits are extensions to the language to enable
programs, at compile time, to get at information
internal to the compiler. This is also known as
compile time reflection.
It is done as a special, easily extended syntax (similar
to Pragmas) so that new capabilities can be added
as required.
)
$(GRAMMAR
$(GNAME TraitsExpression):
$(D __traits) $(D $(LPAREN)) $(GLINK TraitsKeyword) $(D ,) $(GLINK TraitsArguments) $(D $(RPAREN))
$(GNAME TraitsKeyword):
$(GLINK isAbstractClass)
$(GLINK isArithmetic)
$(GLINK isAssociativeArray)
$(GLINK isFinalClass)
$(GLINK isPOD)
$(GLINK isNested)
$(GLINK isFuture)
$(GLINK isDeprecated)
$(GLINK isFloating)
$(GLINK isIntegral)
$(GLINK isScalar)
$(GLINK isStaticArray)
$(GLINK isUnsigned)
$(GLINK isDisabled)
$(GLINK isVirtualFunction)
$(GLINK isVirtualMethod)
$(GLINK isAbstractFunction)
$(GLINK isFinalFunction)
$(GLINK isStaticFunction)
$(GLINK isOverrideFunction)
$(GLINK isTemplate)
$(GLINK isRef)
$(GLINK isOut)
$(GLINK isLazy)
$(GLINK isReturnOnStack)
$(GLINK isZeroInit)
$(GLINK hasMember)
$(GLINK identifier)
$(GLINK getAliasThis)
$(GLINK getAttributes)
$(GLINK getFunctionAttributes)
$(GLINK getFunctionVariadicStyle)
$(GLINK getLinkage)
$(GLINK getMember)
$(GLINK getOverloads)
$(GLINK getParameterStorageClasses)
$(GLINK getPointerBitmap)
$(GLINK getProtection)
$(GLINK getTargetInfo)
$(GLINK getVirtualFunctions)
$(GLINK getVirtualMethods)
$(GLINK getUnitTests)
$(GLINK parent)
$(GLINK classInstanceSize)
$(GLINK getVirtualIndex)
$(GLINK allMembers)
$(GLINK derivedMembers)
$(GLINK isSame)
$(GLINK compiles)
$(GNAME TraitsArguments):
$(GLINK TraitsArgument)
$(GLINK TraitsArgument) $(D ,) $(I TraitsArguments)
$(GNAME TraitsArgument):
$(GLINK2 expression, AssignExpression)
$(GLINK2 declaration, Type)
)
$(H2 $(GNAME isArithmetic))
$(P If the arguments are all either types that are arithmetic types,
or expressions that are typed as arithmetic types, then $(D true)
is returned.
Otherwise, $(D false) is returned.
If there are no arguments, $(D false) is returned.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
void main()
{
int i;
writeln(__traits(isArithmetic, int));
writeln(__traits(isArithmetic, i, i+1, int));
writeln(__traits(isArithmetic));
writeln(__traits(isArithmetic, int*));
}
---
)
Prints:
$(CONSOLE
true
true
false
false
)
$(H2 $(GNAME isFloating))
$(P Works like $(D isArithmetic), except it's for floating
point types (including imaginary and complex types).)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import core.simd : float4;
enum E : float { a, b }
static assert(__traits(isFloating, float));
static assert(__traits(isFloating, idouble));
static assert(__traits(isFloating, creal));
static assert(__traits(isFloating, E));
static assert(__traits(isFloating, float4));
static assert(!__traits(isFloating, float[4]));
---
)
$(H2 $(GNAME isIntegral))
$(P Works like $(D isArithmetic), except it's for integral
types (including character types).)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import core.simd : int4;
enum E { a, b }
static assert(__traits(isIntegral, bool));
static assert(__traits(isIntegral, char));
static assert(__traits(isIntegral, int));
static assert(__traits(isIntegral, E));
static assert(__traits(isIntegral, int4));
static assert(!__traits(isIntegral, float));
static assert(!__traits(isIntegral, int[4]));
static assert(!__traits(isIntegral, void*));
---
)
$(H2 $(GNAME isScalar))
$(P Works like $(D isArithmetic), except it's for scalar
types.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import core.simd : int4, void16;
enum E { a, b }
static assert(__traits(isScalar, bool));
static assert(__traits(isScalar, char));
static assert(__traits(isScalar, int));
static assert(__traits(isScalar, float));
static assert(__traits(isScalar, E));
static assert(__traits(isScalar, int4));
static assert(__traits(isScalar, void*)); // Includes pointers!
