D-Scanner/std/lexer.d

1059 lines
34 KiB
D

// Written in the D programming language
/**
* $(H2 Summary)
* This module contains a range-based compile-time _lexer generator.
*
* $(H2 Overview)
* The _lexer generator consists of a template mixin, $(LREF Lexer), along with
* several helper templates for generating such things as token identifiers.
*
* To write a _lexer using this API:
* $(OL
* $(LI Create the string array costants for your language.
* $(UL
* $(LI $(LINK2 #.staticTokens, staticTokens))
* $(LI $(LINK2 #.dynamicTokens, dynamicTokens))
* $(LI $(LINK2 #.possibleDefaultTokens, possibleDefaultTokens))
* $(LI $(LINK2 #.tokenHandlers, tokenHandlers))
* ))
* $(LI Create aliases for the various token and token identifier types
* specific to your language.
* $(UL
* $(LI $(LREF TokenIdType))
* $(LI $(LREF tokenStringRepresentation))
* $(LI $(LREF TokenStructure))
* $(LI $(LREF TokenId))
* ))
* $(LI Create a struct that mixes in the Lexer template mixin and
* implements the necessary functions.
* $(UL
* $(LI $(LREF Lexer))
* ))
* )
* Examples:
* $(UL
* $(LI A _lexer for D is available $(LINK2 https://github.com/Hackerpilot/Dscanner/blob/master/std/d/lexer.d, here).)
* $(LI A _lexer for Lua is available $(LINK2 https://github.com/Hackerpilot/lexer-demo/blob/master/lualexer.d, here).)
* $(LI A _lexer for JSON is available $(LINK2 https://github.com/Hackerpilot/lexer-demo/blob/master/jsonlexer.d, here).)
* )
* $(DDOC_ANCHOR TemplateParameters) $(H2 Template Parameter Definitions)
* $(DL
* $(DT $(DDOC_ANCHOR defaultTokenFunction) $(B defaultTokenFunction)
* $(DD A function that serves as the default token lexing function. For most
* languages this will be the identifier lexing function.))
* $(DT $(DDOC_ANCHOR tokenSeparatingFunction) $(B tokenSeparatingFunction))
* $(DD A function that is able to determine if an identifier/keyword has come
* to an end. This function must return bool and take a single size_t
* argument representing the number of bytes to skip over before looking for
* a separating character.)
* $(DT $(DDOC_ANCHOR staticTokens) $(B staticTokens))
* $(DD A listing of the tokens whose exact value never changes and which cannot
* possibly be a token handled by the default token lexing function. The
* most common example of this kind of token is an operator such as
* $(D_STRING "*"), or $(D_STRING "-") in a programming language.)
* $(DT $(DDOC_ANCHOR dynamicTokens) $(B dynamicTokens))
* $(DD A listing of tokens whose value is variable, such as whitespace,
* identifiers, number literals, and string literals.)
* $(DT $(DDOC_ANCHOR possibleDefaultTokens) $(B possibleDefaultTokens))
* $(DD A listing of tokens that could posibly be one of the tokens handled by
* the default token handling function. An common example of this is
* a keyword such as $(D_STRING "for"), which looks like the beginning of
* the identifier $(D_STRING "fortunate"). $(B tokenSeparatingFunction) is
* called to determine if the character after the $(D_STRING 'r') separates
* the identifier, indicating that the token is $(D_STRING "for"), or if
* lexing should be turned over to the $(B defaultTokenFunction).)
* $(DT $(DDOC_ANCHOR tokenHandlers) $(B tokenHandlers))
* $(DD A mapping of prefixes to custom token handling function names. The
* generated _lexer will search for the even-index elements of this array,
* and then call the function whose name is the element immedately after the
* even-indexed element. This is used for lexing complex tokens whose prefix
* is fixed.)
* )
*
* Here are some example constants for a simple calculator _lexer:
* ---
* // There are a near infinite number of valid number literals, so numbers are
* // dynamic tokens.
* enum string[] dynamicTokens = ["numberLiteral", "whitespace"];
*
* // The operators are always the same, and cannot start a numberLiteral, so
* // they are staticTokens
* enum string[] staticTokens = ["-", "+", "*", "/"];
*
* // In this simple example there are no keywords or other tokens that could
* // look like dynamic tokens, so this is blank.
