D-Scanner/std/d/lexer.d

3445 lines
98 KiB
D
Executable File

// Written in the D programming language
/**
* This module contains a range-based _lexer for the D programming language.
*
* For performance reasons the _lexer contained in this module operates only on
* ASCII or UTF-8 encoded source code. If the use of other encodings is
* desired, the source code must be converted to UTF-8 before passing it to this
* _lexer.
*
* To use the _lexer, create a LexerConfig struct
* ---
* LexerConfig config;
* config.iterStyle = IterationStyle.everything;
* config.tokenStyle = IterationStyle.source;
* config.versionNumber = 2061;
* config.vendorString = "Lexer Example";
* ---
* Once you have configured the _lexer, call byToken$(LPAREN)$(RPAREN) on your
* source code, passing in the configuration.
* ---
* auto source = "import std.stdio;"c;
* auto tokens = byToken(source, config);
* ---
* The result of byToken$(LPAREN)$(RPAREN) is a forward range of tokens that can
* be used easily with the algorithms from std.algorithm or iterated over with
* $(D_KEYWORD foreach)
* ---
* assert (tokens.front.type == TokenType.import_);
* assert (tokens.front.value == "import");
* assert (tokens.front.line == 1);
* assert (tokens.front.startIndex == 0);
* ---
*
* Examples:
*
* Generate HTML markup of D code.
* ---
* module highlighter;
*
* import std.stdio;
* import std.array;
* import std.d.lexer;
*
* void writeSpan(string cssClass, string value)
* {
* stdout.write(`<span class="`, cssClass, `">`, value.replace("&", "&amp;").replace("<", "&lt;"), `</span>`);
* }
*
*
* // http://ethanschoonover.com/solarized
* void highlight(R)(R tokens)
* {
* stdout.writeln(q"[<!DOCTYPE html>
* <html>
* <head>
* <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>
* </head>
* <body>
* <style type="text/css">
* html { background-color: #fdf6e3; color: #002b36; }
* .kwrd { color: #b58900; font-weight: bold; }
* .com { color: #93a1a1; font-style: italic; }
* .num { color: #dc322f; font-weigth: bold; }
* .str { color: #2aa198; font-style: italic; }
* .op { color: #586e75; font-weight: bold; }
* .type { color: #268bd2; font-weight: bold; }
* .cons { color: #859900; font-weight: bold; }
* </style>
* <pre>]");
*
* foreach (Token t; tokens)
* {
* if (isType(t.type))
* writeSpan("type", t.value);
* else if (isKeyword(t.type))
* writeSpan("kwrd", t.value);
* else if (t.type == TokenType.comment)
* writeSpan("com", t.value);
* else if (isStringLiteral(t.type))
* writeSpan("str", t.value);
* else if (isNumberLiteral(t.type))
* writeSpan("num", t.value);
* else if (isOperator(t.type))
* writeSpan("op", t.value);
* else
* stdout.write(t.value.replace("<", "&lt;"));
* }
* stdout.writeln("</pre>\n</body></html>");
* }
*
* void main(string[] args)
* {
* LexerConfig config;
* config.tokenStyle = TokenStyle.source;
* config.iterStyle = IterationStyle.everything;
* config.fileName = args[1];
* auto f = File(args[1]);
* (cast(ubyte[]) f.byLine(KeepTerminator.yes).join()).byToken(config).highlight();
* }
* ---
*
* Copyright: Brian Schott 2013
* License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt Boost, License 1.0)
* Authors: Brian Schott, Dmitry Olshansky
* Source: $(PHOBOSSRC std/d/_lexer.d)
*/
module std.d.lexer;
import std.algorithm;
import std.ascii;
import std.conv;
import std.datetime;
import std.d.entities;
import std.exception;
import std.range;
import std.regex;
import std.string;
import std.traits;
import std.utf;
version (unittest) import std.stdio;
public:
/**
* Represents a D token
*/
struct Token
{
/**
* The token type.
*/
TokenType type;
/**
* The representation of the token in the original source code.
*/
string value;
/**
* The number of the line the token is on.
*/
uint line;
/**
* The column number of the start of the token in the original source.
* $(LPAREN)measured in ASCII characters or UTF-8 code units$(RPAREN)
*/
uint column;
/**
* The index of the start of the token in the original source.
* $(LPAREN)measured in ASCII characters or UTF-8 code units$(RPAREN)
*/
size_t startIndex;
/**
* Check to see if the token is of the same type and has the same string
* representation as the given token.
*/
bool opEquals(ref const(Token) other) const
{
return other.type == type && other.value == value;
}
/**
* Checks to see if the token's string representation is equal to the given
* string.
*/
bool opEquals(string value) const { return this.value == value; }
/**
* Checks to see if the token is of the given type.
*/
bool opEquals(TokenType type) const { return this.type == type; }
/**
* Comparison operator orders tokens by start index.
*/
int opCmp(ref const(Token) other) const
{
if (startIndex < other.startIndex) return -1;
if (startIndex > other.startIndex) return 1;
return 0;
}
}
/**
* Configure the behavior of the byToken() function. These flags may be
* combined using a bitwise or.
*/
enum IterationStyle
{
/// Only include code, not whitespace or comments
codeOnly = 0,
/// Includes comments
includeComments = 0b0001,
/// Includes whitespace
includeWhitespace = 0b0010,
/// Include $(LINK2 http://dlang.org/lex.html#specialtokens, special tokens)
includeSpecialTokens = 0b0100,
/// Do not stop iteration on reaching the ___EOF__ token
ignoreEOF = 0b1000,
/// Include _everything
everything = includeComments | includeWhitespace | ignoreEOF
}
/**
* Configuration of the token lexing style. These flags may be combined with a
* bitwise or.
*/
enum TokenStyle : uint
{
/**
* Escape sequences will be replaced with their equivalent characters,
* enclosing quote characters will not be included. Special tokens such as
* __VENDOR__ will be replaced with their equivalent strings. Useful for
* creating a compiler or interpreter.
*/
default_ = 0b0000,
/**
* Escape sequences will not be processed. An escaped quote character will
* not terminate string lexing, but it will not be replaced with the quote
* character in the token.
*/
notEscaped = 0b0001,
/**
* Strings will include their opening and closing quote characters as well
* as any prefixes or suffixes $(LPAREN)e.g.: $(D_STRING "abcde"w) will
* include the $(D_STRING 'w') character as well as the opening and closing
* quotes$(RPAREN)
*/
includeQuotes = 0b0010,
/**
* Do not replace the value field of the special tokens such as ___DATE__
* with their string equivalents.
*/
doNotReplaceSpecial = 0b0100,
/**
* Strings will be read exactly as they appeared in the source, including
* their opening and closing quote characters. Useful for syntax
* highlighting.
*/
source = notEscaped | includeQuotes | doNotReplaceSpecial
}
/**
* Lexer configuration
*/
struct LexerConfig
{
/**
* Iteration style
*/
IterationStyle iterStyle = IterationStyle.codeOnly;
/**
* Token style
*/
TokenStyle tokenStyle = tokenStyle.default_;
/**
* Replacement for the ___VERSION__ token. Defaults to 100.
*/
uint versionNumber = 100;
/**
* Replacement for the ___VENDOR__ token. Defaults to $(D_STRING "std.d.lexer")
*/
string vendorString = "std.d.lexer";
/**
* Name used when creating error messages that are sent to errorFunc. This
* is needed because the lexer operates on any forwarad range of ASCII
* characters or UTF-8 code units and does not know what to call its input
* source. Defaults to the empty string.
*/
string fileName = "";
/**
* This function is called when an error is encountered during lexing.
* Parameters are file name, code uint index, line number, column,
* and error messsage.
*/
void delegate(string, size_t, uint, uint, string) errorFunc;
}
/**
* Iterate over the given range of characters by D tokens.
* Params:
* range = the range of characters
* config = the lexer configuration
* bufferSize = initial size of internal circular buffer
* Returns:
* an input range of tokens
*/
auto byToken(R)(R range, LexerConfig config, size_t bufferSize = 4*1024)
if (isForwardRange!(R) && !isRandomAccessRange!(R)
&& is(ElementType!R : const(ubyte)))
{
// 4K of circular buffer by default
auto r = TokenRange!(typeof(lexerSource(range)))
(lexerSource(range, bufferSize), config);
r.config = config;
r.lineNumber = 1;
r.popFront();
return r;
}
///ditto
auto byToken(R)(R range, LexerConfig config)
if (isRandomAccessRange!(R) && is(ElementType!R : const(ubyte)))
{
auto r = TokenRange!(typeof(lexerSource(range)))
(lexerSource(range), config);
r.config = config;
r.lineNumber = 1;
r.popFront();
return r;
}
/**
* Range of tokens. Use byToken$(LPAREN)$(RPAREN) to instantiate.
*/
struct TokenRange(LexSrc)
//if ( is(LexSrc : LexSource!(U...), U...)) //check for LexSource
{
/**
* Returns: true if the range is empty
*/
bool empty() const @property
{
return _empty;
}
/**
* Returns: the current token
*/
ref const(Token) front() const @property
{
assert(!empty, "trying to get front of an empty token range");
return current;
}
/**
* Returns the current token and then removes it from the range
*/
Token moveFront()
{
auto r = move(current);
popFront();
return r;
}
/**
* Removes the current token from the range
*/
void popFront()
{
advance();
}
private:
/*
* Advances the range to the next token
*/
void advance()
{
L_advance:
if (src.empty)
{
_empty = true;
return;
}
src.mark(); // mark a start of a lexing "frame"
current.line = lineNumber;
current.startIndex = src.index;
current.column = column;
current.value = null;
switch (src.front)
{
// handle sentenels for end of input
case 0:
case 0x1a:
// TODO: check config flags, it's cheap
// since this branch at most is taken once per file
_empty = true;
return;
mixin(generateCaseTrie(
"=", "TokenType.assign",
"@", "TokenType.at",
"&", "TokenType.bitAnd",
"&=", "TokenType.bitAndEqual",
"|", "TokenType.bitOr",
"|=", "TokenType.bitOrEqual",
"~=", "TokenType.catEqual",
":", "TokenType.colon",
",", "TokenType.comma",
"--", "TokenType.decrement",
"$", "TokenType.dollar",
"==", "TokenType.equal",
"=>", "TokenType.goesTo",
">", "TokenType.greater",
">=", "TokenType.greaterEqual",
"++", "TokenType.increment",
"{", "TokenType.lBrace",
"[", "TokenType.lBracket",
"<", "TokenType.less",
"<=", "TokenType.lessEqual",
"<>=", "TokenType.lessEqualGreater",
"<>", "TokenType.lessOrGreater",
"&&", "TokenType.logicAnd",
"||", "TokenType.logicOr",
"(", "TokenType.lParen",
"-", "TokenType.minus",
"-=", "TokenType.minusEqual",
"%", "TokenType.mod",
"%=", "TokenType.modEqual",
"*=", "TokenType.mulEqual",
"!", "TokenType.not",
"!=", "TokenType.notEqual",
"!>", "TokenType.notGreater",
"!>=", "TokenType.notGreaterEqual",
"!<", "TokenType.notLess",
"!<=", "TokenType.notLessEqual",
"!<>", "TokenType.notLessEqualGreater",
"+", "TokenType.plus",
"+=", "TokenType.plusEqual",
"^^", "TokenType.pow",
"^^=", "TokenType.powEqual",
"}", "TokenType.rBrace",
"]", "TokenType.rBracket",
")", "TokenType.rParen",
";", "TokenType.semicolon",
"<<", "TokenType.shiftLeft",
"<<=", "TokenType.shiftLeftEqual",
">>", "TokenType.shiftRight",
">>=", "TokenType.shiftRightEqual",
"*", "TokenType.star",
"?", "TokenType.ternary",
"~", "TokenType.tilde",
"!<>=", "TokenType.unordered",
">>>", "TokenType.unsignedShiftRight",
">>>=", "TokenType.unsignedShiftRightEqual",
"^", "TokenType.xor",
"^=", "TokenType.xorEqual",
));
case '/':
nextCharNonLF();
if (isEoF())
{
current.type = TokenType.div;
current.value = "/";
return;
}
switch (src.front)
{
case '/':
case '*':
case '+':
if (config.iterStyle & IterationStyle.includeComments)
return lexComment!true();
lexComment!false();
goto L_advance; // tail-recursion
case '=':
current.type = TokenType.divEqual;
current.value = "/=";
src.popFront();
return;
default:
current.type = TokenType.div;
current.value = "/";
return;
}
case '.':
if (!src.canPeek())
{
current.type = TokenType.dot;
current.value = tokenValue!(TokenType.dot);
return;
}
switch (src.peek())
{
case '0': .. case '9':
lexNumber();
return;
case '.':
nextCharNonLF();
nextCharNonLF();
current.type = TokenType.slice;
if (src.front == '.')