static assert(!__traits(isScalar, int[4]));
static assert(!__traits(isScalar, void16));
static assert(!__traits(isScalar, void));
static assert(!__traits(isScalar, typeof(null)));
static assert(!__traits(isScalar, Object));
---
)
$(H2 $(GNAME isUnsigned))
$(P Works like $(D isArithmetic), except it's for unsigned
types.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import core.simd : uint4;
enum SignedEnum { a, b }
enum UnsignedEnum : uint { a, b }
static assert(__traits(isUnsigned, bool));
static assert(__traits(isUnsigned, char));
static assert(__traits(isUnsigned, uint));
static assert(__traits(isUnsigned, UnsignedEnum));
static assert(__traits(isUnsigned, uint4));
static assert(!__traits(isUnsigned, int));
static assert(!__traits(isUnsigned, float));
static assert(!__traits(isUnsigned, SignedEnum));
static assert(!__traits(isUnsigned, uint[4]));
static assert(!__traits(isUnsigned, void*));
---
)
$(H2 $(GNAME isStaticArray))
$(P Works like $(D isArithmetic), except it's for static array
types.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import core.simd : int4;
enum E : int[4] { a = [1, 2, 3, 4] }
static array = [1, 2, 3]; // Not a static array: the type is inferred as int[] not int[3].
static assert(__traits(isStaticArray, void[0]));
static assert(__traits(isStaticArray, E));
static assert(!__traits(isStaticArray, int4));
static assert(!__traits(isStaticArray, array));
---
)
$(H2 $(GNAME isAssociativeArray))
$(P Works like $(D isArithmetic), except it's for associative array
types.)
$(H2 $(GNAME isAbstractClass))
$(P If the arguments are all either types that are abstract classes,
or expressions that are typed as abstract classes, then $(D true)
is returned.
Otherwise, $(D false) is returned.
If there are no arguments, $(D false) is returned.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
abstract class C { int foo(); }
void main()
{
C c;
writeln(__traits(isAbstractClass, C));
writeln(__traits(isAbstractClass, c, C));
writeln(__traits(isAbstractClass));
writeln(__traits(isAbstractClass, int*));
}
---
)
Prints:
$(CONSOLE
true
true
false
false
)
$(H2 $(GNAME isFinalClass))
$(P Works like $(D isAbstractClass), except it's for final
classes.)
$(H2 $(GNAME isPOD))
$(P Takes one argument, which must be a type. It returns
$(D true) if the type is a $(DDSUBLINK glossary, pod, POD) type, otherwise $(D false).)
$(H2 $(GNAME isNested))
$(P Takes one argument.
It returns $(D true) if the argument is a nested type which internally
stores a context pointer, otherwise it returns $(D false).
Nested types can be $(DDSUBLINK spec/class, nested, classes),
$(DDSUBLINK spec/struct, nested, structs), and
$(DDSUBLINK spec/function, variadicnested, functions).)
$(H2 $(GNAME isFuture))
$(P Takes one argument. It returns `true` if the argument is a symbol
marked with the `@future` keyword, otherwise `false`. Currently, only
functions and variable declarations have support for the `@future` keyword.)
$(H2 $(GNAME isDeprecated))
$(P Takes one argument. It returns `true` if the argument is a symbol
marked with the `deprecated` keyword, otherwise `false`.)
$(H2 $(GNAME isDisabled))
$(P Takes one argument and returns `true` if it's a function declaration
marked with `@disable`.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
struct Foo
{
@disable void foo();
void bar(){}
}
static assert(__traits(isDisabled, Foo.foo));
static assert(!__traits(isDisabled, Foo.bar));
---
)
$(P For any other declaration even if `@disable` is a syntactically valid
attribute `false` is returned because the annotation has no effect.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
@disable struct Bar{}
static assert(!__traits(isDisabled, Bar));
---
)
$(H2 $(GNAME isVirtualFunction))
$(P The same as $(GLINK isVirtualMethod), except
that final functions that don't override anything return true.