* enum string[] possibleDefaultTokens = [];
*
* // If any whitespace character or digit is encountered, pass lexing over to
* // our custom handler functions. These will be demonstrated in an example
* // later on.
* enum string[] tokenHandlers = [
* "0", "lexNumber",
* "1", "lexNumber",
* "2", "lexNumber",
* "3", "lexNumber",
* "4", "lexNumber",
* "5", "lexNumber",
* "6", "lexNumber",
* "7", "lexNumber",
* "8", "lexNumber",
* "9", "lexNumber",
* " ", "lexWhitespace",
* "\n", "lexWhitespace",
* "\t", "lexWhitespace",
* "\r", "lexWhitespace"
* ];
* ---
*
* Copyright: Brian Schott 2013
* License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt Boost, License 1.0)
* Authors: Brian Schott, with ideas shamelessly stolen from Andrei Alexandrescu
* Source: $(PHOBOSSRC std/_lexer.d)
*/
module std.lexer;
/**
* Template for determining the type used for a token type. Selects the smallest
* unsigned integral type that is able to hold the value
* staticTokens.length + dynamicTokens.length + possibleDefaultTokens.length.
* For example if there are 20 static tokens, 30 dynamic tokens,
* and 10 possible default tokens, this template will alias itself to ubyte,
* as 20 + 30 + 10 < $(D_KEYWORD ubyte).max.
* Examples:
* ---
* // In our calculator example this means that IdType is an alias for ubyte.
* alias IdType = TokenIdType!(staticTokens, dynamicTokens, possibleDefaultTokens);
* ---
*/
template TokenIdType(alias staticTokens, alias dynamicTokens,
alias possibleDefaultTokens)
{
immutable tokenCount = staticTokens.length + dynamicTokens.length
+ possibleDefaultTokens.length + 1;
static if (tokenCount <= ubyte.max)
alias TokenIdType = ubyte;
else static if (tokenCount <= ushort.max)
alias TokenIdType = ushort;
else static if (tokenCount <= uint.max)
alias TokenIdType = uint;
else
static assert (false, "The number of tokens must be less than uint.max");
}
/**
* Looks up the string representation of the given token type. This is the
* opposite of the function of the TokenId template.
* Params: type = the token type identifier
* Examples:
* ---
* alias str = tokenStringRepresentation(IdType, staticTokens, dynamicTokens, possibleDefaultTokens);
* assert (str(tok!"*") == "*");
* ---
* See_also: $(LREF TokenId)
*/
string tokenStringRepresentation(IdType, alias staticTokens, alias dynamicTokens,
alias possibleDefaultTokens)(IdType type) @property
{
enum tokens = staticTokens ~ dynamicTokens ~ possibleDefaultTokens;
if (type == 0)
return "!ERROR!";
else if (type < tokens.length + 1)
return tokens[type - 1];
else
return null;
}
unittest
{
/// Fix https://github.com/Hackerpilot/Dscanner/issues/96
alias IdType = TokenIdType!(["foo"], ["bar"], ["doo"]);
enum tok(string token) = TokenId!(IdType, ["foo"], ["bar"], ["doo"], token);
alias str = tokenStringRepresentation!(IdType, ["foo"], ["bar"], ["doo"]);
static assert(str(tok!"foo") == "foo");
static assert(str(tok!"bar") == "bar");
static assert(str(tok!"doo") == "doo");
}
/**
* Generates the token type identifier for the given symbol. There are two
* special cases:
* $(UL
* $(LI If symbol is $(D_STRING ""), then the token identifier will be 0)
* $(LI If symbol is $(D_STRING "\0"), then the token identifier will be the maximum
* valid token type identifier)
* )
* In all cases this template will alias itself to a constant of type IdType.
* This template will fail at compile time if $(D_PARAM symbol) is not one of
* the staticTokens, dynamicTokens, or possibleDefaultTokens.
* Examples:
* ---
* template tok(string symbol)
* {
* alias tok = TokenId!(IdType, staticTokens, dynamicTokens,
* possibleDefaultTokens, symbol);
* }
* // num and plus are of type ubyte.
