iup-stack/fftw/genfft/c.ml

462 lines
15 KiB
OCaml

(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(*
* This module contains the definition of a C-like abstract
* syntax tree, and functions to convert ML values into C
* programs
*)
open Expr
open Annotate
open List
let realtype = "R"
let realtypep = realtype ^ " *"
let extended_realtype = "E"
let constrealtype = "const " ^ realtype
let constrealtypep = constrealtype ^ " *"
let stridetype = "stride"
(***********************************
* C program structure
***********************************)
type c_decl =
| Decl of string * string
| Tdecl of string (* arbitrary text declaration *)
and c_ast =
| Asch of annotated_schedule
| Simd_leavefun
| Return of c_ast
| For of c_ast * c_ast * c_ast * c_ast
| If of c_ast * c_ast
| Block of (c_decl list) * (c_ast list)
| Binop of string * c_ast * c_ast
| Expr_assign of c_ast * c_ast
| Stmt_assign of c_ast * c_ast
| Comma of c_ast * c_ast
| Integer of int
| CVar of string
| CCall of string * c_ast
| CPlus of c_ast list
| ITimes of c_ast * c_ast
| CUminus of c_ast
and c_fcn = Fcn of string * string * (c_decl list) * c_ast
let ctimes = function
| (Integer 1), a -> a
| a, (Integer 1) -> a
| a, b -> ITimes (a, b)
(*
* C AST unparser
*)
let foldr_string_concat l = fold_right (^) l ""
let rec unparse_expr_c =
let yes x = x and no x = "" in
let rec unparse_plus maybe =
let maybep = maybe " + " in
function
| [] -> ""
| (Uminus (Times (a, b))) :: (Uminus c) :: d ->
maybep ^ (op "FNMA" a b c) ^ (unparse_plus yes d)
| (Uminus c) :: (Uminus (Times (a, b))) :: d ->
maybep ^ (op "FNMA" a b c) ^ (unparse_plus yes d)
| (Uminus (Times (a, b))) :: c :: d ->
maybep ^ (op "FNMS" a b c) ^ (unparse_plus yes d)
| c :: (Uminus (Times (a, b))) :: d ->
maybep ^ (op "FNMS" a b c) ^ (unparse_plus yes d)
| (Times (a, b)) :: (Uminus c) :: d ->
maybep ^ (op "FMS" a b c) ^ (unparse_plus yes d)
| (Uminus c) :: (Times (a, b)) :: d ->
maybep ^ (op "FMS" a b c) ^ (unparse_plus yes d)
| (Times (a, b)) :: c :: d ->
maybep ^ (op "FMA" a b c) ^ (unparse_plus yes d)
| c :: (Times (a, b)) :: d ->
maybep ^ (op "FMA" a b c) ^ (unparse_plus yes d)
| (Uminus a :: b) ->
" - " ^ (parenthesize a) ^ (unparse_plus yes b)
| (a :: b) ->
maybep ^ (parenthesize a) ^ (unparse_plus yes b)
and parenthesize x = match x with
| (Load _) -> unparse_expr_c x
| (Num _) -> unparse_expr_c x
| _ -> "(" ^ (unparse_expr_c x) ^ ")"
and op nam a b c =
nam ^ "(" ^ (unparse_expr_c a) ^ ", " ^ (unparse_expr_c b) ^ ", " ^
(unparse_expr_c c) ^ ")"
in function
| Load v -> Variable.unparse v
| Num n -> Number.to_konst n
| Plus [] -> "0.0 /* bug */"
| Plus [a] -> " /* bug */ " ^ (unparse_expr_c a)
| Plus a -> (unparse_plus no a)
| Times (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)
| Uminus (Plus [a; Uminus b]) -> unparse_plus no [b; Uminus a]
| Uminus a -> "- " ^ (parenthesize a)
| _ -> failwith "unparse_expr_c"
and unparse_expr_generic =
let rec u x = unparse_expr_generic x
and unary op a = Printf.sprintf "%s(%s)" op (u a)
and binary op a b = Printf.sprintf "%s(%s, %s)" op (u a) (u b)
and ternary op a b c = Printf.sprintf "%s(%s, %s, %s)" op (u a) (u b) (u c)
and quaternary op a b c d =
Printf.sprintf "%s(%s, %s, %s, %s)" op (u a) (u b) (u c) (u d)
and unparse_plus = function
| [(Uminus (Times (a, b))); Times (c, d)] -> quaternary "FNMMS" a b c d