)
$(H2 $(GNAME isVirtualMethod))
$(P Takes one argument. If that argument is a virtual function,
$(D true) is returned, otherwise $(D false).
Final functions that don't override anything return false.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S
{
void bar() { }
}
class C
{
void bar() { }
}
void main()
{
writeln(__traits(isVirtualMethod, C.bar)); // true
writeln(__traits(isVirtualMethod, S.bar)); // false
}
---
)
$(H2 $(GNAME isAbstractFunction))
$(P Takes one argument. If that argument is an abstract function,
$(D true) is returned, otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S
{
void bar() { }
}
class C
{
void bar() { }
}
class AC
{
abstract void foo();
}
void main()
{
writeln(__traits(isAbstractFunction, C.bar)); // false
writeln(__traits(isAbstractFunction, S.bar)); // false
writeln(__traits(isAbstractFunction, AC.foo)); // true
}
---
)
$(H2 $(GNAME isFinalFunction))
$(P Takes one argument. If that argument is a final function,
$(D true) is returned, otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S
{
void bar() { }
}
class C
{
void bar() { }
final void foo();
}
final class FC
{
void foo();
}
void main()
{
writeln(__traits(isFinalFunction, C.bar)); // false
writeln(__traits(isFinalFunction, S.bar)); // false
writeln(__traits(isFinalFunction, C.foo)); // true
writeln(__traits(isFinalFunction, FC.foo)); // true
}
---
)
$(H2 $(GNAME isOverrideFunction))
$(P Takes one argument. If that argument is a function marked with
$(D_KEYWORD override), $(D true) is returned, otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
class Base
{
void foo() { }
}
class Foo : Base
{
override void foo() { }
void bar() { }
}
void main()
{
writeln(__traits(isOverrideFunction, Base.foo)); // false
writeln(__traits(isOverrideFunction, Foo.foo)); // true
writeln(__traits(isOverrideFunction, Foo.bar)); // false
}
---
)
$(H2 $(GNAME isStaticFunction))
$(P Takes one argument. If that argument is a static function,
meaning it has no context pointer,
$(D true) is returned, otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
struct A
{
int foo() { return 3; }
static int boo(int a) { return a; }
}
void main()
{
assert(__traits(isStaticFunction, A.boo));
assert(!__traits(isStaticFunction, A.foo));
assert(__traits(isStaticFunction, main));
}
---
)
$(H2 $(GNAME isRef), $(GNAME isOut), $(GNAME isLazy))
$(P Takes one argument. If that argument is a declaration,
$(D true) is returned if it is $(D_KEYWORD ref), $(D_KEYWORD out),
or $(D_KEYWORD lazy), otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
void fooref(ref int x)
{
static assert(__traits(isRef, x));
static assert(!__traits(isOut, x));
static assert(!__traits(isLazy, x));
}
void fooout(out int x)
{
static assert(!__traits(isRef, x));
static assert(__traits(isOut, x));
static assert(!__traits(isLazy, x));
}
void foolazy(lazy int x)
{
static assert(!__traits(isRef, x));
static assert(!__traits(isOut, x));
static assert(__traits(isLazy, x));
}
---
)
$(H2 $(GNAME isTemplate))
$(P Takes one argument. If that argument is a template then $(D true) is returned,
otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
void foo(T)(){}
static assert(__traits(isTemplate,foo));
static assert(!__traits(isTemplate,foo!int()));
static assert(!__traits(isTemplate,"string"));
---
)
$(H2 $(GNAME isZeroInit))
$(P Takes one argument which must be a type. If the type's
$(DDSUBLINK spec/property, init, default initializer) is all zero
bits then `true` is returned, otherwise `false`.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
struct S1 { int x; }
struct S2 { int x = -1; }
static assert(__traits(isZeroInit, S1));
static assert(!__traits(isZeroInit, S2));
void test()
{
int x = 3;
static assert(__traits(isZeroInit, typeof(x)));
}
// `isZeroInit` will always return true for a class C
// because `C.init` is null reference.
class C { int x = -1; }
static assert(__traits(isZeroInit, C));
---
)
$(H2 $(GNAME isReturnOnStack))
$(P
Takes one argument which must either be a function symbol, function literal,
a delegate, or a function pointer.