* IdType plus = tok!"+";
* IdType num = tok!"numberLiteral";
* ---
*/
template TokenId(IdType, alias staticTokens, alias dynamicTokens,
alias possibleDefaultTokens, string symbol)
{
enum tokens = staticTokens ~ dynamicTokens ~ possibleDefaultTokens;
import std.algorithm;
static if (symbol == "")
{
enum id = 0;
alias TokenId = id;
}
else static if (symbol == "\0")
{
enum id = 1 + tokens.length;
alias TokenId = id;
}
else
{
enum i = tokens.countUntil(symbol);
static if (i != -1)
{
enum id = i + 1;
static assert (id >= 0 && id < IdType.max, "Invalid token: " ~ symbol);
alias TokenId = id;
}
else
static assert (0, "Invalid token: " ~ symbol);
}
}
/**
* The token that is returned by the lexer.
* Params:
* IdType = The D type of the "type" token type field.
* extraFields = A string containing D code for any extra fields that should
* be included in the token structure body. This string is passed
* directly to a mixin statement.
* Examples:
* ---
* // No extra struct fields are desired in this example, so leave it blank.
* alias Token = TokenStructure!(IdType, "");
* Token minusToken = Token(tok!"-");
* ---
*/
struct TokenStructure(IdType, string extraFields = "")
{
public:
bool opEquals(ref const typeof(this) other) const pure nothrow @safe
{
return this.type == other.type && this.text == other.text;
}
/**
* Returs: true if the token has the given type, false otherwise.
*/
bool opEquals(IdType type) const pure nothrow @safe
{
return this.type == type;
}
/**
* Constructs a token from a token type.
* Params: type = the token type
*/
this(IdType type)
{
this.type = type;
}
/**
* Constructs a token.
* Params:
* type = the token type
* text = the text of the token, which may be null
* line = the line number at which this token occurs
* column = the column number at which this token occurs
* index = the byte offset from the beginning of the input at which this
* token occurs
*/
this(IdType type, string text, size_t line, size_t column, size_t index)
{
this.text = text;
this.line = line;
this.column = column;
this.type = type;
this.index = index;
}
/**
* The _text of the token.
*/
string text;
/**
* The _line number at which this token occurs.
*/
size_t line;
/**
* The _column number at which this token occurs. This is measured in bytes
* and may not be correct when tab characters are involved.
*/
size_t column;
/**
* The byte offset from the beginning of the input at which this token
* occurs.
*/
size_t index;
/**
* The token type.
*/
IdType type;
mixin (extraFields);
}
/**
* The implementation of the _lexer is contained within this mixin template.
* To use it, this template should be mixed in to a struct that represents the
* _lexer for your language. This struct should implement the following methods:
* $(UL
* $(LI popFront, which should call this mixin's _popFront() and
* additionally perform any token filtering or shuffling you deem
* necessary. For example, you can implement popFront to skip comment or
* tokens.)
* $(LI A function that serves as the default token lexing function. For
* most languages this will be the identifier lexing function. This
* should then be passed to the $(LREF Lexer) template mixin as the
* $(LINK2 #.defaultTokenFunction defaultTokenFunction) template
* parameter).
* $(LI A function that is able to determine if an identifier/keyword has
* come to an end. This function must retorn $(D_KEYWORD bool) and take
* a single $(D_KEYWORD size_t) argument representing the number of
* bytes to skip over before looking for a separating character.)
* $(LI Any functions referred to in the tokenHandlers template paramater.
* These functions must be marked $(D_KEYWORD pure nothrow), take no
* arguments, and return a token)
* $(LI A constructor that initializes the range field as well as calls
* popFront() exactly once (to initialize the _front field).)
* )
* Params:
* Token = $(LREF TokenStructure)
* defaultTokenFunction = $(LINK2 #.defaultTokenFunction, defaultTokenFunction)
* tokenSeparatingFunction = $(LINK2 #.tokenSeparatingFunction, tokenSeparatingFunction)
* staticTokens = $(LINK2 #.staticTokens, staticTokens)
* dynamicTokens = $(LINK2 #.dynamicTokens, dynamicTokens)
* possibleDefaultTokens = $(LINK2 #.possibleDefaultTokens, possibleDefaultTokens)
* tokenHandlers = $(LINK2 #.tokenHandlers, tokenHandlers)
* Examples:
* ---
* struct CalculatorLexer
* {
* mixin Lexer!(IdType, Token, defaultTokenFunction, isSeparating,
* staticTokens, dynamicTokens, possibleDefaultTokens, tokenHandlers);
*
* this (ubyte[] bytes)
* {
* this.range = LexerRange(bytes);
* popFront();
* }
*
* void popFront() pure
* {
* _popFront();
* }
*
* Token lexNumber() pure nothrow @safe
* {
* // implementation goes here
* }
*
* Token lexWhitespace() pure nothrow @safe
* {
* // implementation goes here
* }
*
* Token defaultTokenFunction() pure nothrow @safe
* {
* // There is no default token in the example calculator language, so
* // this is always an error.