{
current.type = TokenType.vararg;
nextCharNonLF();
current.value = tokenValue!(TokenType.vararg);
}
else
current.value = tokenValue!(TokenType.slice);
return;
default:
nextCharNonLF();
current.type = TokenType.dot;
current.value = tokenValue!(TokenType.dot);
return;
}
case '0': .. case '9':
lexNumber();
return;
case '\'':
lexCharacterLiteral();
return;
case '"':
case '`':
lexString();
return;
case 'q':
nextCharNonLF();
if (isEoF())
goto default;
switch (src.front)
{
case '{':
lexTokenString();
return;
case '"':
lexDelimitedString();
return;
default:
break;
}
goto default;
case 'r':
nextCharNonLF();
if (isEoF())
goto default;
else if (src.front == '"')
{
lexString();
return;
}
else
goto default;
case 'x':
nextCharNonLF();
if (isEoF())
goto default;
else if (src.front == '"')
{
lexHexString();
return;
}
else
goto default;
case '#':
lexSpecialTokenSequence();
if(config.iterStyle & IterationStyle.includeSpecialTokens)
return;
goto L_advance; // tail-recursion
// "short" ASCII whites
case 0x20:
case 0x09: .. case 0x0d:
if (config.iterStyle & IterationStyle.includeWhitespace)
return lexWhitespace!true();
lexWhitespace!false();
goto L_advance; // tail-recursion
default:
if ((src.front & 0x80) && isLongWhite())
{
if (config.iterStyle & IterationStyle.includeWhitespace)
return lexWhitespace!true();
lexWhitespace!false();
goto L_advance; // tail-recursion
}
for(;;)
{
if(isSeparating())
break;
nextCharNonLF();
if(isEoF())
break;
}
current.type = lookupTokenType(src.slice);
current.value = getTokenValue(current.type);
if (current.value is null)
setTokenValue();
if (!(config.iterStyle & IterationStyle.ignoreEOF) && current.type == TokenType.eof)
{
_empty = true;
return;
}
if (config.iterStyle & TokenStyle.doNotReplaceSpecial)
return;
expandSpecialToken();
}
}
// TODO: LexSource could be improved for forward ranges
// to avoid buffering at all (by disabling it for a moment)
// so keep the 'keep' parameter here and elsewhere
void lexWhitespace(bool keep)()
{
current.type = TokenType.whitespace;
do
{
nextChar();
} while (!isEoF() && isWhite());
static if (keep) setTokenValue();
}
void lexComment(bool keep)()
in
{
assert (src.front == '/' || src.front == '*' || src.front == '+');
}
body
{
current.type = TokenType.comment;
switch(src.front)
{
case '/':
while (!isEoF() && !isNewline(src.front))
{
nextCharNonLF();
}
break;
case '*':
while (!isEoF())
{
if (src.front == '*')
{
static if (keep) nextCharNonLF();
else src.popFront();
if (src.front == '/')
{
nextCharNonLF();
break;
}
}
else
nextChar();
}
break;
case '+':
int depth = 1;
while (depth > 0 && !isEoF())
{
if (src.front == '+')
{
nextCharNonLF();
if (src.front == '/')
{
nextCharNonLF();
--depth;
}
}
else if (src.front == '/')
{
nextCharNonLF();
if (src.front == '+')
{
nextCharNonLF();
++depth;
}
}
else
nextChar();
}
break;
default:
assert(false);
}
static if (keep)
setTokenValue();
}
void lexHexString()
in
{
assert (src.front == '"');
}
body
{
current.type = TokenType.stringLiteral;
nextChar();
while (true)
{
if (isEoF())
{
errorMessage("Unterminated hex string literal");
return;
}
else if (isHexDigit(src.front))
{
nextCharNonLF();
}
else if (isWhite() && (config.tokenStyle & TokenStyle.notEscaped))
{
nextChar();
}
else if (src.front == '"')
{
nextCharNonLF();
break;
}
else
{
errorMessage(format("Invalid character '%s' in hex string literal",
cast(char) src.front));
return;
}
}
bool hasSuffix = lexStringSuffix();
if (config.tokenStyle & TokenStyle.notEscaped)
{
if (config.tokenStyle & TokenStyle.includeQuotes)
setTokenValue();
else
setTokenValue(2, hasSuffix ? -2 : -1);
}
else
{
// TODO: appender is an allocation happy fat pig
// remove it later
auto a = appender!(char[])();
foreach (b; std.range.chunks(src.slice[2 .. $ - 1], 2))
{
auto s = cast(char[])b;
ubyte ch = cast(ubyte)parse!uint(s, 16);
a.put(ch);
}
// can safely assume ownership of data
current.value = cast(string)a.data;
}
}
void lexNumber()
in
{
assert(isDigit(src.front) || src.front == '.');
}
body
{
if (src.front != '0')
{
lexDecimal();
return;
}
else
{
switch (src.peek())
{
case 'x':
case 'X':
nextCharNonLF();
nextCharNonLF();
lexHex();
break;
case 'b':
case 'B':
nextCharNonLF();
nextCharNonLF();
lexBinary();
break;
default:
lexDecimal();
break;
}
}
}
void lexFloatSuffix()
{
switch (src.front)
{
case 'L':
nextCharNonLF();
current.type = TokenType.doubleLiteral;
break;
case 'f':
case 'F':
nextCharNonLF();
current.type = TokenType.floatLiteral;
break;
default:
break;
}
if (!isEoF() && src.front == 'i')
{
nextCharNonLF();
if (current.type == TokenType.floatLiteral)
current.type = TokenType.ifloatLiteral;
else
current.type = TokenType.idoubleLiteral;
}
}
void lexIntSuffix()
{
bool foundU;
bool foundL;
while (!isEoF())
{
switch (src.front)
{
case 'u':
case 'U':
if (foundU)
return;
switch (current.type)
{
case TokenType.intLiteral:
current.type = TokenType.uintLiteral;
nextCharNonLF();
break;
case TokenType.longLiteral:
current.type = TokenType.ulongLiteral;
nextCharNonLF();
break;
default:
assert (false);
}
foundU = true;
break;
case 'L':
if (foundL)
return;
switch (current.type)
{
case TokenType.intLiteral:
current.type = TokenType.longLiteral;
nextCharNonLF();
break;
case TokenType.uintLiteral:
current.type = TokenType.ulongLiteral;
nextCharNonLF();
break;
default:
assert (false);
}
foundL = true;
break;
default:
return;
}
}
}
void lexExponent()
in
{
assert (src.front == 'e' || src.front == 'E' || src.front == 'p'
|| src.front == 'P');
}
body
{
nextCharNonLF();
bool foundSign = false;
bool foundDigit = false;
while (!isEoF())
{
switch (src.front)
{
case '-':
case '+':
if (foundSign)
{
if (!foundDigit)
errorMessage("Expected an exponent");
return;
}
foundSign = true;
nextCharNonLF();
break;
case '0': .. case '9':
case '_':
foundDigit = true;
nextCharNonLF();
break;
case 'L':
case 'f':
case 'F':
case 'i':
lexFloatSuffix();
return;
default:
if (!foundDigit)
errorMessage("Expected an exponent");
return;
}
}
}
void lexDecimal()
in
{
assert (isDigit(src.front) || src.front == '.');
}
body
{
bool foundDot = src.front == '.';
if (foundDot)
nextCharNonLF();
current.type = TokenType.intLiteral;
decimalLoop: while (!isEoF())
{
switch (src.front)
{
case '0': .. case '9':
case '_':
nextCharNonLF();
break;
case 'u':
case 'U':
if (!foundDot)
lexIntSuffix();
break decimalLoop;
case 'i':
lexFloatSuffix();
break decimalLoop;
case 'L':
if (foundDot)
lexFloatSuffix();
else
lexIntSuffix();
break decimalLoop;
case 'f':
case 'F':
lexFloatSuffix();
break decimalLoop;
case 'e':
case 'E':
lexExponent();
break decimalLoop;
case '.':
if (foundDot)
break decimalLoop;
if (src.canPeek() && src.peek() == '.')
break decimalLoop;
nextCharNonLF();
foundDot = true;
current.type = TokenType.doubleLiteral;
break;
default:
break decimalLoop;
}
}
setTokenValue();
}
void lexBinary()
{
current.type = TokenType.intLiteral;
binaryLoop: while (!isEoF())
{
switch (src.front)
{
case '0':
case '1':
case '_':
nextCharNonLF();
break;
case 'u':
case 'U':
case 'L':
lexIntSuffix();
break binaryLoop;
default:
break binaryLoop;
}
}
setTokenValue();
}
void lexHex()
{
current.type = TokenType.intLiteral;
bool foundDot;
hexLoop: while (!isEoF())
{
switch (src.front)
{
case 'a': .. case 'f':
case 'A': .. case 'F':
case '0': .. case '9':
case '_':
nextCharNonLF();
break;
case 'u':
case 'U':
lexIntSuffix();
break hexLoop;
case 'i':
if (foundDot)
lexFloatSuffix();
break hexLoop;
case 'L':
if (foundDot)
{
lexFloatSuffix();
break hexLoop;
}
else
{
lexIntSuffix();
break hexLoop;
}
case 'p':
case 'P':
lexExponent();
break hexLoop;
case '.':
if (foundDot)
break hexLoop;
if (src.canPeek() && src.peek() == '.')
