iup-stack/fftw/rdft/scalar/r2cf/r2cf_32.c

611 lines
17 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:11 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */
/*
* This function contains 156 FP additions, 68 FP multiplications,
* (or, 88 additions, 0 multiplications, 68 fused multiply/add),
* 54 stack variables, 7 constants, and 64 memory accesses
*/
#include "rdft/scalar/r2cf.h"
static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
E T7, T2b, Tv, T1h, Te, T2n, Ty, T1i, Tt, T2d, TF, T1l, Tm, T2c, TC;
E T1k, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z;
E TS, T1y;
{
E T1, T2, T3, T4, T5, T6;
T1 = R0[0];
T2 = R0[WS(rs, 8)];
T3 = T1 + T2;
T4 = R0[WS(rs, 4)];
T5 = R0[WS(rs, 12)];
T6 = T4 + T5;
T7 = T3 + T6;
T2b = T3 - T6;
Tv = T1 - T2;
T1h = T4 - T5;
}
{
E Ta, Tw, Td, Tx;
{
E T8, T9, Tb, Tc;
T8 = R0[WS(rs, 2)];
T9 = R0[WS(rs, 10)];
Ta = T8 + T9;
Tw = T8 - T9;
Tb = R0[WS(rs, 14)];
Tc = R0[WS(rs, 6)];
Td = Tb + Tc;
Tx = Tb - Tc;
}
Te = Ta + Td;
T2n = Td - Ta;
Ty = Tw + Tx;
T1i = Tx - Tw;
}
{
E Tp, TD, Ts, TE;
{
E Tn, To, Tq, Tr;
Tn = R0[WS(rs, 15)];
To = R0[WS(rs, 7)];
Tp = Tn + To;
TD = Tn - To;
Tq = R0[WS(rs, 3)];
Tr = R0[WS(rs, 11)];
Ts = Tq + Tr;
TE = Tq - Tr;
}
Tt = Tp + Ts;
T2d = Tp - Ts;
TF = FMA(KP414213562, TE, TD);
T1l = FNMS(KP414213562, TD, TE);
}
{
E Ti, TA, Tl, TB;
{
E Tg, Th, Tj, Tk;
Tg = R0[WS(rs, 1)];
Th = R0[WS(rs, 9)];
Ti = Tg + Th;
TA = Tg - Th;
Tj = R0[WS(rs, 5)];
Tk = R0[WS(rs, 13)];
Tl = Tj + Tk;
TB = Tj - Tk;
}
Tm = Ti + Tl;
T2c = Ti - Tl;
TC = FNMS(KP414213562, TB, TA);
T1k = FMA(KP414213562, TA, TB);
}
{
E T11, T1X, T1c, T1Y, T14, T20, T17, T21, T1d, T18;
{
E TZ, T10, T1a, T1b;
TZ = R1[WS(rs, 15)];
T10 = R1[WS(rs, 7)];
T11 = TZ - T10;
T1X = TZ + T10;
T1a = R1[WS(rs, 11)];
T1b = R1[WS(rs, 3)];
T1c = T1a - T1b;
T1Y = T1b + T1a;
}
{
E T12, T13, T15, T16;
T12 = R1[WS(rs, 1)];
T13 = R1[WS(rs, 9)];
T14 = T12 - T13;
T20 = T12 + T13;
T15 = R1[WS(rs, 13)];
T16 = R1[WS(rs, 5)];
T17 = T15 - T16;
T21 = T15 + T16;
}
T1Z = T1X + T1Y;
T22 = T20 + T21;
T2k = T21 - T20;
T2j = T1X - T1Y;
T1d = T17 - T14;
T1e = FMA(KP707106781, T1d, T1c);
T1C = FNMS(KP707106781, T1d, T1c);
T18 = T14 + T17;
T19 = FMA(KP707106781, T18, T11);
T1B = FNMS(KP707106781, T18, T11);
}
{
E TK, T1Q, TV, T1R, TN, T1T, TQ, T1U, TW, TR;
{
E TI, TJ, TT, TU;
TI = R1[0];
TJ = R1[WS(rs, 8)];
TK = TI - TJ;