* range.popFront();
* return Token(tok!"");
* }
*
* bool isSeparating(size_t offset) pure nothrow @safe
* {
* // For this example language, always return true.
* return true;
* }
* }
* ---
*/
mixin template Lexer(Token, alias defaultTokenFunction,
alias tokenSeparatingFunction, alias staticTokens, alias dynamicTokens,
alias possibleDefaultTokens, alias tokenHandlers)
{
private alias _IDType = typeof(Token.type);
private enum _tok(string symbol) = TokenId!(_IDType, staticTokens, dynamicTokens, possibleDefaultTokens, symbol);
static assert (tokenHandlers.length % 2 == 0, "Each pseudo-token must"
~ " have a corresponding handler function name.");
static string generateMask(const ubyte[] arr)
{
import std.string;
ulong u;
for (size_t i = 0; i < arr.length && i < 8; i++)
{
u |= (cast(ulong) arr[i]) << (i * 8);
}
return format("0x%016x", u);
}
private static string generateByteMask(size_t l)
{
import std.string;
return format("0x%016x", ulong.max >> ((8 - l) * 8));
}
private static string generateCaseStatements()
{
import std.algorithm;
import std.conv;
import std.string;
import std.range;
string[] pseudoTokens = stupidToArray(tokenHandlers.stride(2));
string[] allTokens = stupidToArray(sort(staticTokens ~ possibleDefaultTokens ~ pseudoTokens).uniq);
string code;
for (size_t i = 0; i < allTokens.length; i++)
{
if (allTokens[i].length == 0)
continue;
size_t j = i + 1;
while (j < allTokens.length && allTokens[i][0] == allTokens[j][0])
j++;
code ~= format("case 0x%02x:\n", cast(ubyte) allTokens[i][0]);
code ~= printCase(allTokens[i .. j], pseudoTokens);
i = j - 1;
}
return code;
}
private static string printCase(string[] tokens, string[] pseudoTokens)
{
import std.algorithm;
string[] t = tokens;
string[] sortedTokens = stupidToArray(sort!"a.length > b.length"(t));
import std.conv;
if (tokens.length == 1 && tokens[0].length == 1)
{
if (pseudoTokens.countUntil(tokens[0]) >= 0)
{
return " return "
~ tokenHandlers[tokenHandlers.countUntil(tokens[0]) + 1]
~ "();\n";
}
else if (staticTokens.countUntil(tokens[0]) >= 0)
{
return " range.popFront();\n"
~ " return Token(_tok!\"" ~ escape(tokens[0]) ~ "\", null, line, column, index);\n";
}
else if (pseudoTokens.countUntil(tokens[0]) >= 0)
{
return " return "
~ tokenHandlers[tokenHandlers.countUntil(tokens[0]) + 1]
~ "();\n";
}
}
string code;
foreach (i, token; sortedTokens)
{
immutable mask = generateMask(cast (const ubyte[]) token);
if (token.length >= 8)
code ~= " if (frontBytes == " ~ mask ~ ")\n";
else
code ~= " if ((frontBytes & " ~ generateByteMask(token.length) ~ ") == " ~ mask ~ ")\n";
code ~= " {\n";
if (pseudoTokens.countUntil(token) >= 0)
{
if (token.length <= 8)
{
code ~= " return "
~ tokenHandlers[tokenHandlers.countUntil(token) + 1]
~ "();\n";
}
else
{
code ~= " if (range.peek(" ~ text(token.length - 1) ~ ") == \"" ~ escape(token) ~"\")\n";
code ~= " return "
~ tokenHandlers[tokenHandlers.countUntil(token) + 1]
~ "();\n";
}
}
else if (staticTokens.countUntil(token) >= 0)
{
if (token.length <= 8)
{
code ~= " range.popFrontN(" ~ text(token.length) ~ ");\n";
code ~= " return Token(_tok!\"" ~ escape(token) ~ "\", null, line, column, index);\n";
}
else
{
code ~= " pragma(msg, \"long static tokens not supported\"); // " ~ escape(token) ~ "\n";
}
}
else
{
// possible default
if (token.length <= 8)