break hexLoop;
nextCharNonLF();
foundDot = true;
current.type = TokenType.doubleLiteral;
break;
default:
break hexLoop;
}
}
setTokenValue();
}
bool lexStringSuffix()
{
current.type = TokenType.stringLiteral;
bool foundSuffix = false;
if (!isEoF())
{
switch (src.front)
{
case 'w':
current.type = TokenType.wstringLiteral;
goto case 'c';
case 'd':
current.type = TokenType.dstringLiteral;
goto case 'c';
case 'c':
foundSuffix = true;
nextCharNonLF();
break;
default:
break;
}
}
return foundSuffix;
}
void lexCharacterLiteral()
in
{
assert (src.front == '\'');
}
body
{
current.type = TokenType.characterLiteral;
nextChar();
if (isEoF())
{
errorMessage("Unterminated character literal");
return;
}
switch (src.front)
{
case '\'':
break;
case '\\':
if (config.tokenStyle & TokenStyle.notEscaped)
skipEscapeSequence();
else
{
// the only special path
// 40 bytes is enough for 2 quotes
// and the longest character entity
ubyte[40] utf8;
size_t len;
if (config.tokenStyle & TokenStyle.includeQuotes)
{
utf8[0] = '\'';
len = decodeEscapeSequence(utf8[1..$]);
utf8[len++] = '\'';
}
else
len = decodeEscapeSequence(utf8[]);
if (src.front != '\'')
{
errorMessage("Expected \"'\" to end character literal");
}
// skip over last "'"
nextChar();
setTokenValue(utf8[0..len]);
return;
}
break;
default:
if (src.front & 0x80)
{
while (src.front & 0x80)
nextChar();
break;
}
else
{
nextChar();
break;
}
}
if (src.front != '\'')
errorMessage("Expected \"'\" to end character literal");
nextChar();
if (config.tokenStyle & TokenStyle.includeQuotes)
setTokenValue();
else
setTokenValue(1, -1);
}
void lexString()
in
{
//assert (src.front == '"');
}
body
{
current.type = TokenType.stringLiteral;
bool longWysiwg = src.slice.length > 0 && src.slice[0] == 'r'; // 2 chars : r"
bool isWysiwyg = src.front == '`';
// in case we need to unescape string
Appender!(ubyte[]) unescaped;
auto quote = src.front;
nextChar();
while (true)
{
if (isEoF())
{
errorMessage("Unterminated string literal");
return;
}
else if (src.front == '\\')
{
if (isWysiwyg || longWysiwg)
nextChar();
else if(config.tokenStyle & TokenStyle.notEscaped)
{
skipEscapeSequence();
}
else
{
if(unescaped == Appender!(ubyte[]).init)
unescaped = appender!(ubyte[])();
unescaped.put(src.slice());
decodeEscapeSequence(unescaped);
src.mark(); //start next slice after escape sequence
}
}
else if (src.front == quote)
{
nextCharNonLF();
break;
}
else
nextChar();
}
lexStringSuffix();
// helper to handle quotes
void setData(R)(R range)
{
if (config.tokenStyle & TokenStyle.includeQuotes)
setTokenValue(range);
else if (longWysiwg)
setTokenValue(range[2..$-1]);
else
setTokenValue(range[1..$-1]);
}
import std.stdio;
if(unescaped != Appender!(ubyte[]).init)
{
//stuff in the last slice and use buffered data
unescaped.put(src.slice);
setData(unescaped.data);
}
else
{
setData(src.slice); //slice directly
}
}
void lexDelimitedString()
in
{
assert(src.front == '"');
}
body
{
current.type = TokenType.stringLiteral;
nextChar();
bool heredoc;
ubyte open;
ubyte close;
switch (src.front)
{
case '[': open = '['; close = ']'; break;
case '{': open = '{'; close = '}'; break;
case '(': open = '('; close = ')'; break;
case '<': open = '<'; close = '>'; break;
default: heredoc = true; break;
}
if (heredoc)
lexHeredocString();
else
lexNormalDelimitedString(open, close);
}
void lexNormalDelimitedString(ubyte open, ubyte close)
in
{
assert(src.slice[0 .. 2] == `q"`);
}
body
{
current.type = TokenType.stringLiteral;
int depth = 1;
nextChar();
while (true)
{
if (isEoF())
{
errorMessage("Unterminated string literal");
break;
}
if (src.front == open)
{
nextChar();
++depth;
}
else if (src.front == close)
{
nextChar();
--depth;
if (depth <= 0)
{
auto r = src.save(); //TODO: allocates for Fwd range
if (r.front == '"')
{
nextChar();
break;
}
else
{
errorMessage("Expected \" after balanced "
~ cast(char) close ~ " but found "
~ cast(char) r.front ~ " instead.");
break;
}
}
}
else
nextChar();
}
if (config.tokenStyle & TokenStyle.includeQuotes)
setTokenValue();
else
setTokenValue(3, -2);
}
void lexHeredocString()
in
{
assert (src.slice.equal("q\""));
}
body
{
typeof(src.slice) ident;
uint newlineBytes;
while (true)
{
if (isEoF())
{
errorMessage("Unterminated string literal");
return;
}
else if (isNewline(src.front))
{
ident = src.slice[2..$];
nextChar();
newlineBytes = cast(uint) (src.slice.length - 2 - ident.length);
break;
}
else if (isSeparating())
{
nextChar();
ident = src.slice[2..$];
nextChar();
newlineBytes = 0;
break;
}
else
{
nextChar();
}
}
while (true)
{
if (isEoF())
{
errorMessage("Unterminated string literal");
break;
}
else if (src.slice.length > ident.length
&& src.slice[$-ident.length .. $].equal(ident))
{
if (src.front == '"')
{
nextChar();
lexStringSuffix();
break;
}
else
{
errorMessage("Unterminated string literal: " ~ cast(string) src.slice);
break;
}
}
else
nextChar();
}
bool hasSuffix = lexStringSuffix();
if (config.tokenStyle & TokenStyle.includeQuotes)
setTokenValue();
else
{
setTokenValue(cast(int) (2 + newlineBytes + ident.length),
cast(int) (-(ident.length + (hasSuffix ? 2 : 1))));
}
}
void lexTokenString()
in
{
assert (src.front == '{');
}
body
{
current.type = TokenType.stringLiteral;
nextChar();
auto app = appender!(ubyte[])();
if (config.tokenStyle & TokenStyle.includeQuotes)
{
app.put('q');
app.put('{');
}
LexerConfig c = config;
scope (exit) config = c;
config.iterStyle = IterationStyle.everything;
config.tokenStyle = TokenStyle.source;
int depth = 1;
while (!isEoF())
{
advance();
if (current.type == TokenType.lBrace)
++depth;
else if (current.type == TokenType.rBrace)
{
--depth;
if (depth <= 0)
break;
}
app.put(representation(current.value));
}
config = c;
if (config.tokenStyle & TokenStyle.includeQuotes)
{
app.put('}');
}
if (src.empty)
current.type = TokenType.stringLiteral;
else
{
switch (src.front)
{
case 'd':
if (config.tokenStyle & TokenStyle.includeQuotes)
app.put('d');
current.type = TokenType.dstringLiteral;
src.popFront();
break;
case 'w':
if (config.tokenStyle & TokenStyle.includeQuotes)
app.put('w');
current.type = TokenType.wstringLiteral;
src.popFront();
break;
case 'c':
if (config.tokenStyle & TokenStyle.includeQuotes)
app.put('c');
src.popFront();
goto default;
default:
current.type = TokenType.stringLiteral;
break;
}
}
current.value = cast(string) app.data;
}
void lexSpecialTokenSequence()
in
{
assert (src.front == '#');
}
body
{
nextChar();
auto r = src.save();
auto app = appender!(ubyte[])();
app.put('#');
while (true)
{
if (r.isRangeEoF())
{
errorMessage("Found EOF when interpreting special token sequence");
return;
}
else if (isNewline(r.front))
break;
else
{
app.put(r.front);
r.popFront();
}
}
auto m = match((cast(char[]) app.data),
`#line\s+(?P<line>\d+)\s*(?P<filespec>".+")*?`);
if (m)
{
current.type = TokenType.specialTokenSequence;
current.value = (cast(char[]) app.data).idup;
column += app.data.length;
foreach (i; 0 .. app.data.length)
src.popFront();
auto c = m.captures;
if (c["filespec"])
config.fileName = c["filespec"].idup;
auto l = c["line"];
lineNumber = parse!uint(l);
}
else
{
current.type = TokenType.hash;
current.value = tokenValue!(TokenType.hash);
}
}
//=====================================================================
// Helpers for lexXYZ functions
//=====================================================================
void skipEscapeSequence()
{
// no decoding, just minor sanity checks
nextChar();
switch (src.front)
{
case '\'':
case '"':
case '?':
case '\\':
case 'a':
case 'b':
case 'f':
case 'n':
case 'r':
case 't':
case 'v':
case 0x0a:
case 0x00:
nextChar();
return;
case '0': .. case '7':
foreach(i; 0 .. 3)
{
nextChar();
if (src.front < '0' || src.front > '7') return;
}
return;
case 'x':
nextChar();
foreach(i; 0 .. 2)
{
if (!isHexDigit(src.front))
{
errorMessage("Expected hex digit");
return;
}
nextChar();
}
return;
case 'u':
case 'U':
uint digits = src.front == 'u' ? 4 : 8;
nextChar();
foreach (i; 0 .. digits)
{
if (!isHexDigit(src.front))
{
errorMessage("Expected hex digit instead of %s".format(
cast(char) src.front));
return;
}
nextChar();
}
return;
case '&':
while (!isEoF())
{
nextChar();
if (src.front == ';')
break;
}
return;
default:
errorMessage("Invalid escape sequence");
return;
}
}
size_t decodeEscapeSequence(OutputRange)(OutputRange dest)
in
{
assert (src.front == '\\');
}
body
{
size_t reencodeNumeric(ubyte[] src, int radix, OutputRange dest)
{
char[] chunk = cast(char[])src;
char[4] utfBuf;
uint codepoint = parse!uint(chunk, radix);
size_t len;
try
len = encode(utfBuf, codepoint);
catch (UTFException ex)
{
errorMessage(ex.msg);
return 0;
}
dest.put(cast(ubyte[]) utfBuf[0..len]);
return len;
}
ubyte[40] buffer;
src.popFront();
switch (src.front)
{
case '\'':
case '"':
case '?':
case '\\':
buffer[0] = src.front;
src.popFront();
return 1;
case 'a': dest.put('\a'); src.popFront(); return 1;
case 'b': dest.put('\b'); src.popFront(); return 1;
case 'f': dest.put('\f'); src.popFront(); return 1;
case 'n': dest.put('\n'); src.popFront(); return 1;
case 'r': dest.put('\r'); src.popFront(); return 1;
case 't': dest.put('\t'); src.popFront(); return 1;
case 'v': dest.put('\v'); src.popFront(); return 1;