T1Q = TI + TJ;
TT = R1[WS(rs, 4)];
TU = R1[WS(rs, 12)];
TV = TT - TU;
T1R = TT + TU;
}
{
E TL, TM, TO, TP;
TL = R1[WS(rs, 2)];
TM = R1[WS(rs, 10)];
TN = TL - TM;
T1T = TL + TM;
TO = R1[WS(rs, 14)];
TP = R1[WS(rs, 6)];
TQ = TO - TP;
T1U = TO + TP;
}
T1S = T1Q + T1R;
T1V = T1T + T1U;
T2h = T1U - T1T;
T2g = T1Q - T1R;
TW = TN - TQ;
TX = FMA(KP707106781, TW, TV);
T1z = FNMS(KP707106781, TW, TV);
TR = TN + TQ;
TS = FMA(KP707106781, TR, TK);
T1y = FNMS(KP707106781, TR, TK);
}
{
E Tf, Tu, T27, T28, T29, T2a;
Tf = T7 + Te;
Tu = Tm + Tt;
T27 = Tf + Tu;
T28 = T1S + T1V;
T29 = T1Z + T22;
T2a = T28 + T29;
Cr[WS(csr, 8)] = Tf - Tu;
Ci[WS(csi, 8)] = T29 - T28;
Cr[WS(csr, 16)] = T27 - T2a;
Cr[0] = T27 + T2a;
}
{
E T1P, T25, T24, T26, T1W, T23;
T1P = T7 - Te;
T25 = Tt - Tm;
T1W = T1S - T1V;
T23 = T1Z - T22;
T24 = T1W + T23;
T26 = T23 - T1W;
Cr[WS(csr, 12)] = FNMS(KP707106781, T24, T1P);
Ci[WS(csi, 12)] = FMS(KP707106781, T26, T25);
Cr[WS(csr, 4)] = FMA(KP707106781, T24, T1P);
Ci[WS(csi, 4)] = FMA(KP707106781, T26, T25);
}
{
E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2o;
T2e = T2c + T2d;
T2f = FMA(KP707106781, T2e, T2b);
T2v = FNMS(KP707106781, T2e, T2b);
T2o = T2d - T2c;
T2p = FNMS(KP707106781, T2o, T2n);
T2r = FMA(KP707106781, T2o, T2n);
{
E T2i, T2l, T2s, T2t;
T2i = FMA(KP414213562, T2h, T2g);
T2l = FNMS(KP414213562, T2k, T2j);
T2m = T2i + T2l;
T2q = T2l - T2i;
T2s = FNMS(KP414213562, T2g, T2h);
T2t = FMA(KP414213562, T2j, T2k);
T2u = T2s + T2t;
T2w = T2t - T2s;
}
Cr[WS(csr, 14)] = FNMS(KP923879532, T2m, T2f);
Ci[WS(csi, 14)] = FMS(KP923879532, T2u, T2r);
Cr[WS(csr, 2)] = FMA(KP923879532, T2m, T2f);
Ci[WS(csi, 2)] = FMA(KP923879532, T2u, T2r);
Ci[WS(csi, 6)] = FMS(KP923879532, T2q, T2p);
Cr[WS(csr, 6)] = FMA(KP923879532, T2w, T2v);
Ci[WS(csi, 10)] = FMA(KP923879532, T2q, T2p);
Cr[WS(csr, 10)] = FNMS(KP923879532, T2w, T2v);
}
{
E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p;
{
E Tz, TG, T1q, T1r;
Tz = FMA(KP707106781, Ty, Tv);
TG = TC + TF;
TH = FMA(KP923879532, TG, Tz);
T1t = FNMS(KP923879532, TG, Tz);
T1q = FMA(KP198912367, T19, T1e);
T1r = FMA(KP198912367, TS, TX);
T1s = T1q - T1r;
T1u = T1r + T1q;
}
{
E TY, T1f, T1j, T1m;
TY = FNMS(KP198912367, TX, TS);
T1f = FNMS(KP198912367, T1e, T19);
T1g = TY + T1f;
T1o = T1f - TY;
T1j = FNMS(KP707106781, T1i, T1h);
T1m = T1k + T1l;
T1n = FNMS(KP923879532, T1m, T1j);