{
code ~= " if (tokenSeparatingFunction(" ~ text(token.length) ~ "))\n";
code ~= " {\n";
code ~= " range.popFrontN(" ~ text(token.length) ~ ");\n";
code ~= " return Token(_tok!\"" ~ escape(token) ~ "\", null, line, column, index);\n";
code ~= " }\n";
code ~= " else\n";
code ~= " goto default;\n";
}
else
{
code ~= " if (range.peek(" ~ text(token.length - 1) ~ ") == \"" ~ escape(token) ~"\" && isSeparating(" ~ text(token.length) ~ "))\n";
code ~= " {\n";
code ~= " range.popFrontN(" ~ text(token.length) ~ ");\n";
code ~= " return Token(_tok!\"" ~ escape(token) ~ "\", null, line, column, index);\n";
code ~= " }\n";
code ~= " else\n";
code ~= " goto default;\n";
}
}
code ~= " }\n";
}
code ~= " else\n";
code ~= " goto default;\n";
return code;
}
/**
* Implements the range primitive _front.
*/
ref const(Token) front() pure nothrow const @property
{
return _front;
}
/**
* Advances the lexer to the next token and stores the new current token in
* the _front variable.
*/
void _popFront() pure
{
_front = advance();
}
/**
* Implements the range primitive _empty.
*/
bool empty() pure const nothrow @property
{
return _front.type == _tok!"\0";
}
static string escape(string input)
{
string retVal;
foreach (ubyte c; cast(ubyte[]) input)
{
switch (c)
{
case '\\': retVal ~= `\\`; break;
case '"': retVal ~= `\"`; break;
case '\'': retVal ~= `\'`; break;
case '\t': retVal ~= `\t`; break;
case '\n': retVal ~= `\n`; break;
case '\r': retVal ~= `\r`; break;
default: retVal ~= c; break;
}
}
return retVal;
}
// This only exists because the real array() can't be called at compile-time
static string[] stupidToArray(R)(R range)
{
string[] retVal;
foreach (v; range)
retVal ~= v;
return retVal;
}
enum tokenSearch = generateCaseStatements();
static ulong getFront(const ubyte[] arr) pure nothrow @trusted
{
import std.stdio;
immutable importantBits = *(cast (ulong*) arr.ptr);
immutable filler = ulong.max >> ((8 - arr.length) * 8);
return importantBits & filler;
}
Token advance() pure
{
if (range.empty)
return Token(_tok!"\0");
immutable size_t index = range.index;
immutable size_t column = range.column;
immutable size_t line = range.line;
immutable ulong frontBytes = getFront(range.peek(7));
switch (frontBytes & 0x00000000_000000ff)
{
mixin(tokenSearch);
// pragma(msg, tokenSearch);
default:
return defaultTokenFunction();
}
}
/**
* The lexer input.
*/
LexerRange range;
/**
* The token that is currently at the front of the range.
*/
Token _front;
}
/**
* Range structure that wraps the _lexer's input.
*/
struct LexerRange
{
/**
* Params:
* bytes = the _lexer input
* index = the initial offset from the beginning of $(D_PARAM bytes)
* column = the initial _column number
* line = the initial _line number
*/
this(const(ubyte)[] bytes, size_t index = 0, size_t column = 1, size_t line = 1) pure nothrow @safe
{
this.bytes = bytes;
this.index = index;
this.column = column;
this.line = line;
}
/**
* Returns: a mark at the current position that can then be used with slice.
*/
size_t mark() const nothrow pure @safe
{
return index;
}
/**
* Sets the range to the given position.
* Params: m = the position to seek to
*/
void seek(size_t m) nothrow pure @safe
{
index = m;
}
/**
* Returs a slice of the input byte array between the given mark and the
* current position.