| [Times (c, d); (Uminus (Times (a, b)))] -> quaternary "FNMMS" a b c d
| [Times (c, d); (Times (a, b))] -> quaternary "FMMA" a b c d
| [(Uminus (Times (a, b))); c] -> ternary "FNMS" a b c
| [c; (Uminus (Times (a, b)))] -> ternary "FNMS" a b c
| [(Uminus c); (Times (a, b))] -> ternary "FMS" a b c
| [(Times (a, b)); (Uminus c)] -> ternary "FMS" a b c
| [c; (Times (a, b))] -> ternary "FMA" a b c
| [(Times (a, b)); c] -> ternary "FMA" a b c
| [a; Uminus b] -> binary "SUB" a b
| [a; b] -> binary "ADD" a b
| a :: b :: c -> binary "ADD" a (Plus (b :: c))
| _ -> failwith "unparse_plus"
in function
| Load v -> Variable.unparse v
| Num n -> Number.to_konst n
| Plus a -> unparse_plus a
| Times (a, b) -> binary "MUL" a b
| Uminus a -> unary "NEG" a
| _ -> failwith "unparse_expr"
and unparse_expr x =
if !Magic.generic_arith then
unparse_expr_generic x
else
unparse_expr_c x
and unparse_assignment (Assign (v, x)) =
(Variable.unparse v) ^ " = " ^ (unparse_expr x) ^ ";\n"
and unparse_annotated force_bracket =
let rec unparse_code = function
ADone -> ""
| AInstr i -> unparse_assignment i
| ASeq (a, b) ->
(unparse_annotated false a) ^ (unparse_annotated false b)
and declare_variables l =
let rec uvar = function
[] -> failwith "uvar"
| [v] -> (Variable.unparse v) ^ ";\n"
| a :: b -> (Variable.unparse a) ^ ", " ^ (uvar b)
in let rec vvar l =
let s = if !Magic.compact then 15 else 1 in
if (List.length l <= s) then
match l with
[] -> ""
| _ -> extended_realtype ^ " " ^ (uvar l)
else
(vvar (Util.take s l)) ^ (vvar (Util.drop s l))
in vvar (List.filter Variable.is_temporary l)
in function
Annotate (_, _, decl, _, code) ->
if (not force_bracket) && (Util.null decl) then
unparse_code code
else "{\n" ^
(declare_variables decl) ^
(unparse_code code) ^
"}\n"
and unparse_decl = function
| Decl (a, b) -> a ^ " " ^ b ^ ";\n"
| Tdecl x -> x
and unparse_ast =
let rec unparse_plus = function
| [] -> ""
| (CUminus a :: b) -> " - " ^ (parenthesize a) ^ (unparse_plus b)
| (a :: b) -> " + " ^ (parenthesize a) ^ (unparse_plus b)
and parenthesize x = match x with
| (CVar _) -> unparse_ast x
| (CCall _) -> unparse_ast x
| (Integer _) -> unparse_ast x
| _ -> "(" ^ (unparse_ast x) ^ ")"
in
function
| Asch a -> (unparse_annotated true a)
| Simd_leavefun -> "" (* used only in SIMD code *)
| Return x -> "return " ^ unparse_ast x ^ ";"
| For (a, b, c, d) ->
"for (" ^
unparse_ast a ^ "; " ^ unparse_ast b ^ "; " ^ unparse_ast c
^ ")" ^ unparse_ast d
| If (a, d) ->
"if (" ^
unparse_ast a
^ ")" ^ unparse_ast d
| Block (d, s) ->
if (s == []) then ""
else
"{\n" ^
foldr_string_concat (map unparse_decl d) ^
foldr_string_concat (map unparse_ast s) ^
"}\n"
| Binop (op, a, b) -> (unparse_ast a) ^ op ^ (unparse_ast b)
| Expr_assign (a, b) -> (unparse_ast a) ^ " = " ^ (unparse_ast b)
| Stmt_assign (a, b) -> (unparse_ast a) ^ " = " ^ (unparse_ast b) ^ ";\n"
| Comma (a, b) -> (unparse_ast a) ^ ", " ^ (unparse_ast b)
| Integer i -> string_of_int i
| CVar s -> s
| CCall (s, x) -> s ^ "(" ^ (unparse_ast x) ^ ")"
| CPlus [] -> "0 /* bug */"
| CPlus [a] -> " /* bug */ " ^ (unparse_ast a)
| CPlus (a::b) -> (parenthesize a) ^ (unparse_plus b)
| ITimes (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)
| CUminus a -> "- " ^ (parenthesize a)
and unparse_function = function
Fcn (typ, name, args, body) ->
let rec unparse_args = function
[Decl (a, b)] -> a ^ " " ^ b