It returns a `bool` which is `true` if the return value of the function is
returned on the stack via a pointer to it passed as a hidden extra
parameter to the function.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
struct S { int[20] a; }
int test1();
S test2();
static assert(__traits(isReturnOnStack, test1) == false);
static assert(__traits(isReturnOnStack, test2) == true);
---
)
$(IMPLEMENTATION_DEFINED
This is determined by the function ABI calling convention in use,
which is often complex.
)
$(BEST_PRACTICE This has applications in:
$(OL
$(LI Returning values in registers is often faster, so this can be used as
a check on a hot function to ensure it is using the fastest method.)
$(LI When using inline assembly to correctly call a function.)
$(LI Testing that the compiler does this correctly is normally hackish and awkward,
this enables efficient, direct, and simple testing.)
))
$(H2 $(GNAME hasMember))
$(P The first argument is a type that has members, or
is an expression of a type that has members.
The second argument is a string.
If the string is a valid property of the type,
$(D true) is returned, otherwise $(D false).
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S
{
int m;
import std.stdio; // imports write
}
void main()
{
S s;
writeln(__traits(hasMember, S, "m")); // true
writeln(__traits(hasMember, s, "m")); // true
writeln(__traits(hasMember, S, "y")); // false
writeln(__traits(hasMember, S, "write")); // true
writeln(__traits(hasMember, int, "sizeof")); // true
}
---
)
$(H2 $(GNAME identifier))
$(P Takes one argument, a symbol. Returns the identifier
for that symbol as a string literal.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
int var = 123;
pragma(msg, typeof(var)); // int
pragma(msg, typeof(__traits(identifier, var))); // string
writeln(var); // 123
writeln(__traits(identifier, var)); // "var"
---
)
$(H2 $(GNAME getAliasThis))
$(P Takes one argument, a type. If the type has `alias this` declarations,
returns a sequence of the names (as `string`s) of the members used in
those declarations. Otherwise returns an empty sequence.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
alias AliasSeq(T...) = T;
struct S1
{
string var;
alias var this;
}
static assert(__traits(getAliasThis, S1) == AliasSeq!("var"));
static assert(__traits(getAliasThis, int).length == 0);
pragma(msg, __traits(getAliasThis, S1));
pragma(msg, __traits(getAliasThis, int));
---
)
Prints:
$(CONSOLE
tuple("var")
tuple()
)
$(SECTION2 $(GNAME getAttributes),
$(P
Takes one argument, a symbol. Returns a tuple of all attached user-defined attributes.
If no UDAs exist it will return an empty tuple.
)
$(P
For more information, see: $(DDSUBLINK spec/attribute, uda, User-Defined Attributes)
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
@(3) int a;
@("string", 7) int b;
enum Foo;
@Foo int c;
pragma(msg, __traits(getAttributes, a));
pragma(msg, __traits(getAttributes, b));
pragma(msg, __traits(getAttributes, c));
---
)
Prints:
$(CONSOLE
tuple(3)
tuple("string", 7)
tuple((Foo))
)
)
$(SECTION2 $(GNAME getFunctionVariadicStyle),
$(P
Takes one argument which must either be a function symbol, or a type
that is a function, delegate or a function pointer.
It returns a string identifying the kind of
$(LINK2 function.html#variadic, variadic arguments) that are supported.
)
$(TABLE2 getFunctionVariadicStyle,
$(THEAD result, kind, access, example)
$(TROW $(D "none"), not a variadic function, $(NBSP), $(D void foo();))
$(TROW $(D "argptr"), D style variadic function, $(D _argptr) and $(D _arguments), $(D void bar(...)))
$(TROW $(D "stdarg"), C style variadic function, $(LINK2 $(ROOT_DIR)phobos/core_stdc_stdarg.html, $(D core.stdc.stdarg)), $(D extern (C) void abc(int, ...)))