T1p = FMA(KP923879532, T1m, T1j);
}
Cr[WS(csr, 15)] = FNMS(KP980785280, T1g, TH);
Ci[WS(csi, 15)] = FMA(KP980785280, T1s, T1p);
Cr[WS(csr, 1)] = FMA(KP980785280, T1g, TH);
Ci[WS(csi, 1)] = FMS(KP980785280, T1s, T1p);
Ci[WS(csi, 7)] = FMA(KP980785280, T1o, T1n);
Cr[WS(csr, 7)] = FMA(KP980785280, T1u, T1t);
Ci[WS(csi, 9)] = FMS(KP980785280, T1o, T1n);
Cr[WS(csr, 9)] = FNMS(KP980785280, T1u, T1t);
}
{
E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J;
{
E T1v, T1w, T1K, T1L;
T1v = FNMS(KP707106781, Ty, Tv);
T1w = T1k - T1l;
T1x = FMA(KP923879532, T1w, T1v);
T1N = FNMS(KP923879532, T1w, T1v);
T1K = FNMS(KP668178637, T1y, T1z);
T1L = FNMS(KP668178637, T1B, T1C);
T1M = T1K - T1L;
T1O = T1K + T1L;
}
{
E T1A, T1D, T1F, T1G;
T1A = FMA(KP668178637, T1z, T1y);
T1D = FMA(KP668178637, T1C, T1B);
T1E = T1A + T1D;
T1I = T1D - T1A;
T1F = FMA(KP707106781, T1i, T1h);
T1G = TF - TC;
T1H = FNMS(KP923879532, T1G, T1F);
T1J = FMA(KP923879532, T1G, T1F);
}
Cr[WS(csr, 13)] = FNMS(KP831469612, T1E, T1x);
Ci[WS(csi, 13)] = FMS(KP831469612, T1M, T1J);
Cr[WS(csr, 3)] = FMA(KP831469612, T1E, T1x);
Ci[WS(csi, 3)] = FMA(KP831469612, T1M, T1J);
Ci[WS(csi, 5)] = FMS(KP831469612, T1I, T1H);
Cr[WS(csr, 5)] = FNMS(KP831469612, T1O, T1N);
Ci[WS(csi, 11)] = FMA(KP831469612, T1I, T1H);
Cr[WS(csr, 11)] = FMA(KP831469612, T1O, T1N);
}
}
}
}
static const kr2c_desc desc = { 32, "r2cf_32", { 88, 0, 68, 0 }, &GENUS };
void X(codelet_r2cf_32) (planner *p) { X(kr2c_register) (p, r2cf_32, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */
/*
* This function contains 156 FP additions, 42 FP multiplications,
* (or, 140 additions, 26 multiplications, 16 fused multiply/add),
* 54 stack variables, 7 constants, and 64 memory accesses
*/
#include "rdft/scalar/r2cf.h"
static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
E T7, T2b, Tv, T1l, Te, T2o, Ty, T1k, Tt, T2d, TF, T1h, Tm, T2c, TC;
E T1i, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z;
E TS, T1y;
{
E T1, T2, T3, T4, T5, T6;
T1 = R0[0];
T2 = R0[WS(rs, 8)];
T3 = T1 + T2;
T4 = R0[WS(rs, 4)];
T5 = R0[WS(rs, 12)];
T6 = T4 + T5;
T7 = T3 + T6;
T2b = T3 - T6;
Tv = T1 - T2;
T1l = T4 - T5;
}
{
E Ta, Tw, Td, Tx;
{
E T8, T9, Tb, Tc;
T8 = R0[WS(rs, 2)];
T9 = R0[WS(rs, 10)];
Ta = T8 + T9;
Tw = T8 - T9;
Tb = R0[WS(rs, 14)];
Tc = R0[WS(rs, 6)];
Td = Tb + Tc;
Tx = Tb - Tc;
}
Te = Ta + Td;