| (Decl (a, b)) :: s -> a ^ " " ^ b ^ ", "
^ unparse_args s
| [] -> ""
| _ -> failwith "unparse_function"
in
(typ ^ " " ^ name ^ "(" ^ unparse_args args ^ ")\n" ^
unparse_ast body)
(*************************************************************
* traverse a a function and return a list of all expressions,
* in the execution order
**************************************************************)
let rec fcn_to_expr_list = fun (Fcn (_, _, _, body)) -> ast_to_expr_list body
and acode_to_expr_list = function
AInstr (Assign (_, x)) -> [x]
| ASeq (a, b) ->
(asched_to_expr_list a) @ (asched_to_expr_list b)
| _ -> []
and asched_to_expr_list (Annotate (_, _, _, _, code)) =
acode_to_expr_list code
and ast_to_expr_list = function
Asch a -> asched_to_expr_list a
| Block (_, a) -> flatten (map ast_to_expr_list a)
| For (_, _, _, body) -> ast_to_expr_list body
| If (_, body) -> ast_to_expr_list body
| _ -> []
(***********************
* Extracting Constants
***********************)
(* add a new key & value to a list of (key,value) pairs, where
the keys are floats and each key is unique up to almost_equal *)
let extract_constants f =
let constlist = flatten (map expr_to_constants (ast_to_expr_list f))
in map
(fun n ->
Tdecl
("DK(" ^ (Number.to_konst n) ^ ", " ^ (Number.to_string n) ^
");\n"))
(unique_constants constlist)
(******************************
Extracting operation counts
******************************)
let count_stack_vars =
let rec count_acode = function
| ASeq (a, b) -> max (count_asched a) (count_asched b)
| _ -> 0
and count_asched (Annotate (_, _, decl, _, code)) =
(length decl) + (count_acode code)
and count_ast = function
| Asch a -> count_asched a
| Block (d, a) -> (length d) + (Util.max_list (map count_ast a))
| For (_, _, _, body) -> count_ast body
| If (_, body) -> count_ast body
| _ -> 0
in function (Fcn (_, _, _, body)) -> count_ast body
let count_memory_acc f =
let rec count_var v =
if (Variable.is_locative v) then 1 else 0
and count_acode = function
| AInstr (Assign (v, _)) -> count_var v
| ASeq (a, b) -> (count_asched a) + (count_asched b)
| _ -> 0
and count_asched = function
Annotate (_, _, _, _, code) -> count_acode code
and count_ast = function
| Asch a -> count_asched a
| Block (_, a) -> (Util.sum_list (map count_ast a))
| Comma (a, b) -> (count_ast a) + (count_ast b)
| For (_, _, _, body) -> count_ast body
| If (_, body) -> count_ast body
| _ -> 0
and count_acc_expr_func acc = function
| Load v -> acc + (count_var v)
| Plus a -> fold_left count_acc_expr_func acc a
| Times (a, b) -> fold_left count_acc_expr_func acc [a; b]
| Uminus a -> count_acc_expr_func acc a
| _ -> acc
in let (Fcn (typ, name, args, body)) = f
in (count_ast body) +
fold_left count_acc_expr_func 0 (fcn_to_expr_list f)
let good_for_fma = To_alist.good_for_fma
let build_fma = function
| [a; Times (b, c)] when good_for_fma (b, c) -> Some (a, b, c)
| [Times (b, c); a] when good_for_fma (b, c) -> Some (a, b, c)
| [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> Some (a, b, c)
| [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> Some (a, b, c)
| _ -> None
let rec count_flops_expr_func (adds, mults, fmas) = function
| Plus [] -> (adds, mults, fmas)
| Plus ([_; _] as a) ->
begin
match build_fma a with
| None ->
fold_left count_flops_expr_func
(adds + (length a) - 1, mults, fmas) a
| Some (a, b, c) ->