$(TROW $(D "typesafe"), typesafe variadic function, array on stack, $(D void def(int[] ...)))
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import core.stdc.stdarg;
void novar() {}
extern(C) void cstyle(int, ...) {}
extern(C++) void cppstyle(int, ...) {}
void dstyle(...) {}
void typesafe(int[]...) {}
static assert(__traits(getFunctionVariadicStyle, novar) == "none");
static assert(__traits(getFunctionVariadicStyle, cstyle) == "stdarg");
static assert(__traits(getFunctionVariadicStyle, cppstyle) == "stdarg");
static assert(__traits(getFunctionVariadicStyle, dstyle) == "argptr");
static assert(__traits(getFunctionVariadicStyle, typesafe) == "typesafe");
static assert(__traits(getFunctionVariadicStyle, (int[] a...) {}) == "typesafe");
static assert(__traits(getFunctionVariadicStyle, typeof(cstyle)) == "stdarg");
---
)
)
$(SECTION2 $(GNAME getFunctionAttributes),
$(P
Takes one argument which must either be a function symbol, function literal,
or a function pointer. It returns a string tuple of all the attributes of
that function $(B excluding) any user-defined attributes (UDAs can be
retrieved with the $(RELATIVE_LINK2 get-attributes, getAttributes) trait).
If no attributes exist it will return an empty tuple.
)
$(B Note:) The order of the attributes in the returned tuple is
implementation-defined and should not be relied upon.
$(P
A list of currently supported attributes are:)
$(UL $(LI $(D pure), $(D nothrow), $(D @nogc), $(D @property), $(D @system), $(D @trusted), $(D @safe), and $(D ref)))
$(B Note:) $(D ref) is a function attribute even though it applies to the return type.
$(P
Additionally the following attributes are only valid for non-static member functions:)
$(UL $(LI $(D const), $(D immutable), $(D inout), $(D shared)))
For example:
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
int sum(int x, int y) pure nothrow { return x + y; }
pragma(msg, __traits(getFunctionAttributes, sum));
struct S
{
void test() const @system { }
}
pragma(msg, __traits(getFunctionAttributes, S.test));
void main(){}
---
)
Prints:
$(CONSOLE
tuple("pure", "nothrow", "@system")
tuple("const", "@system")
)
$(P Note that some attributes can be inferred. For example:)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
pragma(msg, __traits(getFunctionAttributes, (int x) @trusted { return x * 2; }));
void main(){}
---
)
Prints:
$(CONSOLE
tuple("pure", "nothrow", "@nogc", "@trusted")
)
)
)
$(H2 $(GNAME getLinkage))
$(P Takes one argument, which is a declaration symbol, or the type of a function, delegate,
pointer to function, struct, class, or interface.
Returns a string representing the $(LINK2 attribute.html#LinkageAttribute, LinkageAttribute)
of the declaration.
The string is one of:
)
$(UL
$(LI $(D "D"))
$(LI $(D "C"))
$(LI $(D "C++"))
$(LI $(D "Windows"))
$(LI $(D "Objective-C"))
$(LI $(D "System"))
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
extern (C) int fooc();
alias aliasc = fooc;
static assert(__traits(getLinkage, fooc) == "C");
static assert(__traits(getLinkage, aliasc) == "C");
extern (C++) struct FooCPPStruct {}
extern (C++) class FooCPPClass {}
extern (C++) interface FooCPPInterface {}
static assert(__traits(getLinkage, FooCPPStruct) == "C++");
static assert(__traits(getLinkage, FooCPPClass) == "C++");
static assert(__traits(getLinkage, FooCPPInterface) == "C++");
---
)
$(H2 $(GNAME getMember))
$(P Takes two arguments, the second must be a string.
The result is an expression formed from the first
argument, followed by a $(SINGLEQUOTE .), followed by the second
argument as an identifier.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S
{
int mx;
static int my;
}
void main()
{
S s;
__traits(getMember, s, "mx") = 1; // same as s.mx=1;
writeln(__traits(getMember, s, "m" ~ "x")); // 1
// __traits(getMember, S, "mx") = 1; // error, no this for S.mx
__traits(getMember, S, "my") = 2; // ok
}
---
)
$(H2 $(GNAME getOverloads))
$(P The first argument is an aggregate (e.g. struct/class/module).