* Params m = the beginning index of the slice to return
*/
const(ubyte)[] slice(size_t m) const nothrow pure @safe
{
return bytes[m .. index];
}
/**
* Implements the range primitive _empty.
*/
bool empty() const nothrow pure @safe
{
return index >= bytes.length;
}
/**
* Implements the range primitive _front.
*/
ubyte front() const nothrow pure @safe
{
return bytes[index];
}
/**
* Returns: the current item as well as the items $(D_PARAM p) items ahead.
*/
const(ubyte)[] peek(size_t p) const nothrow pure @safe
{
return index + p + 1 > bytes.length
? bytes[index .. $]
: bytes[index .. index + p + 1];
}
/**
*
*/
ubyte peekAt(size_t offset) const nothrow pure @safe
{
return bytes[index + offset];
}
/**
* Returns: true if it is possible to peek $(D_PARAM p) bytes ahead.
*/
bool canPeek(size_t p) const nothrow pure @safe
{
return index + p < bytes.length;
}
/**
* Implements the range primitive _popFront.
*/
void popFront() pure nothrow @safe
{
index++;
column++;
}
/**
* Implements the algorithm _popFrontN more efficiently. This function does
* not detect or handle newlines.
*/
void popFrontN(size_t n) pure nothrow @safe
{
index += n;
column += n;
}
/**
* Increments the range's line number and resets the column counter.
*/
void incrementLine() pure nothrow @safe
{
column = 1;
line++;
}
/**
* The input _bytes.
*/
const(ubyte)[] bytes;
/**
* The range's current position.
*/
size_t index;
/**
* The current _column number.
*/
size_t column;
/**
* The current _line number.
*/
size_t line;
}
/**
* FREAKIN' MAAAGIC
*/
shared struct StringCache
{
import core.sync.mutex;
public:
@disable this();
/**
* Params: bucketCount = the initial number of buckets.
*/
this(size_t bucketCount)
{
buckets = cast(shared) new Node*[bucketCount];
allocating = false;
}
/**
* Caches a string.
* Params: str = the string to intern
* Returns: A key that can be used to retrieve the cached string
* Examples:
* ---
* StringCache cache;
* ubyte[] bytes = ['a', 'b', 'c'];
* size_t first = cache.cache(bytes);
* size_t second = cache.cache(bytes);
* assert (first == second);
* ---
*/
string intern(const(ubyte)[] str) pure nothrow @safe
{
if (str is null || str.length == 0)
return "";
immutable uint hash = hashBytes(str);
return intern(str, hash);
}
/**
* ditto
*/
string intern(string str) pure nothrow @trusted
{
return intern(cast(ubyte[]) str);
}
/**
* Caches a string as above, but uses the given hash code instead of
* calculating one itself. Use this alongside $(LREF hashStep)() can reduce the
* amount of work necessary when lexing dynamic tokens.
*/
string intern(const(ubyte)[] str, uint hash) pure nothrow @safe
in
{
assert (str.length > 0);
}
body
{
return _intern(str, hash);
}
/**
* Incremental hashing.
* Params:
* b = the byte to add to the hash
* h = the hash that has been calculated so far
* Returns: the new hash code for the string.
*/
static uint hashStep(ubyte b, uint h) pure nothrow @safe
{
return (h ^ sbox[b]) * 3;
}
/**
* The default bucket count for the string cache.
