iup-stack/fftw/rdft/scalar/r2cf/r2cf_14.c

264 lines
8.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:10 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include rdft/scalar/r2cf.h */
/*
* This function contains 62 FP additions, 36 FP multiplications,
* (or, 32 additions, 6 multiplications, 30 fused multiply/add),
* 33 stack variables, 6 constants, and 28 memory accesses
*/
#include "rdft/scalar/r2cf.h"
static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
E T3, TN, To, TQ, Tx, TG, Ta, TO, Tw, TD, Th, TP, Tv, TJ, T1;
E T2, TA, TK;
T1 = R0[0];
T2 = R1[WS(rs, 3)];
T3 = T1 - T2;
TN = T1 + T2;
{
E Tk, TE, Tn, TF;
{
E Ti, Tj, Tl, Tm;
Ti = R0[WS(rs, 3)];
Tj = R1[WS(rs, 6)];
Tk = Ti - Tj;
TE = Ti + Tj;
Tl = R0[WS(rs, 4)];
Tm = R1[0];
Tn = Tl - Tm;
TF = Tl + Tm;
}
To = Tk + Tn;
TQ = TE + TF;
Tx = Tn - Tk;
TG = TE - TF;
}
{
E T6, TC, T9, TB;
{
E T4, T5, T7, T8;
T4 = R0[WS(rs, 1)];
T5 = R1[WS(rs, 4)];
T6 = T4 - T5;
TC = T4 + T5;
T7 = R0[WS(rs, 6)];
T8 = R1[WS(rs, 2)];
T9 = T7 - T8;
TB = T7 + T8;
}
Ta = T6 + T9;
TO = TC + TB;
Tw = T6 - T9;
TD = TB - TC;
}
{
E Td, TH, Tg, TI;
{
E Tb, Tc, Te, Tf;
Tb = R0[WS(rs, 2)];
Tc = R1[WS(rs, 5)];
Td = Tb - Tc;
TH = Tb + Tc;
Te = R0[WS(rs, 5)];
Tf = R1[WS(rs, 1)];
Tg = Te - Tf;
TI = Te + Tf;
}
Th = Td + Tg;
TP = TH + TI;
Tv = Tg - Td;
TJ = TH - TI;
}
Cr[WS(csr, 7)] = T3 + Ta + Th + To;
Cr[0] = TN + TO + TP + TQ;
TA = FMA(KP554958132, Tw, Tv);
Ci[WS(csi, 3)] = KP974927912 * (FNMS(KP801937735, TA, Tx));
{
E TL, TM, Ty, Tz;
TL = FNMS(KP554958132, TG, TD);
Ci[WS(csi, 6)] = KP974927912 * (FNMS(KP801937735, TL, TJ));
TM = FMA(KP554958132, TD, TJ);
Ci[WS(csi, 4)] = KP974927912 * (FNMS(KP801937735, TM, TG));
Ty = FNMS(KP554958132, Tx, Tw);
Ci[WS(csi, 1)] = KP974927912 * (FNMS(KP801937735, Ty, Tv));
Tz = FMA(KP554958132, Tv, Tx);
Ci[WS(csi, 5)] = KP974927912 * (FMA(KP801937735, Tz, Tw));
}
TK = FMA(KP554958132, TJ, TG);
Ci[WS(csi, 2)] = KP974927912 * (FMA(KP801937735, TK, TD));
{
E TU, TT, Tq, Tp;
TT = FNMS(KP356895867, TO, TQ);
TU = FNMS(KP692021471, TT, TP);
Cr[WS(csr, 2)] = FNMS(KP900968867, TU, TN);
Tp = FNMS(KP356895867, To, Th);
Tq = FNMS(KP692021471, Tp, Ta);
Cr[WS(csr, 3)] = FNMS(KP900968867, Tq, T3);
}
{
E Tu, Tt, Ts, Tr;
Tt = FNMS(KP356895867, Th, Ta);
Tu = FNMS(KP692021471, Tt, To);
Cr[WS(csr, 1)] = FNMS(KP900968867, Tu, T3);
Tr = FNMS(KP356895867, Ta, To);
Ts = FNMS(KP692021471, Tr, Th);
Cr[WS(csr, 5)] = FNMS(KP900968867, Ts, T3);
}
{
E TW, TV, TS, TR;
TV = FNMS(KP356895867, TP, TO);
TW = FNMS(KP692021471, TV, TQ);
Cr[WS(csr, 6)] = FNMS(KP900968867, TW, TN);
TR = FNMS(KP356895867, TQ, TP);
TS = FNMS(KP692021471, TR, TO);
Cr[WS(csr, 4)] = FNMS(KP900968867, TS, TN);
}
}
}
}
static const kr2c_desc desc = { 14, "r2cf_14", { 32, 6, 30, 0 }, &GENUS };