case 0x0a: dest.put(cast(ubyte)0x0a); src.popFront(); return 1;
case 0x00: dest.put(cast(ubyte)0x00); src.popFront(); return 1;
case '0': .. case '7':
size_t idx = 0;
while(idx < 3 && !isEoF())
{
buffer[idx++] = src.front;
src.popFront();
if (src.front < '0' || src.front > '7') break;
}
return reencodeNumeric(buffer[0..idx], 8, dest);
case 'x':
src.popFront();
foreach(i; 0 .. 2)
{
if (!isHexDigit(src.front))
{
errorMessage("Expected hex digit");
return 1;
}
buffer[i] = src.front;
src.popFront();
}
return reencodeNumeric(buffer[0..2], 16, dest);
case 'u':
case 'U':
uint digitCount = src.front == 'u' ? 4 : 8;
src.popFront();
foreach (i; 0 .. digitCount)
{
if (!isHexDigit(src.front))
{
errorMessage("Expected hex digit");
return 1;
}
buffer[i] = src.front;
src.popFront();
}
return reencodeNumeric(buffer[0..digitCount], 16, dest);
case '&':
src.popFront();
size_t idx = 0;
while (!isEoF())
{
if (isAlpha(src.front))
{
buffer[idx++] = src.front;
if(idx == buffer.length) // way over maximum length
errorMessage("Invalid character entity");
src.popFront();
}
else if (src.front == ';')
{
src.popFront();
break;
}
else
{
errorMessage("Invalid character entity");
return idx;
}
}
//TODO: avoid looking up as UTF string, use raw bytes
string chunk = cast(string)buffer[0..idx];
auto names = assumeSorted(map!"a.name"(characterEntities));
auto place = names.lowerBound(chunk).length;
if (place == names.length || names[place] != chunk)
{
errorMessage("Invalid character entity \"&%s;\""
.format(cast(string) chunk));
return 1;
}
auto entity = characterEntities[place].value;
dest.put(cast(ubyte[]) entity);
return entity.length;
default:
errorMessage("Invalid escape sequence");
return 1;
}
}
// advances underlying mark-slice range and counts lines, cols
void nextChar()
{
bool foundNewline;
if (src.front == '\r')
{
src.popFront();
foundNewline = true;
}
if (src.front == '\n')
{
src.popFront();
foundNewline = true;
}
else
{
src.popFront();
}
if (foundNewline)
{
++lineNumber;
column = 0;
}
else
++column;
}
//same but don't bother for LF sequences
void nextCharNonLF()
{
src.popFront();
++column;
}
void setTokenValue()()
{
current.value = cache.get(src.slice);
}
void setTokenValue()(int startOffset, int endOffset)
in
{
assert(startOffset >= 0);
assert(endOffset <= 0);
}
body
{
auto piece = src.slice;
// avoid unsigned arithmetic as endOffset is negative
int end = cast(int)piece.length + endOffset;
current.value = cache.get(src.slice[startOffset .. end]);
}
void setTokenValue(R)(R range)
if(isRandomAccessRange!R && is(ElementType!R : const(ubyte)))
{
current.value = cache.get(range);
}
bool isEoF() const
{
return src.empty || src.front == 0 || src.front == 0x1a;
}
bool isSeparating()
{
auto ch = src.front;
if (ch <= 0x2f) return true;
if (ch >= ':' && ch <= '@') return true;
if (ch >= '[' && ch <= '^') return true;
if (ch >= '{' && ch <= '~') return true;
if (ch == '`') return true;
if ((ch & 0x80) && isLongWhite()) return true;
return false;
}
bool isWhite()
{
auto c = src.front;
if (c & 0x80) // multi-byte utf-8
{
return isLongWhite();
}
else
return c == 0x20 || (c >= 0x09 && c <= 0x0d);
}
bool isLongWhite()
{
assert(src.front & 0x80); // only non-ascii
//TODO: here and elsewhere we'd better have
// some kind of lookahead in LexSource instead of .save
auto r = src.save();
if (r.front != 0xe2)
return false;
else
r.popFront();
if (r.empty || r.front != 0x80)
return false;
else
r.popFront();
if (r.empty || (r.front != 0xa8 && r.front != 0xa9))
return false;
return true;
}
void expandSpecialToken()
{
switch (current.type)
{
case TokenType.date:
current.type = TokenType.stringLiteral;
auto time = Clock.currTime();
current.value = format("%s %02d %04d", time.month, time.day, time.year);
return;
case TokenType.time:
auto time = Clock.currTime();
current.type = TokenType.stringLiteral;
current.value = (cast(TimeOfDay)(time)).toISOExtString();
return;
case TokenType.timestamp:
auto time = Clock.currTime();
auto dt = cast(DateTime) time;
current.type = TokenType.stringLiteral;
current.value = format("%s %s %02d %02d:%02d:%02d %04d",
dt.dayOfWeek, dt.month, dt.day, dt.hour, dt.minute,
dt.second, dt.year);
return;
case TokenType.vendor:
current.type = TokenType.stringLiteral;
current.value = config.vendorString;
return;
case TokenType.compilerVersion:
current.type = TokenType.stringLiteral;
current.value = format("%d", config.versionNumber);
return;
case TokenType.line:
current.type = TokenType.intLiteral;
current.value = format("%d", current.line);
return;
case TokenType.file:
current.type = TokenType.stringLiteral;
current.value = config.fileName;
return;
default:
return;
}
}
void errorMessage(string s)
{
import std.string: format;
if (config.errorFunc !is null)
config.errorFunc(config.fileName, current.startIndex,
current.line, current.column, s);
else
throw new Exception(format("%s(%d:%d): %s",
config.fileName, current.line, current.column, s));
}
this(LexSrc lex, LexerConfig cfg)
{
src = move(lex); // lex is r-value
lineNumber = 1;
column = 0;
_empty = false;
config = move(cfg); // ditto with cfg
cache = StringCache(initialTableSize);
}
enum initialTableSize = 2048;
Token current;
uint lineNumber;
uint column;
LexSrc src;
bool _empty;
LexerConfig config;
StringCache cache;
}
/**
* Returns: true if the token is an operator
*/
pure nothrow bool isOperator(const TokenType t)
{
return t >= TokenType.assign && t <= TokenType.xorEqual;
}
/**
* ditto
*/
pure nothrow bool isOperator(ref const Token t)
{
return isOperator(t.type);
}
/**
* Returns: true if the token is a keyword
*/
pure nothrow bool isKeyword(const TokenType t)
{
return t >= TokenType.bool_ && t <= TokenType.with_;
}
/**
* ditto
*/
pure nothrow bool isKeyword(ref const Token t)
{
return isKeyword(t.type);
}
/**
* Returns: true if the token is a built-in type
*/
pure nothrow bool isBasicType(const TokenType t)
{
return t >= TokenType.bool_ && t <= TokenType.wchar_;
}
/**
* ditto
*/
pure nothrow bool isBasicType(ref const Token t)
{
return isType(t.type);
}
/**
* Returns: true if the token is an attribute
*/
pure nothrow bool isAttribute(const TokenType t)
{
return t >= TokenType.align_ && t <= TokenType.static_;
}
/**
* ditto
*/
pure nothrow bool isAttribute(ref const Token t)
{
return isAttribute(t.type);
}
/**
* Returns: true if the token is a protection attribute
*/
pure nothrow bool isProtection(const TokenType t)
{
return t >= TokenType.export_ && t <= TokenType.public_;
}
/**
* ditto
*/
pure nothrow bool isProtection(ref const Token t)
{
return isProtection(t.type);
}
/**
* Returns: true if the token is a compile-time constant such as ___DATE__
*/
pure nothrow bool isConstant(const TokenType t)
{
return t >= TokenType.date && t <= TokenType.traits;
}
/**
* ditto
*/
pure nothrow bool isConstant(ref const Token t)
{
return isConstant(t.type);
}
/**
* Returns: true if the token is a string or number literal
*/
pure nothrow bool isLiteral(const TokenType t)
{
return t >= TokenType.doubleLiteral && t <= TokenType.wstringLiteral;
}
/**
* ditto
*/
pure nothrow bool isLiteral(ref const Token t)
{
return isLiteral(t.type);
}
/**
* Returns: true if the token is a number literal
*/
pure nothrow bool isNumberLiteral(const TokenType t)
{
return t >= TokenType.doubleLiteral && t <= TokenType.ulongLiteral;
}
/**
* ditto
*/
pure nothrow bool isNumberLiteral(ref const Token t)
{
return isNumberLiteral(t.type);
}
/**
* Returns: true if the token is a string literal
*/
pure nothrow bool isStringLiteral(const TokenType t)
{
return t >= TokenType.dstringLiteral && t <= TokenType.wstringLiteral;
}
/**
* ditto
*/
pure nothrow bool isStringLiteral(ref const Token t)
{
return isStringLiteral(t.type);
}
/**
* Returns: true if the token is whitespace, a commemnt, a special token
* sequence, or an identifier
*/
pure nothrow bool isMisc(const TokenType t)
{
return t >= TokenType.comment && t <= TokenType.specialTokenSequence;
}
/**
* ditto
*/
pure nothrow bool isMisc(ref const Token t)
{
return isMisc(t.type);
}
/**
* Listing of all the tokens in the D language.
*/
enum TokenType: ushort
{
assign, /// =
at, /// @
bitAnd, /// &
bitAndEqual, /// &=
bitOr, /// |
bitOrEqual, /// |=
catEqual, /// ~=
colon, /// :
comma, /// ,
decrement, /// --
div, /// /
divEqual, /// /=
dollar, /// $
dot, /// .
equal, /// ==
goesTo, /// =>
greater, /// >
greaterEqual, /// >=
hash, /// #
increment, /// ++
lBrace, /// {
lBracket, /// [
less, /// <
lessEqual, /// <=
lessEqualGreater, /// <>=
lessOrGreater, /// <>
logicAnd, /// &&
logicOr, /// ||
lParen, /// $(LPAREN)
minus, /// -
minusEqual, /// -=
mod, /// %
modEqual, /// %=
mulEqual, /// *=
not, /// !
notEqual, /// !=
notGreater, /// !>
notGreaterEqual, /// !>=
notLess, /// !<
notLessEqual, /// !<=
notLessEqualGreater, /// !<>
plus, /// +
plusEqual, /// +=
pow, /// ^^
powEqual, /// ^^=
rBrace, /// }
rBracket, /// ]
rParen, /// $(RPAREN)
semicolon, /// ;
shiftLeft, /// <<
shiftLeftEqual, /// <<=
shiftRight, /// >>
shiftRightEqual, /// >>=
slice, /// ..
star, /// *
ternary, /// ?
tilde, /// ~
unordered, /// !<>=
unsignedShiftRight, /// >>>
unsignedShiftRightEqual, /// >>>=
vararg, /// ...