*/
static enum defaultBucketCount = 2048;
size_t allocated;
private:
string _intern(const(ubyte)[] bytes, uint hash) pure nothrow @trusted
{
if (bytes is null || bytes.length == 0)
return "";
import core.atomic;
import core.memory;
shared ubyte[] mem;
shared(Node*)* oldBucketRoot = &buckets[hash % buckets.length];
while (true)
{
bool found;
shared(Node)* s = find(bytes, hash, found);
shared(Node)* n = s is null ? null : s.next;
if (found)
return cast(string) s.str;
if (mem.length == 0)
{
atomicOp!"+="(allocated, bytes.length);
mem = allocate(bytes.length);
mem[] = bytes[];
}
shared(Node)* node = new shared Node(mem, hash, null);
if (s is null && cas(oldBucketRoot, *oldBucketRoot, node))
break;
node.next = s.next;
if (cas(&s.next, n, node))
break;
}
return cast(string) mem;
}
shared(Node)* find(const(ubyte)[] bytes, uint hash, ref bool found) pure nothrow @trusted
{
import std.algorithm;
immutable size_t index = hash % buckets.length;
shared(Node)* node = buckets[index];
while (node !is null)
{
if (node.hash >= hash && bytes.equal(cast(ubyte[]) node.str))
{
found = true;
return node;
}
node = node.next;
}
return node;
}
static uint hashBytes(const(ubyte)[] data) pure nothrow @trusted
in
{
assert (data !is null);
assert (data.length > 0);
}
body
{
uint hash = 0;
foreach (ubyte b; data)
{
hash ^= sbox[b];
hash *= 3;
}
return hash;
}
shared(ubyte[]) allocate(immutable size_t numBytes) pure nothrow @trusted
in
{
assert (numBytes != 0);
}
out (result)
{
assert (result.length == numBytes);
}
body
{
import core.atomic;
import core.memory;
if (numBytes > (blockSize / 4))
return cast(shared) (cast(ubyte*) GC.malloc(numBytes, GC.BlkAttr.NO_SCAN))[0 .. numBytes];
shared(Block)* r = rootBlock;
while (true)
{
while (r !is null)
{
while (true)
{
immutable size_t available = r.bytes.length;
immutable size_t oldUsed = atomicLoad(r.used);
immutable size_t newUsed = oldUsed + numBytes;
if (newUsed > available)
break;
if (cas(&r.used, oldUsed, newUsed))
return r.bytes[oldUsed .. newUsed];
}
r = r.next;
}
if (cas(&allocating, false, true))
{
shared(Block)* b = new shared Block(
cast(shared) (cast(ubyte*) GC.malloc(blockSize, GC.BlkAttr.NO_SCAN))[0 .. blockSize],
numBytes,
r);
atomicStore(rootBlock, b);
atomicStore(allocating, false);
r = rootBlock;
return b.bytes[0 .. numBytes];
}
}
assert (0);
}
static shared struct Node
{
ubyte[] str;
uint hash;
shared(Node)* next;
}
static shared struct Block
{
ubyte[] bytes;
size_t used;
shared(Block)* next;
}
static enum blockSize = 1024 * 16;
static immutable uint[] sbox = [
0xF53E1837, 0x5F14C86B, 0x9EE3964C, 0xFA796D53,
0x32223FC3, 0x4D82BC98, 0xA0C7FA62, 0x63E2C982,
0x24994A5B, 0x1ECE7BEE, 0x292B38EF, 0xD5CD4E56,
0x514F4303, 0x7BE12B83, 0x7192F195, 0x82DC7300,
0x084380B4, 0x480B55D3, 0x5F430471, 0x13F75991,
0x3F9CF22C, 0x2FE0907A, 0xFD8E1E69, 0x7B1D5DE8,