void X(codelet_r2cf_14) (planner *p) { X(kr2c_register) (p, r2cf_14, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 14 -name r2cf_14 -include rdft/scalar/r2cf.h */
/*
* This function contains 62 FP additions, 36 FP multiplications,
* (or, 38 additions, 12 multiplications, 24 fused multiply/add),
* 29 stack variables, 6 constants, and 28 memory accesses
*/
#include "rdft/scalar/r2cf.h"
static void r2cf_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
DK(KP222520933, +0.222520933956314404288902564496794759466355569);
DK(KP623489801, +0.623489801858733530525004884004239810632274731);
DK(KP433883739, +0.433883739117558120475768332848358754609990728);
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
DK(KP781831482, +0.781831482468029808708444526674057750232334519);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
E T3, TB, T6, Tv, Tn, Ts, Tk, Tt, Td, Ty, T9, Tw, Tg, Tz, T1;
E T2;
T1 = R0[0];
T2 = R1[WS(rs, 3)];
T3 = T1 - T2;
TB = T1 + T2;
{
E T4, T5, Tl, Tm;
T4 = R0[WS(rs, 2)];
T5 = R1[WS(rs, 5)];
T6 = T4 - T5;
Tv = T4 + T5;
Tl = R0[WS(rs, 6)];
Tm = R1[WS(rs, 2)];
Tn = Tl - Tm;
Ts = Tl + Tm;
}
{
E Ti, Tj, Tb, Tc;
Ti = R0[WS(rs, 1)];
Tj = R1[WS(rs, 4)];
Tk = Ti - Tj;
Tt = Ti + Tj;
Tb = R0[WS(rs, 3)];
Tc = R1[WS(rs, 6)];
Td = Tb - Tc;
Ty = Tb + Tc;
}
{
E T7, T8, Te, Tf;
T7 = R0[WS(rs, 5)];
T8 = R1[WS(rs, 1)];
T9 = T7 - T8;
Tw = T7 + T8;
Te = R0[WS(rs, 4)];
Tf = R1[0];
Tg = Te - Tf;
Tz = Te + Tf;
}
{
E Tp, Tr, Tq, Ta, To, Th;
Tp = Tn - Tk;
Tr = Tg - Td;
Tq = T9 - T6;
Ci[WS(csi, 1)] = FMA(KP781831482, Tp, KP974927912 * Tq) + (KP433883739 * Tr);
Ci[WS(csi, 5)] = FMA(KP433883739, Tq, KP781831482 * Tr) - (KP974927912 * Tp);
Ci[WS(csi, 3)] = FMA(KP433883739, Tp, KP974927912 * Tr) - (KP781831482 * Tq);
Ta = T6 + T9;
To = Tk + Tn;
Th = Td + Tg;
Cr[WS(csr, 3)] = FMA(KP623489801, Ta, T3) + FNMA(KP222520933, Th, KP900968867 * To);
Cr[WS(csr, 7)] = T3 + To + Ta + Th;
Cr[WS(csr, 1)] = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta);
Cr[WS(csr, 5)] = FMA(KP623489801, Th, T3) + FNMA(KP900968867, Ta, KP222520933 * To);
}
{
E Tu, TA, Tx, TC, TE, TD;
Tu = Ts - Tt;
TA = Ty - Tz;
Tx = Tv - Tw;
Ci[WS(csi, 2)] = FMA(KP974927912, Tu, KP433883739 * Tx) + (KP781831482 * TA);
Ci[WS(csi, 6)] = FMA(KP974927912, Tx, KP433883739 * TA) - (KP781831482 * Tu);
Ci[WS(csi, 4)] = FNMS(KP781831482, Tx, KP974927912 * TA) - (KP433883739 * Tu);
TC = Tt + Ts;
TE = Tv + Tw;
TD = Ty + Tz;
Cr[WS(csr, 6)] = FMA(KP623489801, TC, TB) + FNMA(KP900968867, TD, KP222520933 * TE);
Cr[WS(csr, 2)] = FMA(KP623489801, TD, TB) + FNMA(KP900968867, TE, KP222520933 * TC);
Cr[WS(csr, 4)] = FMA(KP623489801, TE, TB) + FNMA(KP222520933, TD, KP900968867 * TC);
Cr[0] = TB + TC + TE + TD;
}
}
}
}
static const kr2c_desc desc = { 14, "r2cf_14", { 38, 12, 24, 0 }, &GENUS };
void X(codelet_r2cf_14) (planner *p) { X(kr2c_register) (p, r2cf_14, &desc);
}
#endif