xor, /// ^
xorEqual, /// ^=
bool_, /// $(D_KEYWORD bool)
byte_, /// $(D_KEYWORD byte)
cdouble_, /// $(D_KEYWORD cdouble)
cent_, /// $(D_KEYWORD cent)
cfloat_, /// $(D_KEYWORD cfloat)
char_, /// $(D_KEYWORD char)
creal_, /// $(D_KEYWORD creal)
dchar_, /// $(D_KEYWORD dchar)
double_, /// $(D_KEYWORD double)
float_, /// $(D_KEYWORD float)
function_, /// $(D_KEYWORD function)
idouble_, /// $(D_KEYWORD idouble)
ifloat_, /// $(D_KEYWORD ifloat)
int_, /// $(D_KEYWORD int)
ireal_, /// $(D_KEYWORD ireal)
long_, /// $(D_KEYWORD long)
real_, /// $(D_KEYWORD real)
short_, /// $(D_KEYWORD short)
ubyte_, /// $(D_KEYWORD ubyte)
ucent_, /// $(D_KEYWORD ucent)
uint_, /// $(D_KEYWORD uint)
ulong_, /// $(D_KEYWORD ulong)
ushort_, /// $(D_KEYWORD ushort)
void_, /// $(D_KEYWORD void)
wchar_, /// $(D_KEYWORD wchar)
align_, /// $(D_KEYWORD align)
deprecated_, /// $(D_KEYWORD deprecated)
extern_, /// $(D_KEYWORD extern)
pragma_, /// $(D_KEYWORD pragma)
export_, /// $(D_KEYWORD export)
package_, /// $(D_KEYWORD package)
private_, /// $(D_KEYWORD private)
protected_, /// $(D_KEYWORD protected)
public_, /// $(D_KEYWORD public)
abstract_, /// $(D_KEYWORD abstract)
auto_, /// $(D_KEYWORD auto)
const_, /// $(D_KEYWORD const)
final_, /// $(D_KEYWORD final)
gshared, /// $(D_KEYWORD __gshared)
immutable_, /// $(D_KEYWORD immutable)
inout_, /// $(D_KEYWORD inout)
scope_, /// $(D_KEYWORD scope)
shared_, /// $(D_KEYWORD shared)
static_, /// $(D_KEYWORD static)
synchronized_, /// $(D_KEYWORD synchronized)
alias_, /// $(D_KEYWORD alias)
asm_, /// $(D_KEYWORD asm)
assert_, /// $(D_KEYWORD assert)
body_, /// $(D_KEYWORD body)
break_, /// $(D_KEYWORD break)
case_, /// $(D_KEYWORD case)
cast_, /// $(D_KEYWORD cast)
catch_, /// $(D_KEYWORD catch)
class_, /// $(D_KEYWORD class)
continue_, /// $(D_KEYWORD continue)
debug_, /// $(D_KEYWORD debug)
default_, /// $(D_KEYWORD default)
delegate_, /// $(D_KEYWORD delegate)
delete_, /// $(D_KEYWORD delete)
do_, /// $(D_KEYWORD do)
else_, /// $(D_KEYWORD else)
enum_, /// $(D_KEYWORD enum)
false_, /// $(D_KEYWORD false)
finally_, /// $(D_KEYWORD finally)
foreach_, /// $(D_KEYWORD foreach)
foreach_reverse_, /// $(D_KEYWORD foreach_reverse)
for_, /// $(D_KEYWORD for)
goto_, /// $(D_KEYWORD goto)
if_, /// $(D_KEYWORD if)
import_, /// $(D_KEYWORD import)
in_, /// $(D_KEYWORD in)
interface_, /// $(D_KEYWORD interface)
invariant_, /// $(D_KEYWORD invariant)
is_, /// $(D_KEYWORD is)
lazy_, /// $(D_KEYWORD lazy)
macro_, /// $(D_KEYWORD macro)
mixin_, /// $(D_KEYWORD mixin)
module_, /// $(D_KEYWORD module)
new_, /// $(D_KEYWORD new)
nothrow_, /// $(D_KEYWORD nothrow)
null_, /// $(D_KEYWORD null)
out_, /// $(D_KEYWORD out)
override_, /// $(D_KEYWORD override)
pure_, /// $(D_KEYWORD pure)
ref_, /// $(D_KEYWORD ref)
return_, /// $(D_KEYWORD return)
struct_, /// $(D_KEYWORD struct)
super_, /// $(D_KEYWORD super)
switch_, /// $(D_KEYWORD switch)
template_, /// $(D_KEYWORD template)
this_, /// $(D_KEYWORD this)
throw_, /// $(D_KEYWORD throw)
true_, /// $(D_KEYWORD true)
try_, /// $(D_KEYWORD try)
typedef_, /// $(D_KEYWORD typedef)
typeid_, /// $(D_KEYWORD typeid)
typeof_, /// $(D_KEYWORD typeof)
union_, /// $(D_KEYWORD union)
unittest_, /// $(D_KEYWORD unittest)
version_, /// $(D_KEYWORD version)
volatile_, /// $(D_KEYWORD volatile)
while_, /// $(D_KEYWORD while)
with_, /// $(D_KEYWORD with)
date, /// ___DATE__
eof, /// ___EOF__
time, /// ___TIME__
timestamp, /// ___TIMESTAMP__
vendor, /// ___VENDOR__
compilerVersion, /// ___VERSION__
file, /// $(D_KEYWORD ___FILE__)
line, /// $(D_KEYWORD ___LINE__)
comment, /// $(D_COMMENT /** comment */) or $(D_COMMENT // comment) or $(D_COMMENT ///comment)
identifier, /// anything else
scriptLine, /// Line at the beginning of source file that starts from #!
traits, /// $(D_KEYWORD ___traits)
parameters, /// $(D_KEYWORD ___parameters)
vector, /// $(D_KEYWORD ___vector)
whitespace, /// whitespace
specialTokenSequence, /// #line 10 "file.d"
doubleLiteral, /// 123.456
floatLiteral, /// 123.456f or 0x123_45p-3
idoubleLiteral, /// 123.456i
ifloatLiteral, /// 123.456fi
intLiteral, /// 123 or 0b1101010101
longLiteral, /// 123L
realLiteral, /// 123.456L
irealLiteral, /// 123.456Li
uintLiteral, /// 123u
ulongLiteral, /// 123uL
characterLiteral, /// 'a'
dstringLiteral, /// $(D_STRING "32-bit character string"d)
stringLiteral, /// $(D_STRING "an 8-bit string")
wstringLiteral, /// $(D_STRING "16-bit character string"w)
}
// Implementation details follow
private:
// For now a private helper that is tailored to the way lexer works
// hides away forwardness of range by buffering
// RA-version is strightforward thin wrapping
// ATM it is byte-oriented
private struct LexSource(R)
if(isForwardRange!R && !isRandomAccessRange!R)
{
bool empty() const { return _empty; }
auto ref front() const
{
return accum[accumIdx];
}
auto ref peek() const
in
{
assert (accumIdx + 1 < accum.length);
}
body
{
return accum[accumIdx + 1];
}
void popFront()
{
++_index;
range.popFront();
// if that was last byte
// just advance so that open-righted slice just works
accumIdx = (accumIdx+1) & mask;
if(range.empty)
{
_empty = true;
return;
}
if(accumIdx == savedAccumIdx)
{
// and move stuff around
auto oldLen = accum.length;
auto toCopy = oldLen - accumIdx;
accum.length *= 2; // keep pow of 2
// copy starting with last item
copy(retro(accum[accumIdx..oldLen]),
retro(accum[$-toCopy..$]));
savedAccumIdx = accum.length - toCopy;
}
accum[accumIdx] = range.front;
}
auto save()
{
typeof(this) copy = this;
copy.range = range.save;
// sadly need to dup circular buffer, as it overwrites items
copy.accum = copy.accum.dup;
return copy;
}
// mark a position to slice from later on
size_t mark()
{
savedAccumIdx = accumIdx;
return accumIdx;
}
// slice to current position from previously marked position
auto slice() @property
{
// it's an open right range as usual
return CircularRange(accum, savedAccumIdx, accumIdx);
}
size_t index() const @property
{
return _index;
}
private:
this(R src, size_t bufferSize)
{
range = src;
assert(bufferSize > 0);
assert((bufferSize & (bufferSize-1)) == 0); //is power of 2
accum = new ubyte[bufferSize];
if(range.empty)
_empty = true;
else
accum[accumIdx] = range.front; // load front
}
// a true RA-range of ubyte
struct CircularRange
{
this(ubyte[] buf, size_t s, size_t e)
{
assert((buffer.length & (buffer.length-1)) == 0);
buffer = buf;
start = s;
end = e;
}
//Forward range primitives
@property bool empty() const { return start == end; }
@property auto ref front() const { return buffer[start]; }
void popFront() { start = (start + 1) & mask; }
@property auto save() { return this; }
//Backwards is a bit slower, but should be rarely used (if at all)
@property ref back(){ return buffer[(end-1) & mask]; }
void popBack() { end = (end - 1) & mask; }
// RA range primitives
ref opIndex(size_t idx){ return buffer[(start+idx) & mask]; }
@property size_t length()
{
return end < start ? end + buffer.length -start : end - start;
}
alias length opDollar;
auto opSlice(size_t newStart, size_t newEnd)
{
size_t maskedStart = (start+newStart) & mask;
size_t maskedEnd = (start+newEnd) & mask;
return typeof(this)(buffer, maskedStart, maskedEnd);
}
// @@@bug fwd-ref in ldc0.10 (if placed above previous one)
auto opSlice(){ return opSlice(0, length); }
private:
@property auto mask(){ return buffer.length-1; }
size_t start, end;
ubyte[] buffer;
}
@property auto mask(){ return accum.length-1; }
R range;
bool _empty;
ubyte[] accum; // accumulator buffer for non-RA ranges
size_t savedAccumIdx;
size_t accumIdx; // current index in accumulator
size_t _index; // index of current element in original range
}
// TODO: make sure it's RandomAccess later
/*static assert(isRandomAccessRange!(
LexSource!(typeof(filter!"true"(cast(ubyte[])null)))
.CircularRange)
);*/
//trivial pass-through for RA ranges
private struct LexSource(R)
if(isRandomAccessRange!R)
{
bool empty() const @property { return cur >= range.length; }
bool canPeek() const { return cur + 1 < range.length; }
auto ref front() const @property { return range[cur]; }
void popFront(){ cur++; }
auto ref peek() const
in
{
assert (canPeek());
}
body
{
return range[cur + 1];
}
auto save()
{
typeof(this) copy = this;
copy.range = range.save;
return copy;
}
auto mark()
{
saved = cur;
}
// use the underliying range slicing capability
auto slice() @property
{
return range[saved..cur];
}
size_t index() const @property
{
return cur;
}
private:
this(R src)
{
range = src;
}
size_t cur, saved;
R range;
}
auto lexerSource(Range)(Range range, size_t bufSize=8)
if(isForwardRange!Range && !isRandomAccessRange!Range
&& is(ElementType!Range : const(ubyte)))
{
return LexSource!(Range)(range, bufSize);
}
auto lexerSource(Range)(Range range)
if(isRandomAccessRange!Range
&& is(ElementType!Range : const(ubyte)))
{
return LexSource!(Range)(range);
}
unittest
{
// test the basic functionality of a "mark-slice" range
import std.string, std.stdio;
static void test_hello(T)(T lexs)
{
assert(lexs.front == 'H');
lexs.popFront();
assert(lexs.front == 'e');
foreach(i; 0..2)
{
auto saved = lexs.save;
lexs.mark();
assert(lexs.slice.equal(""));
lexs.popFront();
assert(lexs.slice.equal("e"), text(cast(char)lexs.front));
lexs.popFrontN(4);
auto bytes = lexs.slice.map!"cast(char)a".array();
assert(bytes.equal("ello,"), bytes.to!string);
lexs.mark();
assert(lexs.slice.equal(""));
assert(lexs.front == 'w');
lexs.popFrontN(6);
assert(lexs.empty);
auto s = lexs.slice();
auto msg = s.save.map!"cast(char)a".array;
assert(s[].equal("world!"), msg);
assert(s[2..$-1].equal("rld"), msg);
assert(s[0] == 'w' && s[$-1] == '!');
s.popFront();
assert(s.front == 'o' && s.back == '!');
s.popBack();
assert(s.front == 'o' && s.back == 'd');
//restore and repeat again
lexs = saved;
}
}
static void test_empty(T)(T lexs)
{
assert(lexs.empty);
lexs.mark();
assert(lexs.slice().equal(""));
}
auto fwdLex = lexerSource(
"Hello, world!"