T2o = Td - Ta;
Ty = KP707106781 * (Tw + Tx);
T1k = KP707106781 * (Tx - Tw);
}
{
E Tp, TD, Ts, TE;
{
E Tn, To, Tq, Tr;
Tn = R0[WS(rs, 15)];
To = R0[WS(rs, 7)];
Tp = Tn + To;
TD = Tn - To;
Tq = R0[WS(rs, 3)];
Tr = R0[WS(rs, 11)];
Ts = Tq + Tr;
TE = Tq - Tr;
}
Tt = Tp + Ts;
T2d = Tp - Ts;
TF = FMA(KP923879532, TD, KP382683432 * TE);
T1h = FNMS(KP923879532, TE, KP382683432 * TD);
}
{
E Ti, TA, Tl, TB;
{
E Tg, Th, Tj, Tk;
Tg = R0[WS(rs, 1)];
Th = R0[WS(rs, 9)];
Ti = Tg + Th;
TA = Tg - Th;
Tj = R0[WS(rs, 5)];
Tk = R0[WS(rs, 13)];
Tl = Tj + Tk;
TB = Tj - Tk;
}
Tm = Ti + Tl;
T2c = Ti - Tl;
TC = FNMS(KP382683432, TB, KP923879532 * TA);
T1i = FMA(KP382683432, TA, KP923879532 * TB);
}
{
E T11, T1X, T1d, T1Y, T14, T20, T17, T21, T1a, T18;
{
E TZ, T10, T1b, T1c;
TZ = R1[WS(rs, 15)];
T10 = R1[WS(rs, 7)];
T11 = TZ - T10;
T1X = TZ + T10;
T1b = R1[WS(rs, 3)];
T1c = R1[WS(rs, 11)];
T1d = T1b - T1c;
T1Y = T1b + T1c;
}
{
E T12, T13, T15, T16;
T12 = R1[WS(rs, 1)];
T13 = R1[WS(rs, 9)];
T14 = T12 - T13;
T20 = T12 + T13;
T15 = R1[WS(rs, 13)];
T16 = R1[WS(rs, 5)];
T17 = T15 - T16;
T21 = T15 + T16;
}
T1Z = T1X + T1Y;
T22 = T20 + T21;
T2k = T21 - T20;
T2j = T1X - T1Y;
T1a = KP707106781 * (T17 - T14);
T1e = T1a - T1d;
T1C = T1d + T1a;
T18 = KP707106781 * (T14 + T17);
T19 = T11 + T18;
T1B = T11 - T18;
}
{
E TK, T1Q, TW, T1R, TN, T1T, TQ, T1U, TT, TR;
{
E TI, TJ, TU, TV;
TI = R1[0];
TJ = R1[WS(rs, 8)];
TK = TI - TJ;
T1Q = TI + TJ;
TU = R1[WS(rs, 4)];
TV = R1[WS(rs, 12)];
TW = TU - TV;
T1R = TU + TV;
}
{
E TL, TM, TO, TP;
TL = R1[WS(rs, 2)];
TM = R1[WS(rs, 10)];
TN = TL - TM;
T1T = TL + TM;
TO = R1[WS(rs, 14)];
TP = R1[WS(rs, 6)];
TQ = TO - TP;
T1U = TO + TP;
}
T1S = T1Q + T1R;
T1V = T1T + T1U;
T2h = T1U - T1T;
T2g = T1Q - T1R;
TT = KP707106781 * (TQ - TN);
TX = TT - TW;
T1z = TW + TT;
TR = KP707106781 * (TN + TQ);
TS = TK + TR;
T1y = TK - TR;
}
{
E Tf, Tu, T27, T28, T29, T2a;
Tf = T7 + Te;
Tu = Tm + Tt;
T27 = Tf + Tu;
T28 = T1S + T1V;
T29 = T1Z + T22;
T2a = T28 + T29;
Cr[WS(csr, 8)] = Tf - Tu;
Ci[WS(csi, 8)] = T29 - T28;
Cr[WS(csr, 16)] = T27 - T2a;
Cr[0] = T27 + T2a;
}
{
E T1P, T25, T24, T26, T1W, T23;
T1P = T7 - Te;
T25 = Tt - Tm;
T1W = T1S - T1V;
T23 = T1Z - T22;
T24 = KP707106781 * (T1W + T23);
T26 = KP707106781 * (T23 - T1W);
Cr[WS(csr, 12)] = T1P - T24;
Ci[WS(csi, 12)] = T26 - T25;
Cr[WS(csr, 4)] = T1P + T24;
Ci[WS(csi, 4)] = T25 + T26;