The second argument is a `string` that matches the name of
the member(s) to return.
The third argument is a `bool`, and is optional. If `true`, the
result will also include template overloads.
The result is a tuple of all the overloads of the supplied name.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
class D
{
this() { }
~this() { }
void foo() { }
int foo(int) { return 2; }
void bar(T)() { return T.init; }
class bar(int n) {}
}
void main()
{
D d = new D();
foreach (t; __traits(getOverloads, D, "foo"))
writeln(typeid(typeof(t)));
alias b = typeof(__traits(getOverloads, D, "foo"));
foreach (t; b)
writeln(typeid(t));
auto i = __traits(getOverloads, d, "foo")[1](1);
writeln(i);
foreach (t; __traits(getOverloads, D, "bar", true))
writeln(t.stringof);
}
---
)
Prints:
$(CONSOLE
void()
int()
void()
int()
2
bar(T)()
bar(int n)
)
$(H2 $(GNAME getParameterStorageClasses))
$(P
Takes two arguments.
The first must either be a function symbol, or a type
that is a function, delegate or a function pointer.
The second is an integer identifying which parameter, where the first parameter is
0.
It returns a tuple of strings representing the storage classes of that parameter.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
ref int foo(return ref const int* p, scope int* a, out int b, lazy int c);
static assert(__traits(getParameterStorageClasses, foo, 0)[0] == "return");
static assert(__traits(getParameterStorageClasses, foo, 0)[1] == "ref");
static assert(__traits(getParameterStorageClasses, foo, 1)[0] == "scope");
static assert(__traits(getParameterStorageClasses, foo, 2)[0] == "out");
static assert(__traits(getParameterStorageClasses, typeof(&foo), 3)[0] == "lazy");
---
)
$(H2 $(GNAME getPointerBitmap))
$(P The argument is a type.
The result is an array of $(D size_t) describing the memory used by an instance of the given type.
)
$(P The first element of the array is the size of the type (for classes it is
the $(GLINK classInstanceSize)).)
$(P The following elements describe the locations of GC managed pointers within the
memory occupied by an instance of the type.
For type T, there are $(D T.sizeof / size_t.sizeof) possible pointers represented
by the bits of the array values.)
$(P This array can be used by a precise GC to avoid false pointers.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
void main()
{
static class C
{
// implicit virtual function table pointer not marked
// implicit monitor field not marked, usually managed manually
C next;
size_t sz;
void* p;
void function () fn; // not a GC managed pointer
}
static struct S
{
size_t val1;
void* p;
C c;
byte[] arr; // { length, ptr }
void delegate () dg; // { context, func }
}
static assert (__traits(getPointerBitmap, C) == [6*size_t.sizeof, 0b010100]);
static assert (__traits(getPointerBitmap, S) == [7*size_t.sizeof, 0b0110110]);
}
---
)
$(H2 $(GNAME getProtection))
$(P The argument is a symbol.
The result is a string giving its protection level: "public", "private", "protected", "export", or "package".
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
class D
{
export void foo() { }
public int bar;
}
void main()
{
D d = new D();
auto i = __traits(getProtection, d.foo);
writeln(i);
auto j = __traits(getProtection, d.bar);
writeln(j);
}
---
)
Prints:
$(CONSOLE
export
public
)
$(H2 $(GNAME getTargetInfo))
$(P Receives a string key as argument.
The result is an expression describing the requested target information.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
version (CppRuntime_Microsoft)
static assert(__traits(getTargetInfo, "cppRuntimeLibrary") == "libcmt");
---
)
$(P Keys are implementation defined, allowing relevant data for exotic targets.
A reliable subset exists which are always available:
)
$(UL
$(LI $(D "cppRuntimeLibrary") - The C++ runtime library affinity for this toolchain)
$(LI $(D "floatAbi") - Floating point ABI; may be $(D "hard"), $(D "soft"), or $(D "softfp"))
$(LI $(D "objectFormat") - Target object format)
)
$(H2 $(GNAME getVirtualFunctions))
$(P The same as $(GLINK getVirtualMethods), except that
final functions that do not override anything are included.