.representation
.filter!"a != ' '", 16 // and the one that is more then enough
);
test_hello(fwdLex);
fwdLex = lexerSource(
"Hello, world!"
.representation
.filter!"a != ' '", 1 // try the smallest initial buffer
);
test_hello(fwdLex);
fwdLex = lexerSource("".representation.filter!"a != ' '");
auto raLex = lexerSource("".representation);
test_empty(raLex);
test_empty(fwdLex);
raLex = lexerSource("Hello,world!".representation);
test_hello(raLex);
}
// uses auto-detection for pure, safe nothrow
bool isRangeEoF(R)(ref R range)
{
return range.empty || range.front == 0 || range.front == 0x1a;
}
// Lookup table for token values
immutable(string[TokenType.max + 1]) tokenValues = [
"=",
"@",
"&",
"&=",
"|",
"|=",
"~=",
":",
",",
"--",
"/",
"/=",
"$",
".",
"==",
"=>",
">",
">=",
"#",
"++",
"{",
"[",
"<",
"<=",
"<>=",
"<>",
"&&",
"||",
"(",
"-",
"-=",
"%",
"%=",
"*=",
"!",
"!=",
"!>",
"!>=",
"!<",
"!<=",
"!<>",
"+",
"+=",
"^^",
"^^=",
"}",
"]",
")",
";",
"<<",
"<<=",
">>",
">>=",
"..",
"*",
"?",
"~",
"!<>=",
">>>",
">>>=",
"...",
"^",
"^=",
"bool",
"byte",
"cdouble",
"cent",
"cfloat",
"char",
"creal",
"dchar",
"double",
"float",
"function",
"idouble",
"ifloat",
"int",
"ireal",
"long",
"real",
"short",
"ubyte",
"ucent",
"uint",
"ulong",
"ushort",
"void",
"wchar",
"align",
"deprecated",
"extern",
"pragma",
"export",
"package",
"private",
"protected",
"public",
"abstract",
"auto",
"const",
"final",
"__gshared",
"immutable",
"inout",
"scope",
"shared",
"static",
"synchronized",
"alias",
"asm",
"assert",
"body",
"break",
"case",
"cast",
"catch",
"class",
"continue",
"debug",
"default",
"delegate",
"delete",
"do",
"else",
"enum",
"false",
"finally",
"foreach",
"foreach_reverse",
"for",
"goto",
"if",
"import",
"in",
"interface",
"invariant",
"is",
"lazy",
"macro",
"mixin",
"module",
"new",
"nothrow",
"null",
"out",
"override",
"pure",
"ref",
"return",
"struct",
"super",
"switch",
"template",
"this",
"throw",
"true",
"try",
"typedef",
"typeid",
"typeof",
"union",
"unittest",
"version",
"volatile",
"while",
"with",
"__DATE__",
"__EOF__",
"__TIME__",
"__TIMESTAMP__",
"__VENDOR__",
"__VERSION__",
"__FILE__",
"__LINE__",
null,
null,
null,
"__traits",
"__parameters",
"__vector",
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
];
pure string getTokenValue(const TokenType type)
{
return tokenValues[type];
}
template tokenValue(TokenType val)
{
enum tokenValue = getTokenValue(val);
}
private pure bool isNewline(ubyte ch)
{
return ch == '\n' || ch == '\r';
}
pure TokenType lookupTokenType(R)(R input)
{
switch(input.length)
{
case 2:
switch (input[0])
{
case 'd': if (input[1] == 'o') return TokenType.do_; else break;
case 'i':
if (input[1] == 'f') return TokenType.if_;
else if (input[1] == 'n') return TokenType.in_;
else if (input[1] == 's') return TokenType.is_;
else break;
default: break;
}
break;
case 3:
switch (input[0])
{
case 'a': if (input[1..$].equal("sm")) return TokenType.asm_; else break;
case 'f': if (input[1..$].equal("or")) return TokenType.for_; else break;
case 'i': if (input[1..$].equal("nt")) return TokenType.int_; else break;
case 'n': if (input[1..$].equal("ew")) return TokenType.new_; else break;
case 'o': if (input[1..$].equal("ut")) return TokenType.out_; else break;
case 'r': if (input[1..$].equal("ef")) return TokenType.ref_; else break;
case 't': if (input[1..$].equal("ry")) return TokenType.try_; else break;
default: break;
}
break;
case 4:
switch (input[0])
{
case 'a': if (input[1..$].equal("uto")) return TokenType.auto_; else break;
case 'b': if (input[1..$].equal("ody")) return TokenType.body_;
else if (input[1..$].equal("ool")) return TokenType.bool_;
else if (input[1..$].equal("yte")) return TokenType.byte_;
else break;
case 'c': if (input[1..$].equal("ase")) return TokenType.case_;
else if (input[1..$].equal("ast")) return TokenType.cast_;
else if (input[1..$].equal("ent")) return TokenType.cent_;
else if (input[1..$].equal("har")) return TokenType.char_;
else break;
case 'e': if (input[1..$].equal("lse")) return TokenType.else_;
else if (input[1..$].equal("num")) return TokenType.enum_;
else break;
case 'g': if (input[1..$].equal("oto")) return TokenType.goto_; else break;
case 'l': if (input[1..$].equal("azy")) return TokenType.lazy_;
else if (input[1..$].equal("ong")) return TokenType.long_;
else break;
case 'n': if (input[1..$].equal("ull")) return TokenType.null_; else break;
case 'p': if (input[1..$].equal("ure")) return TokenType.pure_; else break;
case 'r': if (input[1..$].equal("eal")) return TokenType.real_; else break;
case 't': if (input[1..$].equal("his")) return TokenType.this_;
else if (input[1..$].equal("rue")) return TokenType.true_;
else break;
case 'u': if (input[1..$].equal("int")) return TokenType.uint_; else break;
case 'v': if (input[1..$].equal("oid")) return TokenType.void_; else break;
case 'w': if (input[1..$].equal("ith")) return TokenType.with_; else break;
default: break;
}
break;
case 5:
switch (input[0])
{
case 'a': if (input[1..$].equal("lias")) return TokenType.alias_;
else if (input[1..$].equal("lign")) return TokenType.align_; else break;
case 'b': if (input[1..$].equal("reak")) return TokenType.break_; else break;
case 'c': if (input[1..$].equal("atch")) return TokenType.catch_;
else if (input[1..$].equal("lass")) return TokenType.class_;
else if (input[1..$].equal("onst")) return TokenType.const_;
else if (input[1..$].equal("real")) return TokenType.creal_;
else break;
case 'd': if (input[1..$].equal("char")) return TokenType.dchar_;
else if (input[1..$].equal("ebug")) return TokenType.debug_; else break;
case 'f': if (input[1..$].equal("alse")) return TokenType.false_;
else if (input[1..$].equal("inal")) return TokenType.final_;
else if (input[1..$].equal("loat")) return TokenType.float_;
else break;
case 'i': if (input[1..$].equal("nout")) return TokenType.inout_;
else if (input[1..$].equal("real")) return TokenType.ireal_; else break;
case 'm': if (input[1..$].equal("acro")) return TokenType.macro_;
else if (input[1..$].equal("ixin")) return TokenType.mixin_; else break;
case 's': if (input[1..$].equal("cope")) return TokenType.scope_;
else if (input[1..$].equal("hort")) return TokenType.short_;
else if (input[1..$].equal("uper")) return TokenType.super_; else break;
case 't': if (input[1..$].equal("hrow")) return TokenType.throw_; else break;
case 'u': if (input[1..$].equal("byte")) return TokenType.ubyte_;
else if (input[1..$].equal("cent")) return TokenType.ucent_;
else if (input[1..$].equal("long")) return TokenType.ulong_;
else if (input[1..$].equal("nion")) return TokenType.union_;
else break;
case 'w': if (input[1..$].equal("char")) return TokenType.wchar_;
else if (input[1..$].equal("hile")) return TokenType.while_;
else break;
default: break;
}
break;
case 6:
switch (input[0])
{
case 'a': if (input[1..$].equal("ssert")) return TokenType.assert_; else break;
case 'c': if (input[1..$].equal("float")) return TokenType.cfloat_; else break;
case 'd': if (input[1..$].equal("elete")) return TokenType.delete_;
else if (input[1..$].equal("ouble")) return TokenType.double_; else break;
case 'e': if (input[1..$].equal("xport")) return TokenType.export_;
else if (input[1..$].equal("xtern")) return TokenType.extern_; else break;
case 'i': if (input[1..$].equal("float")) return TokenType.ifloat_;
else if (input[1..$].equal("mport")) return TokenType.import_; else break;
case 'm': if (input[1..$].equal("odule")) return TokenType.module_; else break;
case 'p': if (input[1..$].equal("ragma")) return TokenType.pragma_;
else if (input[1..$].equal("ublic")) return TokenType.public_; else break;
case 'r': if (input[1..$].equal("eturn")) return TokenType.return_; else break;
case 's': if (input[1..$].equal("hared")) return TokenType.shared_;
else if (input[1..$].equal("tatic")) return TokenType.static_;
else if (input[1..$].equal("truct")) return TokenType.struct_;
else if (input[1..$].equal("witch")) return TokenType.switch_; else break;
case 't': if (input[1..$].equal("ypeid")) return TokenType.typeid_;
else if (input[1..$].equal("ypeof")) return TokenType.typeof_; else break;
case 'u': if (input[1..$].equal("short")) return TokenType.ushort_; else break;
default: break;
}
break;
case 7:
switch (input[0])
{
case '_': if (input[1..$].equal("_EOF__")) return TokenType.eof; else break;
case 'c': if (input[1..$].equal("double")) return TokenType.cdouble_; else break;
case 'd': if (input[1..$].equal("efault")) return TokenType.default_; else break;
case 'f': if (input[1..$].equal("inally")) return TokenType.finally_;
else if (input[1..$].equal("oreach")) return TokenType.foreach_; else break;
case 'i': if (input[1..$].equal("double")) return TokenType.idouble_; else break;