}
{
E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2n;
T2e = KP707106781 * (T2c + T2d);
T2f = T2b + T2e;
T2v = T2b - T2e;
T2n = KP707106781 * (T2d - T2c);
T2p = T2n - T2o;
T2r = T2o + T2n;
{
E T2i, T2l, T2s, T2t;
T2i = FMA(KP923879532, T2g, KP382683432 * T2h);
T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);
T2m = T2i + T2l;
T2q = T2l - T2i;
T2s = FNMS(KP382683432, T2g, KP923879532 * T2h);
T2t = FMA(KP382683432, T2j, KP923879532 * T2k);
T2u = T2s + T2t;
T2w = T2t - T2s;
}
Cr[WS(csr, 14)] = T2f - T2m;
Ci[WS(csi, 14)] = T2u - T2r;
Cr[WS(csr, 2)] = T2f + T2m;
Ci[WS(csi, 2)] = T2r + T2u;
Ci[WS(csi, 6)] = T2p + T2q;
Cr[WS(csr, 6)] = T2v + T2w;
Ci[WS(csi, 10)] = T2q - T2p;
Cr[WS(csr, 10)] = T2v - T2w;
}
{
E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p;
{
E Tz, TG, T1q, T1r;
Tz = Tv + Ty;
TG = TC + TF;
TH = Tz + TG;
T1t = Tz - TG;
T1q = FNMS(KP195090322, TS, KP980785280 * TX);
T1r = FMA(KP195090322, T19, KP980785280 * T1e);
T1s = T1q + T1r;
T1u = T1r - T1q;
}
{
E TY, T1f, T1j, T1m;
TY = FMA(KP980785280, TS, KP195090322 * TX);
T1f = FNMS(KP195090322, T1e, KP980785280 * T19);
T1g = TY + T1f;
T1o = T1f - TY;
T1j = T1h - T1i;
T1m = T1k - T1l;
T1n = T1j - T1m;
T1p = T1m + T1j;
}
Cr[WS(csr, 15)] = TH - T1g;
Ci[WS(csi, 15)] = T1s - T1p;
Cr[WS(csr, 1)] = TH + T1g;
Ci[WS(csi, 1)] = T1p + T1s;
Ci[WS(csi, 7)] = T1n + T1o;
Cr[WS(csr, 7)] = T1t + T1u;
Ci[WS(csi, 9)] = T1o - T1n;
Cr[WS(csr, 9)] = T1t - T1u;
}
{
E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J;
{
E T1v, T1w, T1K, T1L;
T1v = Tv - Ty;
T1w = T1i + T1h;
T1x = T1v + T1w;
T1N = T1v - T1w;
T1K = FNMS(KP555570233, T1y, KP831469612 * T1z);
T1L = FMA(KP555570233, T1B, KP831469612 * T1C);
T1M = T1K + T1L;
T1O = T1L - T1K;
}
{
E T1A, T1D, T1F, T1G;
T1A = FMA(KP831469612, T1y, KP555570233 * T1z);
T1D = FNMS(KP555570233, T1C, KP831469612 * T1B);
T1E = T1A + T1D;
T1I = T1D - T1A;
T1F = TF - TC;
T1G = T1l + T1k;
T1H = T1F - T1G;
T1J = T1G + T1F;
}
Cr[WS(csr, 13)] = T1x - T1E;
Ci[WS(csi, 13)] = T1M - T1J;
Cr[WS(csr, 3)] = T1x + T1E;
Ci[WS(csi, 3)] = T1J + T1M;
Ci[WS(csi, 5)] = T1H + T1I;
Cr[WS(csr, 5)] = T1N + T1O;
Ci[WS(csi, 11)] = T1I - T1H;
Cr[WS(csr, 11)] = T1N - T1O;
}
}
}
}
static const kr2c_desc desc = { 32, "r2cf_32", { 140, 26, 16, 0 }, &GENUS };
void X(codelet_r2cf_32) (planner *p) { X(kr2c_register) (p, r2cf_32, &desc);
}
#endif