0xD575A85C, 0xAD01C50A, 0x7EE00737, 0x3CE981E8,
0x0E447EFA, 0x23089DD6, 0xB59F149F, 0x13600EC7,
0xE802C8E6, 0x670921E4, 0x7207EFF0, 0xE74761B0,
0x69035234, 0xBFA40F19, 0xF63651A0, 0x29E64C26,
0x1F98CCA7, 0xD957007E, 0xE71DDC75, 0x3E729595,
0x7580B7CC, 0xD7FAF60B, 0x92484323, 0xA44113EB,
0xE4CBDE08, 0x346827C9, 0x3CF32AFA, 0x0B29BCF1,
0x6E29F7DF, 0xB01E71CB, 0x3BFBC0D1, 0x62EDC5B8,
0xB7DE789A, 0xA4748EC9, 0xE17A4C4F, 0x67E5BD03,
0xF3B33D1A, 0x97D8D3E9, 0x09121BC0, 0x347B2D2C,
0x79A1913C, 0x504172DE, 0x7F1F8483, 0x13AC3CF6,
0x7A2094DB, 0xC778FA12, 0xADF7469F, 0x21786B7B,
0x71A445D0, 0xA8896C1B, 0x656F62FB, 0x83A059B3,
0x972DFE6E, 0x4122000C, 0x97D9DA19, 0x17D5947B,
0xB1AFFD0C, 0x6EF83B97, 0xAF7F780B, 0x4613138A,
0x7C3E73A6, 0xCF15E03D, 0x41576322, 0x672DF292,
0xB658588D, 0x33EBEFA9, 0x938CBF06, 0x06B67381,
0x07F192C6, 0x2BDA5855, 0x348EE0E8, 0x19DBB6E3,
0x3222184B, 0xB69D5DBA, 0x7E760B88, 0xAF4D8154,
0x007A51AD, 0x35112500, 0xC9CD2D7D, 0x4F4FB761,
0x694772E3, 0x694C8351, 0x4A7E3AF5, 0x67D65CE1,
0x9287DE92, 0x2518DB3C, 0x8CB4EC06, 0xD154D38F,
0xE19A26BB, 0x295EE439, 0xC50A1104, 0x2153C6A7,
0x82366656, 0x0713BC2F, 0x6462215A, 0x21D9BFCE,
0xBA8EACE6, 0xAE2DF4C1, 0x2A8D5E80, 0x3F7E52D1,
0x29359399, 0xFEA1D19C, 0x18879313, 0x455AFA81,
0xFADFE838, 0x62609838, 0xD1028839, 0x0736E92F,
0x3BCA22A3, 0x1485B08A, 0x2DA7900B, 0x852C156D,
0xE8F24803, 0x00078472, 0x13F0D332, 0x2ACFD0CF,
0x5F747F5C, 0x87BB1E2F, 0xA7EFCB63, 0x23F432F0,
0xE6CE7C5C, 0x1F954EF6, 0xB609C91B, 0x3B4571BF,
0xEED17DC0, 0xE556CDA0, 0xA7846A8D, 0xFF105F94,
0x52B7CCDE, 0x0E33E801, 0x664455EA, 0xF2C70414,
0x73E7B486, 0x8F830661, 0x8B59E826, 0xBB8AEDCA,
0xF3D70AB9, 0xD739F2B9, 0x4A04C34A, 0x88D0F089,
0xE02191A2, 0xD89D9C78, 0x192C2749, 0xFC43A78F,
0x0AAC88CB, 0x9438D42D, 0x9E280F7A, 0x36063802,
0x38E8D018, 0x1C42A9CB, 0x92AAFF6C, 0xA24820C5,
0x007F077F, 0xCE5BC543, 0x69668D58, 0x10D6FF74,
0xBE00F621, 0x21300BBE, 0x2E9E8F46, 0x5ACEA629,
0xFA1F86C7, 0x52F206B8, 0x3EDF1A75, 0x6DA8D843,
0xCF719928, 0x73E3891F, 0xB4B95DD6, 0xB2A42D27,
0xEDA20BBF, 0x1A58DBDF, 0xA449AD03, 0x6DDEF22B,
0x900531E6, 0x3D3BFF35, 0x5B24ABA2, 0x472B3E4C,
0x387F2D75, 0x4D8DBA36, 0x71CB5641, 0xE3473F3F,
0xF6CD4B7F, 0xBF7D1428, 0x344B64D0, 0xC5CDFCB6,
0xFE2E0182, 0x2C37A673, 0xDE4EB7A3, 0x63FDC933,
0x01DC4063, 0x611F3571, 0xD167BFAF, 0x4496596F,
0x3DEE0689, 0xD8704910, 0x7052A114, 0x068C9EC5,
0x75D0E766, 0x4D54CC20, 0xB44ECDE2, 0x4ABC653E,
0x2C550A21, 0x1A52C0DB, 0xCFED03D0, 0x119BAFE2,
0x876A6133, 0xBC232088, 0x435BA1B2, 0xAE99BBFA,
0xBB4F08E4, 0xA62B5F49, 0x1DA4B695, 0x336B84DE,
0xDC813D31, 0x00C134FB, 0x397A98E6, 0x151F0E64,
0xD9EB3E69, 0xD3C7DF60, 0xD2F2C336, 0x2DDD067B,
0xBD122835, 0xB0B3BD3A, 0xB0D54E46, 0x8641F1E4,
0xA0B38F96, 0x51D39199, 0x37A6AD75, 0xDF84EE41,
0x3C034CBA, 0xACDA62FC, 0x11923B8B, 0x45EF170A,
];
shared bool allocating;
shared(Node)*[] buckets;
shared(Block)* rootBlock;
}