case 'n': if (input[1..$].equal("othrow")) return TokenType.nothrow_; else break;
case 'p': if (input[1..$].equal("ackage")) return TokenType.package_;
else if (input[1..$].equal("rivate")) return TokenType.private_; else break;
case 't': if (input[1..$].equal("ypedef")) return TokenType.typedef_; else break;
case 'v': if (input[1..$].equal("ersion")) return TokenType.version_; else break;
default: break;
}
break;
case 8:
switch (input[0])
{
case '_': if (input[1..$].equal("_DATE__")) return TokenType.date;
else if (input[1..$].equal("_FILE__")) return TokenType.file;
else if (input[1..$].equal("_LINE__")) return TokenType.line;
else if (input[1..$].equal("_TIME__")) return TokenType.time;
else if (input[1..$].equal("_traits")) return TokenType.traits; else break;
case 'a': if (input[1..$].equal("bstract")) return TokenType.abstract_; else break;
case 'c': if (input[1..$].equal("ontinue")) return TokenType.continue_; else break;
case 'd': if (input[1..$].equal("elegate")) return TokenType.delegate_; else break;
case 'f': if (input[1..$].equal("unction")) return TokenType.function_; else break;
case 'o': if (input[1..$].equal("verride")) return TokenType.override_; else break;
case 't': if (input[1..$].equal("emplate")) return TokenType.template_; else break;
case 'u': if (input[1..$].equal("nittest")) return TokenType.unittest_; else break;
case 'v': if (input[1..$].equal("olatile")) return TokenType.volatile_; else break;
default: break;
}
break;
case 9:
switch (input[0])
{
case '_': if (input[1..$].equal("_gshared")) return TokenType.gshared; else break;
case 'i': if (input[1..$].equal("mmutable")) return TokenType.immutable_;
else if (input[1..$].equal("nterface")) return TokenType.interface_;
else if (input[1..$].equal("nvariant")) return TokenType.invariant_; else break;
case 'p': if (input[1..$].equal("rotected")) return TokenType.protected_; else break;
default: break;
}
break;
case 10:
switch (input[0])
{
case 'd': if (input[1..$].equal("eprecated")) return TokenType.deprecated_; else break;
case '_': if (input[1..$].equal("_VENDOR__")) return TokenType.vendor; else break;
default: break;
}
break;
case 11:
if (input[1..$].equal("_VERSION__"))
return TokenType.compilerVersion;
break;
case 12:
if (input[1..$].equal("ynchronized"))
return TokenType.synchronized_;
break;
case 13:
if (input[1..$].equal("_TIMESTAMP__"))
return TokenType.timestamp;
break;
case 15:
if (input[1..$].equal("oreach_reverse"))
return TokenType.foreach_reverse_;
break;
default: break;
}
return TokenType.identifier;
}
class Trie(K, V) if (isInputRange!K): TrieNode!(K, V)
{
/**
* Adds the given value to the trie with the given key
*/
void add(K key, V value) pure
{
TrieNode!(K,V) current = this;
foreach(keyPart; key)
{
if ((keyPart in current.children) is null)
{
auto node = new TrieNode!(K, V);
current.children[keyPart] = node;
current = node;
}
else
current = current.children[keyPart];
}
current.value = value;
}
}
class TrieNode(K, V) if (isInputRange!K)
{
V value;
TrieNode!(K,V)[ElementType!K] children;
}
string printCaseStatements(K, V)(TrieNode!(K,V) node, string indentString)
{
string caseStatement = "";
foreach(dchar k, TrieNode!(K,V) v; node.children)
{
caseStatement ~= indentString;
caseStatement ~= "case '";
caseStatement ~= k;
caseStatement ~= "':\n";
caseStatement ~= indentString;
caseStatement ~= "\tnextCharNonLF();\n";
if (v.children.length > 0)
{
caseStatement ~= indentString;
caseStatement ~= "\tif (isEoF())\n";
caseStatement ~= indentString;
caseStatement ~= "\t{\n";
caseStatement ~= indentString;
caseStatement ~= "\t\tcurrent.value = tokenValue!("~node.children[k].value~");\n";
caseStatement ~= indentString;
caseStatement ~= "\t\tcurrent.type = " ~ node.children[k].value;
caseStatement ~= ";\n";
caseStatement ~= indentString;
caseStatement ~= "\t\treturn;\n";
caseStatement ~= indentString;
caseStatement ~= "\t}\n";
caseStatement ~= indentString;
caseStatement ~= "\tswitch (src.front)\n";
caseStatement ~= indentString;
caseStatement ~= "\t{\n";
caseStatement ~= printCaseStatements(v, indentString ~ "\t");
caseStatement ~= indentString;
caseStatement ~= "\tdefault:\n";
caseStatement ~= indentString;
caseStatement ~= "\t\tcurrent.type = ";
caseStatement ~= v.value;
caseStatement ~= ";\n";
caseStatement ~= indentString;
caseStatement ~= "\t\tcurrent.value = tokenValue!("~v.value~");\n";
caseStatement ~= indentString;
caseStatement ~= "\t\treturn;\n";
caseStatement ~= indentString;
caseStatement ~= "\t}\n";
}
else
{
caseStatement ~= indentString;
caseStatement ~= "\tcurrent.type = ";
caseStatement ~= v.value;
caseStatement ~= ";\n";
caseStatement ~= indentString;
caseStatement ~= "\tcurrent.value = tokenValue!("~v.value~");\n";
caseStatement ~= indentString;
caseStatement ~= "\treturn;\n";
}
}
return caseStatement;
}
string generateCaseTrie(string[] args ...)
{
auto t = new Trie!(string, string);
for(int i = 0; i < args.length; i+=2)
{
t.add(args[i], args[i+1]);
}
return printCaseStatements(t, "");
}
struct StringCache
{
this(size_t startSize)
{
assert((startSize & (startSize-1)) == 0);
index = new Slot*[startSize];
}
string get(R)(R range)
if(isRandomAccessRange!R
&& is(Unqual!(ElementType!R) : const(ubyte)))
{
uint h = hash(range);
uint bucket = h & (index.length-1);
Slot *s = index[bucket];
if(s == null)
{
string str = putIntoCache(range);
index[bucket] = allocateSlot(str, h);
uniqueSlots++;
return str;
}
for(;;)
{
if(s.hash == h && s.value.equal(range))
return s.value;
if(s.next == null) break;
s = s.next;
}
string str = putIntoCache(range);
s.next = allocateSlot(str, h);
uniqueSlots++;
// had at least 1 item in this bucket
// and inserted another one - check load factor
if(uniqueSlots*loadDenom > index.length*loadQuot)
rehash();
return str;
}
private:
static uint hash(R)(R data)
{
uint hash = 0;
foreach (b; data)
{
hash ^= sbox[b];
hash *= 3;
}
return hash;
}
struct Slot
{
string value;
Slot* next;
uint hash;
};
void printLoadFactor()
{
size_t cnt = 0, maxChain = 0;
foreach(Slot* s; index)
{
size_t chain = 0;
for(Slot* p = s; p; p = p.next)
{
chain++;
}
maxChain = max(chain, maxChain);
cnt += chain;
}
import std.stdio;
assert(cnt == uniqueSlots);
writefln("Load factor: %.3f; max bucket %d",
cast(double)cnt/index.length,
maxChain);
}
void rehash()
{
//writefln("BEFORE (size = %d):", index.length);
//printLoadFactor();
size_t oldLen = index.length;
index.length *= 2;
for (size_t i = 0; i < oldLen; i++)
{
Slot* cur = index[i], prev;
while(cur)
{
//has extra bit set - move it out
if(cur.hash & oldLen)
{
if(prev == null)
{
Slot* r = cur;
index[i] = cur.next;
cur = cur.next;
insertIntoBucket(r, i + oldLen);
}
else
{
Slot* r = removeLink(cur, prev);
insertIntoBucket(r, i + oldLen);
}
}
else
{
prev = cur;
cur = cur.next;
}
}
}
//writefln("AFTER (size = %d):", index.length);
//printLoadFactor();
}
static Slot* removeLink(ref Slot* cur, Slot* prev)
{
prev.next = cur.next;
Slot* r = cur;
cur = cur.next;
return r;
}
//insert at front of bucket
void insertIntoBucket(Slot* what, size_t bucket)
{
what.next = null;
Slot* p = index[bucket];
what.next = p;
index[bucket] = what;
}
Slot* allocateSlot(string val, uint hash)
{
auto slice = allocateInCache(Slot.sizeof);
auto newSlot = cast(Slot*)slice.ptr;
*newSlot = Slot(val, null, hash);
return newSlot;
}
Slot*[] index;
size_t uniqueSlots;
enum loadQuot = 2, loadDenom = 3;
// leave some slack for alloctors/GC meta-data
enum chunkSize = 16*1024 - size_t.sizeof*8;
ubyte*[] chunkS;
size_t next = chunkSize;
//TODO: add aligned variant that allocates at word boundary
ubyte[] allocateInCache(size_t size)
{
import core.memory;
if(next + size > chunkSize)
{
// avoid huge allocations
if(size> chunkSize/4)
{
ubyte* p = cast(ubyte*)GC.malloc(size,
GC.BlkAttr.NO_SCAN);
return p[0..size];
}
chunkS ~= cast(ubyte*)GC.malloc(chunkSize,
GC.BlkAttr.NO_SCAN);
next = 0;
}
auto slice = chunkS[$-1][next..next+size];
next += size;
return slice;
}
string putIntoCache(R)(R data)
{
auto slice = allocateInCache(data.length);
slice[] = data[];
return cast(string)slice;
}
}
immutable uint[] sbox = [
0xF53E1837, 0x5F14C86B, 0x9EE3964C, 0xFA796D53,
0x32223FC3, 0x4D82BC98, 0xA0C7FA62, 0x63E2C982,
0x24994A5B, 0x1ECE7BEE, 0x292B38EF, 0xD5CD4E56,
0x514F4303, 0x7BE12B83, 0x7192F195, 0x82DC7300,
0x084380B4, 0x480B55D3, 0x5F430471, 0x13F75991,
0x3F9CF22C, 0x2FE0907A, 0xFD8E1E69, 0x7B1D5DE8,
0xD575A85C, 0xAD01C50A, 0x7EE00737, 0x3CE981E8,
0x0E447EFA, 0x23089DD6, 0xB59F149F, 0x13600EC7,
0xE802C8E6, 0x670921E4, 0x7207EFF0, 0xE74761B0,
0x69035234, 0xBFA40F19, 0xF63651A0, 0x29E64C26,
0x1F98CCA7, 0xD957007E, 0xE71DDC75, 0x3E729595,
0x7580B7CC, 0xD7FAF60B, 0x92484323, 0xA44113EB,
0xE4CBDE08, 0x346827C9, 0x3CF32AFA, 0x0B29BCF1,
0x6E29F7DF, 0xB01E71CB, 0x3BFBC0D1, 0x62EDC5B8,
