iup-stack/fftw/rdft/scalar/r2r/e01_8.c

188 lines
6.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:21 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2r.native -fma -compact -variables 4 -pipeline-latency 4 -redft01 -n 8 -name e01_8 -include rdft/scalar/r2r.h */
/*
* This function contains 26 FP additions, 24 FP multiplications,
* (or, 2 additions, 0 multiplications, 24 fused multiply/add),
* 27 stack variables, 8 constants, and 16 memory accesses
*/
#include "rdft/scalar/r2r.h"
static void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
{
INT i;
for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
E T3, Tj, T6, Tk, Tc, Tn, Tf, Tm;
{
E T1, T2, T4, T5;
T1 = I[0];
T2 = I[WS(is, 4)];
T3 = FMA(KP1_414213562, T2, T1);
Tj = FNMS(KP1_414213562, T2, T1);
T4 = I[WS(is, 2)];
T5 = I[WS(is, 6)];
T6 = FMA(KP414213562, T5, T4);
Tk = FMS(KP414213562, T4, T5);
{
E T8, Td, Tb, Te, T9, Ta;
T8 = I[WS(is, 1)];
Td = I[WS(is, 7)];
T9 = I[WS(is, 5)];
Ta = I[WS(is, 3)];
Tb = T9 + Ta;
Te = Ta - T9;
Tc = FMA(KP707106781, Tb, T8);
Tn = FNMS(KP707106781, Te, Td);
Tf = FMA(KP707106781, Te, Td);
Tm = FNMS(KP707106781, Tb, T8);
}
}
{
E T7, Tg, Tp, Tq;
T7 = FMA(KP1_847759065, T6, T3);
Tg = FMA(KP198912367, Tf, Tc);
O[WS(os, 7)] = FNMS(KP1_961570560, Tg, T7);
O[0] = FMA(KP1_961570560, Tg, T7);
Tp = FNMS(KP1_847759065, Tk, Tj);
Tq = FMA(KP668178637, Tm, Tn);
O[WS(os, 5)] = FNMS(KP1_662939224, Tq, Tp);
O[WS(os, 2)] = FMA(KP1_662939224, Tq, Tp);
}
{
E Th, Ti, Tl, To;
Th = FNMS(KP1_847759065, T6, T3);
Ti = FNMS(KP198912367, Tc, Tf);
O[WS(os, 3)] = FNMS(KP1_961570560, Ti, Th);
O[WS(os, 4)] = FMA(KP1_961570560, Ti, Th);
Tl = FMA(KP1_847759065, Tk, Tj);
To = FNMS(KP668178637, Tn, Tm);
O[WS(os, 6)] = FNMS(KP1_662939224, To, Tl);
O[WS(os, 1)] = FMA(KP1_662939224, To, Tl);
}
}
}
}
static const kr2r_desc desc = { 8, "e01_8", { 2, 0, 24, 0 }, &GENUS, REDFT01 };
void X(codelet_e01_8) (planner *p) { X(kr2r_register) (p, e01_8, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2r.native -compact -variables 4 -pipeline-latency 4 -redft01 -n 8 -name e01_8 -include rdft/scalar/r2r.h */
/*
* This function contains 26 FP additions, 15 FP multiplications,
* (or, 20 additions, 9 multiplications, 6 fused multiply/add),
* 28 stack variables, 8 constants, and 16 memory accesses
*/
#include "rdft/scalar/r2r.h"
static void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
DK(KP390180644, +0.390180644032256535696569736954044481855383236);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP765366864, +0.765366864730179543456919968060797733522689125);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
{
INT i;
for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
E T7, Tl, T4, Tk, Td, To, Tg, Tn;
{
E T5, T6, T1, T3, T2;
T5 = I[WS(is, 2)];
T6 = I[WS(is, 6)];
T7 = FMA(KP1_847759065, T5, KP765366864 * T6);
Tl = FNMS(KP1_847759065, T6, KP765366864 * T5);
T1 = I[0];
T2 = I[WS(is, 4)];
T3 = KP1_414213562 * T2;
T4 = T1 + T3;
Tk = T1 - T3;
{
E T9, Tf, Tc, Te, Ta, Tb;
T9 = I[WS(is, 1)];
Tf = I[WS(is, 7)];
Ta = I[WS(is, 5)];
Tb = I[WS(is, 3)];
Tc = KP707106781 * (Ta + Tb);
Te = KP707106781 * (Ta - Tb);
Td = T9 + Tc;
To = Te + Tf;
Tg = Te - Tf;
Tn = T9 - Tc;
}
}
{
E T8, Th, Tq, Tr;
T8 = T4 + T7;
Th = FNMS(KP390180644, Tg, KP1_961570560 * Td);
O[WS(os, 7)] = T8 - Th;
O[0] = T8 + Th;
Tq = Tk - Tl;
Tr = FMA(KP1_111140466, Tn, KP1_662939224 * To);
O[WS(os, 5)] = Tq - Tr;
O[WS(os, 2)] = Tq + Tr;
}
{
E Ti, Tj, Tm, Tp;
Ti = T4 - T7;
Tj = FMA(KP390180644, Td, KP1_961570560 * Tg);
O[WS(os, 4)] = Ti - Tj;
O[WS(os, 3)] = Ti + Tj;
Tm = Tk + Tl;
Tp = FNMS(KP1_111140466, To, KP1_662939224 * Tn);
O[WS(os, 6)] = Tm - Tp;
O[WS(os, 1)] = Tm + Tp;
}
}
}
}
static const kr2r_desc desc = { 8, "e01_8", { 20, 9, 6, 0 }, &GENUS, REDFT01 };
void X(codelet_e01_8) (planner *p) { X(kr2r_register) (p, e01_8, &desc);
}
#endif