fold_left count_flops_expr_func (adds, mults, fmas+1) [a; b; c]
end
| Plus (a :: b) ->
count_flops_expr_func (adds, mults, fmas) (Plus [a; Plus b])
| Times (NaN MULTI_A,_) -> (adds, mults, fmas)
| Times (NaN MULTI_B,_) -> (adds, mults, fmas)
| Times (NaN I,b) -> count_flops_expr_func (adds, mults, fmas) b
| Times (NaN CONJ,b) -> count_flops_expr_func (adds, mults, fmas) b
| Times (a,b) -> fold_left count_flops_expr_func (adds, mults+1, fmas) [a; b]
| CTimes (a,b) ->
fold_left count_flops_expr_func (adds+1, mults+2, fmas) [a; b]
| CTimesJ (a,b) ->
fold_left count_flops_expr_func (adds+1, mults+2, fmas) [a; b]
| Uminus a -> count_flops_expr_func (adds, mults, fmas) a
| _ -> (adds, mults, fmas)
let count_flops f =
fold_left count_flops_expr_func (0, 0, 0) (fcn_to_expr_list f)
let count_constants f =
length (unique_constants (flatten (map expr_to_constants (fcn_to_expr_list f))))
let arith_complexity f =
let (a, m, fmas) = count_flops f
and v = count_stack_vars f
and c = count_constants f
and mem = count_memory_acc f
in (a, m, fmas, v, c, mem)
(* print the operation costs *)
let print_cost f =
let Fcn (_, _, _, _) = f
and (a, m, fmas, v, c, mem) = arith_complexity f
in
"/*\n"^
" * This function contains " ^
(string_of_int (a + fmas)) ^ " FP additions, " ^
(string_of_int (m + fmas)) ^ " FP multiplications,\n" ^
" * (or, " ^
(string_of_int a) ^ " additions, " ^
(string_of_int m) ^ " multiplications, " ^
(string_of_int fmas) ^ " fused multiply/add),\n" ^
" * " ^ (string_of_int v) ^ " stack variables, " ^
(string_of_int c) ^ " constants, and " ^
(string_of_int mem) ^ " memory accesses\n" ^
" */\n"
(*****************************************
* functions that create C arrays
*****************************************)
type stride =
| SVar of string
| SConst of string
| SInteger of int
| SNeg of stride
type sstride =
| Simple of int
| Constant of (string * int)
| Composite of (string * int)
| Negative of sstride
let rec simplify_stride stride i =
match (stride, i) with
(_, 0) -> Simple 0
| (SInteger n, i) -> Simple (n * i)
| (SConst s, i) -> Constant (s, i)
| (SVar s, i) -> Composite (s, i)
| (SNeg x, i) ->
match (simplify_stride x i) with
| Negative y -> y
| y -> Negative y
let rec cstride_to_string = function
| Simple i -> string_of_int i
| Constant (s, i) ->
if !Magic.lisp_syntax then
"(* " ^ s ^ " " ^ (string_of_int i) ^ ")"
else
s ^ " * " ^ (string_of_int i)
| Composite (s, i) ->
if !Magic.lisp_syntax then
"(* " ^ s ^ " " ^ (string_of_int i) ^ ")"
else
"WS(" ^ s ^ ", " ^ (string_of_int i) ^ ")"
| Negative x -> "-" ^ cstride_to_string x
let aref name index =
if !Magic.lisp_syntax then
Printf.sprintf "(aref %s %s)" name index
else
Printf.sprintf "%s[%s]" name index
let array_subscript name stride k =
aref name (cstride_to_string (simplify_stride stride k))
let varray_subscript name vstride stride v i =
let vindex = simplify_stride vstride v
and iindex = simplify_stride stride i
in
let index =
match (vindex, iindex) with
(Simple vi, Simple ii) -> string_of_int (vi + ii)
| (Simple 0, x) -> cstride_to_string x
| (x, Simple 0) -> cstride_to_string x
| _ -> (cstride_to_string vindex) ^ " + " ^ (cstride_to_string iindex)
in aref name index
let real_of s = "c_re(" ^ s ^ ")"
let imag_of s = "c_im(" ^ s ^ ")"
let flops_of f =
let (add, mul, fma) = count_flops f in
Printf.sprintf "{ %d, %d, %d, 0 }" add mul fma