0xB7DE789A, 0xA4748EC9, 0xE17A4C4F, 0x67E5BD03,
0xF3B33D1A, 0x97D8D3E9, 0x09121BC0, 0x347B2D2C,
0x79A1913C, 0x504172DE, 0x7F1F8483, 0x13AC3CF6,
0x7A2094DB, 0xC778FA12, 0xADF7469F, 0x21786B7B,
0x71A445D0, 0xA8896C1B, 0x656F62FB, 0x83A059B3,
0x972DFE6E, 0x4122000C, 0x97D9DA19, 0x17D5947B,
0xB1AFFD0C, 0x6EF83B97, 0xAF7F780B, 0x4613138A,
0x7C3E73A6, 0xCF15E03D, 0x41576322, 0x672DF292,
0xB658588D, 0x33EBEFA9, 0x938CBF06, 0x06B67381,
0x07F192C6, 0x2BDA5855, 0x348EE0E8, 0x19DBB6E3,
0x3222184B, 0xB69D5DBA, 0x7E760B88, 0xAF4D8154,
0x007A51AD, 0x35112500, 0xC9CD2D7D, 0x4F4FB761,
0x694772E3, 0x694C8351, 0x4A7E3AF5, 0x67D65CE1,
0x9287DE92, 0x2518DB3C, 0x8CB4EC06, 0xD154D38F,
0xE19A26BB, 0x295EE439, 0xC50A1104, 0x2153C6A7,
0x82366656, 0x0713BC2F, 0x6462215A, 0x21D9BFCE,
0xBA8EACE6, 0xAE2DF4C1, 0x2A8D5E80, 0x3F7E52D1,
0x29359399, 0xFEA1D19C, 0x18879313, 0x455AFA81,
0xFADFE838, 0x62609838, 0xD1028839, 0x0736E92F,
0x3BCA22A3, 0x1485B08A, 0x2DA7900B, 0x852C156D,
0xE8F24803, 0x00078472, 0x13F0D332, 0x2ACFD0CF,
0x5F747F5C, 0x87BB1E2F, 0xA7EFCB63, 0x23F432F0,
0xE6CE7C5C, 0x1F954EF6, 0xB609C91B, 0x3B4571BF,
0xEED17DC0, 0xE556CDA0, 0xA7846A8D, 0xFF105F94,
0x52B7CCDE, 0x0E33E801, 0x664455EA, 0xF2C70414,
0x73E7B486, 0x8F830661, 0x8B59E826, 0xBB8AEDCA,
0xF3D70AB9, 0xD739F2B9, 0x4A04C34A, 0x88D0F089,
0xE02191A2, 0xD89D9C78, 0x192C2749, 0xFC43A78F,
0x0AAC88CB, 0x9438D42D, 0x9E280F7A, 0x36063802,
0x38E8D018, 0x1C42A9CB, 0x92AAFF6C, 0xA24820C5,
0x007F077F, 0xCE5BC543, 0x69668D58, 0x10D6FF74,
0xBE00F621, 0x21300BBE, 0x2E9E8F46, 0x5ACEA629,
0xFA1F86C7, 0x52F206B8, 0x3EDF1A75, 0x6DA8D843,
0xCF719928, 0x73E3891F, 0xB4B95DD6, 0xB2A42D27,
0xEDA20BBF, 0x1A58DBDF, 0xA449AD03, 0x6DDEF22B,
0x900531E6, 0x3D3BFF35, 0x5B24ABA2, 0x472B3E4C,
0x387F2D75, 0x4D8DBA36, 0x71CB5641, 0xE3473F3F,
0xF6CD4B7F, 0xBF7D1428, 0x344B64D0, 0xC5CDFCB6,
0xFE2E0182, 0x2C37A673, 0xDE4EB7A3, 0x63FDC933,
0x01DC4063, 0x611F3571, 0xD167BFAF, 0x4496596F,
0x3DEE0689, 0xD8704910, 0x7052A114, 0x068C9EC5,
0x75D0E766, 0x4D54CC20, 0xB44ECDE2, 0x4ABC653E,
0x2C550A21, 0x1A52C0DB, 0xCFED03D0, 0x119BAFE2,
0x876A6133, 0xBC232088, 0x435BA1B2, 0xAE99BBFA,
0xBB4F08E4, 0xA62B5F49, 0x1DA4B695, 0x336B84DE,
0xDC813D31, 0x00C134FB, 0x397A98E6, 0x151F0E64,
0xD9EB3E69, 0xD3C7DF60, 0xD2F2C336, 0x2DDD067B,
0xBD122835, 0xB0B3BD3A, 0xB0D54E46, 0x8641F1E4,
0xA0B38F96, 0x51D39199, 0x37A6AD75, 0xDF84EE41,
0x3C034CBA, 0xACDA62FC, 0x11923B8B, 0x45EF170A,
];
unittest
{
LexerConfig cfg;
auto tkr = "void main(){ }".representation.byToken(cfg);
assert(tkr.map!"a.value".equal(["void", "main", "(", ")", "{", "}"]));
tkr = "1234 54.23232".representation.byToken(cfg);
assert(tkr.equal(["1234", "54.23232"]));
auto str = r"0 0. .0 1 0x3 0b102 007";
cfg.iterStyle = IterationStyle.everything;
tkr = str.representation.byToken(cfg);
assert(tkr.map!"a.value".equal(["0", " ", "0.", " ",
".0", " ", "1", " ", "0x3", " ", "0b10",
"2", " ", "007"]
), text(tkr.map!"a.value"));
}
unittest
{
import std.stdio;
auto source = cast(ubyte[]) (
" bool byte cdouble cent cfloat char creal dchar double float function"
~ " idouble ifloat int ireal long real short ubyte ucent uint ulong"
~ " ushort void wchar align deprecated extern pragma export package private"
~ " protected public abstract auto const final __gshared immutable inout"
~ " scope shared static synchronized alias asm assert body break case"
~ " cast catch class continue debug default delegate delete do else"
~ " enum false finally foreach foreach_reverse for goto if import in"
~ " interface invariant is lazy macro mixin module new nothrow null"
~ " out override pure ref return struct super switch template this"
~ " throw true try typedef typeid typeof union unittest version volatile"
~ " while with __traits __parameters __vector");
auto expected = ["bool", "byte", "cdouble",
"cent", "cfloat", "char", "creal",
"dchar", "double", "float", "function",
"idouble", "ifloat", "int", "ireal", "long",
"real", "short", "ubyte", "ucent", "uint",
"ulong", "ushort", "void", "wchar", "align",
"deprecated", "extern", "pragma", "export",
"package", "private", "protected", "public",
"abstract", "auto", "const", "final", "__gshared",
"immutable", "inout", "scope", "shared",
"static", "synchronized", "alias", "asm", "assert",
"body", "break", "case", "cast", "catch",
"class", "continue", "debug", "default", "delegate",
"delete", "do", "else", "enum", "false",
"finally", "foreach", "foreach_reverse", "for",
"goto", "if", "import", "in", "interface",
"invariant", "is", "lazy","macro", "mixin",
"module", "new", "nothrow", "null", "out",
"override", "pure", "ref", "return", "struct",
"super", "switch", "template", "this", "throw",
"true", "try", "typedef", "typeid", "typeof",
"union", "unittest", "version", "volatile",
"while", "with", "__traits", "__parameters", "__vector"];
LexerConfig config;
auto tokens = byToken(source, config);
//writeln(tokens.map!"a.value"().array());
assert (equal(map!"a.value"(tokens), expected));
}
unittest
{
auto source = cast(ubyte[]) ("=@& &=| |=~=:,--/ /=$.===>> >=++{[< <=<>=<>&&||(- -=%%=*=!!=!>!>=!<!<=!<>+ +=^^^^=}]);<< <<=>> >>=..*?~!<>=>>>>>>=...^ ^=");
auto expected = ["=", "@", "&", "&=", "|", "|=", "~=",
":", ",", "--", "/", "/=", "$", ".", "==",
"=>", ">", ">=", "++", "{", "[", "<",
"<=", "<>=", "<>", "&&", "||", "(", "-", "-=", "%",
"%=", "*=", "!", "!=", "!>", "!>=", "!<",
"!<=", "!<>", "+", "+=", "^^", "^^=",
"}", "]", ")", ";", "<<", "<<=", ">>",
">>=", "..", "*", "?", "~", "!<>=",
">>>", ">>>=", "...", "^", "^="];
LexerConfig config;
auto tokens = byToken(source, config);
//writeln(tokens.map!"a.value"().array());
assert (equal(map!"a.value"(tokens), expected), map!"a.value"(tokens).text());
}
unittest
{
auto source = cast(ubyte[]) (`
1 1.2 //comment
1.2f 1u 1uL 0b011 0b1uu 0b1 /+abc/+def+/+/0x11001uL
123e1L 123e+1f 123e-1i 15e++ 4ea 1.2u 4i 1337L 4.2L 1..2 4.3.5.8
0xabc 0xabcp4 0x1P-10 0x40u 0x29L 0x4Lu 0xdeadbeef
`);
auto expected = ["1", "1.2", "1.2f", "1u", "1uL", "0b011", "0b1u", "u", "0b1",
"0x11001uL", "123e1L", "123e+1f", "123e-1i", "15e+", "+", "4e", "a",
"1.2", "u", "4i", "1337L", "4.2L", "1", "..", "2", "4.3", ".5", ".8",
"0xabc", "0xabcp4", "0x1P-10", "0x40u", "0x29L", "0x4Lu", "0xdeadbeef"];
int errCount = 0;
void errorFunction(string file, size_t index, uint line, uint col, string msg)
{
++errCount;
}
LexerConfig config;
config.errorFunc = &errorFunction;
auto tokens = byToken(source, config);
//writeln(tokens.map!"a.value"());
assert (equal(map!"a.value"(tokens), expected), map!"a.value"(tokens).text());
assert (errCount == 2);
}
unittest
{
auto source = cast(ubyte[]) ("int #line 4\n double q{abcde (a + b) == 0} '\\u0020' q\"HEREDOC\r\nabcde\r\nHEREDOC\"");
LexerConfig config;
auto tokens = byToken(source, config);
assert (tokens.front.line == 1);
assert (tokens.moveFront() == TokenType.int_);
assert (tokens.front.line == 4);
assert (isType(tokens.front));
assert (tokens.front.value == "double");
tokens.popFront();
assert (tokens.front.value == "abcde (a + b) == 0", tokens.front.value);
assert (isStringLiteral(tokens.front), tokens.front.type.text());
tokens.popFront();
assert (tokens.front.value == " ");
assert (tokens.front.type == TokenType.characterLiteral);
tokens.popFront();
assert (tokens.front.value == "abcde\r\n", "[%s]".format(tokens.front.value));
}
unittest
{
auto source = cast(ubyte[]) "q{(a & 1) == 0} q\"/foo]/\" q\"HEREDOC\r\nabcde\r\nHEREDOC\"";
LexerConfig config;
config.tokenStyle = TokenStyle.includeQuotes;
auto tokens = byToken(source, config);
assert (tokens.front.value == "q{(a & 1) == 0}", tokens.front.value);
tokens.popFront();
assert (tokens.front.value == "q\"/foo]/\"", tokens.front.value);
tokens.popFront();
assert (tokens.front.value == "q\"HEREDOC\r\nabcde\r\nHEREDOC\"", tokens.front.value);
}
unittest
{
auto source = cast(ubyte[]) (`"string`);
int errCount = 0;
void errorFunction(string file, size_t index, uint line, uint col, string msg)
{
++errCount;
}
LexerConfig config;
config.errorFunc = &errorFunction;
auto tokens = byToken(source, config);
assert (errCount == 1);
}
unittest
{
auto source = cast(ubyte[]) ("import foo");
LexerConfig config;
auto tokens = byToken(source, config);
Token a = tokens.moveFront();
assert (a.type == TokenType.import_);
Token b = tokens.moveFront();
assert (b.type == TokenType.identifier);
assert (a != b);
assert (a != "foo");
assert (a < b);
assert (b == "foo");
assert (b > a);
assert (!(a > a));
assert (tokens.empty);
}
unittest
{
auto source = cast(ubyte[]) ("import std.stdio; void main(){writeln(\"hello world\");}");
LexerConfig config;
auto tokens = byToken(source, config);
int tokenCount = 0;
foreach (t; tokens)
{
++tokenCount;
}
assert (tokenCount == 16);
}
//void main(string[] args){}