)
$(H2 $(GNAME getVirtualMethods))
$(P The first argument is a class type or an expression of
class type.
The second argument is a string that matches the name of
one of the functions of that class.
The result is a tuple of the virtual overloads of that function.
It does not include final functions that do not override anything.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
class D
{
this() { }
~this() { }
void foo() { }
int foo(int) { return 2; }
}
void main()
{
D d = new D();
foreach (t; __traits(getVirtualMethods, D, "foo"))
writeln(typeid(typeof(t)));
alias b = typeof(__traits(getVirtualMethods, D, "foo"));
foreach (t; b)
writeln(typeid(t));
auto i = __traits(getVirtualMethods, d, "foo")[1](1);
writeln(i);
}
---
)
Prints:
$(CONSOLE
void()
int()
void()
int()
2
)
$(H2 $(GNAME getUnitTests))
$(P
Takes one argument, a symbol of an aggregate (e.g. struct/class/module).
The result is a tuple of all the unit test functions of that aggregate.
The functions returned are like normal nested static functions,
$(DDSUBLINK glossary, ctfe, CTFE) will work and
$(DDSUBLINK spec/attribute, uda, UDAs) will be accessible.
)
$(H3 Note:)
$(P
The -unittest flag needs to be passed to the compiler. If the flag
is not passed $(CODE __traits(getUnitTests)) will always return an
empty tuple.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
module foo;
import core.runtime;
import std.stdio;
struct name { string name; }
class Foo
{
unittest
{
writeln("foo.Foo.unittest");
}
}
@name("foo") unittest
{
writeln("foo.unittest");
}
template Tuple (T...)
{
alias Tuple = T;
}
shared static this()
{
// Override the default unit test runner to do nothing. After that, "main" will
// be called.
Runtime.moduleUnitTester = { return true; };
}
void main()
{
writeln("start main");
alias tests = Tuple!(__traits(getUnitTests, foo));
static assert(tests.length == 1);
alias attributes = Tuple!(__traits(getAttributes, tests[0]));
static assert(attributes.length == 1);
foreach (test; tests)
test();
foreach (test; __traits(getUnitTests, Foo))
test();
}
---
)
$(P By default, the above will print:)
$(CONSOLE
start main
foo.unittest
foo.Foo.unittest
)
$(H2 $(GNAME parent))
$(P Takes a single argument which must evaluate to a symbol.
The result is the symbol that is the parent of it.
)
$(H2 $(GNAME classInstanceSize))
$(P Takes a single argument, which must evaluate to either
a class type or an expression of class type.
The result
is of type $(CODE size_t), and the value is the number of
bytes in the runtime instance of the class type.
It is based on the static type of a class, not the
polymorphic type.
)
$(H2 $(GNAME getVirtualIndex))
$(P Takes a single argument which must evaluate to a function.
The result is a $(CODE ptrdiff_t) containing the index
of that function within the vtable of the parent type.
If the function passed in is final and does not override
a virtual function, $(D -1) is returned instead.
)
$(H2 $(GNAME allMembers))
$(P Takes a single argument, which must evaluate to either
a type or an expression of type.
A tuple of string literals is returned, each of which
is the name of a member of that type combined with all
of the members of the base classes (if the type is a class).
No name is repeated.
Builtin properties are not included.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
class D
{
this() { }
~this() { }
void foo() { }
int foo(int) { return 0; }
}
void main()
{
auto b = [ __traits(allMembers, D) ];
writeln(b);
// ["__ctor", "__dtor", "foo", "toString", "toHash", "opCmp", "opEquals",
// "Monitor", "factory"]
}
---
)
$(P The order in which the strings appear in the result
is not defined.)
$(H2 $(GNAME derivedMembers))
$(P Takes a single argument, which must evaluate to either
a type or an expression of type.
A tuple of string literals is returned, each of which
is the name of a member of that type.
No name is repeated.
Base class member names are not included.
Builtin properties are not included.
)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
class D
{
this() { }
~this() { }
void foo() { }
int foo(int) { return 0; }
}
void main()
{
auto a = [__traits(derivedMembers, D)];
writeln(a); // ["__ctor", "__dtor", "foo"]
}
---
)
$(P The order in which the strings appear in the result
is not defined.)
$(H2 $(GNAME isSame))
$(P Takes two arguments and returns bool $(D true) if they
are the same symbol, $(D false) if not.)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S { }
int foo();
int bar();
void main()
{
writeln(__traits(isSame, foo, foo)); // true
writeln(__traits(isSame, foo, bar)); // false
writeln(__traits(isSame, foo, S)); // false
writeln(__traits(isSame, S, S)); // true
writeln(__traits(isSame, std, S)); // false
writeln(__traits(isSame, std, std)); // true
}
---
)
$(P If the two arguments are expressions made up of literals
or enums that evaluate to the same value, true is returned.)
$(P If the two arguments are both lambda functions (or aliases
to lambda functions), then they are compared for equality. For
the comparison to be computed correctly, the following conditions
must be met for both lambda functions:)
$(OL
$(LI The lambda function arguments must not have a template
instantiation as an explicit argument type. Any other argument
types (basic, user-defined, template) are supported.)
$(LI The lambda function body must contain a single expression
(no return statement) which contains only numeric values,
manifest constants, enum values, function arguments and function
calls. If the expression contains local variables or return
statements, the function is considered incomparable.)
)
$(P If these constraints aren't fulfilled, the function is considered
incomparable and `isSame` returns $(D false).)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
int f() { return 2; }
void test(alias pred)()
{
// f() from main is a different function from top-level f()
static assert(!__traits(isSame, (int a) => a + f(), pred));
}
void main()
{
static assert(__traits(isSame, (a, b) => a + b, (c, d) => c + d));
static assert(__traits(isSame, a => ++a, b => ++b));
static assert(!__traits(isSame, (int a, int b) => a + b, (a, b) => a + b));
static assert(__traits(isSame, (a, b) => a + b + 10, (c, d) => c + d + 10));
// lambdas accessing local variables are considered incomparable
int b;
static assert(!__traits(isSame, a => a + b, a => a + b));
// lambdas calling other functions are comparable
int f() { return 3;}
static assert(__traits(isSame, a => a + f(), a => a + f()));
test!((int a) => a + f())();
class A
{
int a;
this(int a)
{
this.a = a;
}
}
class B
{
int a;
this(int a)
{
this.a = a;
}
}
static assert(__traits(isSame, (A a) => ++a.a, (A b) => ++b.a));
// lambdas with different data types are considered incomparable,
// even if the memory layout is the same
static assert(!__traits(isSame, (A a) => ++a.a, (B a) => ++a.a));
}
---
)
$(H2 $(GNAME compiles))
$(P Returns a bool $(D true) if all of the arguments
compile (are semantically correct).
The arguments can be symbols, types, or expressions that
are syntactically correct.
The arguments cannot be statements or declarations.
)
$(P If there are no arguments, the result is $(D false).)
$(SPEC_RUNNABLE_EXAMPLE_COMPILE
---
import std.stdio;
struct S
{
static int s1;
int s2;
}
int foo();
int bar();
void main()
{
writeln(__traits(compiles)); // false
writeln(__traits(compiles, foo)); // true
writeln(__traits(compiles, foo + 1)); // true
writeln(__traits(compiles, &foo + 1)); // false
writeln(__traits(compiles, typeof(1))); // true
writeln(__traits(compiles, S.s1)); // true
writeln(__traits(compiles, S.s3)); // false
writeln(__traits(compiles, 1,2,3,int,long,std)); // true
writeln(__traits(compiles, 3[1])); // false
writeln(__traits(compiles, 1,2,3,int,long,3[1])); // false
}
---
)
$(P This is useful for:)
$(UL
$(LI Giving better error messages inside generic code than
the sometimes hard to follow compiler ones.)
$(LI Doing a finer grained specialization than template
partial specialization allows for.)
)
$(SPEC_SUBNAV_PREV_NEXT version, Conditional Compilation, errors, Error Handling)
)
Macros:
CHAPTER=25
TITLE=Traits