iup-stack/fftw/rdft/scalar/r2cf/hc2cfdft_8.c

438 lines
11 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:36 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */
/*
* This function contains 82 FP additions, 52 FP multiplications,
* (or, 60 additions, 30 multiplications, 22 fused multiply/add),
* 31 stack variables, 2 constants, and 32 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11;
E T1j;
{
E Tw, Tx, TN, TI, TJ, TK;
Tw = Ip[0];
Tx = Im[0];
TN = Tw + Tx;
TI = Rm[0];
TJ = Rp[0];
TK = TI - TJ;
Ty = Tw - Tx;
T14 = TJ + TI;
{
E TH, TL, TM, T1n;
TH = W[0];
TL = TH * TK;
TM = W[1];
T1n = TM * TK;
TO = FNMS(TM, TN, TL);
T1o = FMA(TH, TN, T1n);
}
}
{
E Tp, TF, Tu, TC;
{
E Tn, To, Ts, Tt;
Tn = Ip[WS(rs, 2)];
To = Im[WS(rs, 2)];
Tp = Tn - To;
TF = Tn + To;
Ts = Rp[WS(rs, 2)];
Tt = Rm[WS(rs, 2)];
Tu = Ts + Tt;
TC = Tt - Ts;
}
{
E Tq, T15, Tm, Tr;
Tm = W[6];
Tq = Tm * Tp;
T15 = Tm * Tu;
Tr = W[7];
Tv = FNMS(Tr, Tu, Tq);
T16 = FMA(Tr, Tp, T15);
}
{
E TB, TD, TE, T1l;
TB = W[8];
TD = TB * TC;
TE = W[9];
T1l = TE * TC;
TG = FNMS(TE, TF, TD);
T1m = FMA(TB, TF, T1l);
}
}
{
E T4, TU, T9, TR;
{
E T2, T3, T7, T8;
T2 = Ip[WS(rs, 1)];
T3 = Im[WS(rs, 1)];
T4 = T2 - T3;
TU = T2 + T3;
T7 = Rp[WS(rs, 1)];
T8 = Rm[WS(rs, 1)];
T9 = T7 + T8;
TR = T7 - T8;
}
{
E T5, T18, T1, T6;
T1 = W[2];
T5 = T1 * T4;
T18 = T1 * T9;
T6 = W[3];
Ta = FNMS(T6, T9, T5);
T19 = FMA(T6, T4, T18);
}
{
E TS, T1g, TQ, TT;
TQ = W[4];
TS = TQ * TR;
T1g = TQ * TU;
TT = W[5];
TV = FMA(TT, TU, TS);
T1h = FNMS(TT, TR, T1g);
}
}
{
E Te, T10, Tj, TX;
{
E Tc, Td, Th, Ti;
Tc = Ip[WS(rs, 3)];
Td = Im[WS(rs, 3)];
Te = Tc - Td;
T10 = Tc + Td;
Th = Rp[WS(rs, 3)];
Ti = Rm[WS(rs, 3)];
Tj = Th + Ti;
TX = Th - Ti;
}
{
E Tf, T1a, Tb, Tg;
Tb = W[10];
Tf = Tb * Te;
T1a = Tb * Tj;
Tg = W[11];
Tk = FNMS(Tg, Tj, Tf);
T1b = FMA(Tg, Te, T1a);
}
{
E TY, T1i, TW, TZ;
TW = W[12];
TY = TW * TX;
T1i = TW * T10;
TZ = W[13];
T11 = FMA(TZ, T10, TY);
T1j = FNMS(TZ, TX, T1i);
}
}
{
E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r;
{
E Tl, Tz, T1k, T1p;
Tl = Ta + Tk;
Tz = Tv + Ty;
TA = Tl + Tz;
T1f = Tz - Tl;
T1k = T1h + T1j;
T1p = T1m + T1o;
T1q = T1k - T1p;
T1s = T1k + T1p;
}
{
E TP, T12, T17, T1c;
TP = TG + TO;
T12 = TV + T11;
T13 = TP - T12;
T1e = T12 + TP;
T17 = T14 + T16;
T1c = T19 + T1b;
T1d = T17 - T1c;
T1r = T17 + T1c;
}
Ip[0] = KP500000000 * (TA + T13);
Rp[0] = KP500000000 * (T1r + T1s);
Im[WS(rs, 3)] = KP500000000 * (T13 - TA);
Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s);
Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e);
Im[WS(rs, 1)] = KP500000000 * (T1q - T1f);
Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e);
Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q);
}
{
E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J;
{
E T1t, T1u, T1D, T1E;
T1t = Ty - Tv;
T1u = T19 - T1b;
T1v = T1t - T1u;
T1H = T1u + T1t;
T1D = T14 - T16;
T1E = Ta - Tk;
T1F = T1D - T1E;
T1L = T1D + T1E;
}
{
E T1w, T1x, T1z, T1A;
T1w = T1j - T1h;
T1x = TV - T11;
T1y = T1w + T1x;
T1I = T1w - T1x;
T1z = TO - TG;
T1A = T1o - T1m;
T1B = T1z - T1A;
T1J = T1z + T1A;
}
{
E T1C, T1M, T1G, T1K;
T1C = T1y + T1B;
Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v));
Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v)));
T1M = T1I + T1J;
Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
T1G = T1B - T1y;
Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F));
Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F));
T1K = T1I - T1J;
Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H));
Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H)));
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 8 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 60, 30, 22, 0 } };
void X(codelet_hc2cfdft_8) (planner *p) {
X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */
/*
* This function contains 82 FP additions, 44 FP multiplications,
* (or, 68 additions, 30 multiplications, 14 fused multiply/add),
* 39 stack variables, 2 constants, and 32 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP353553390, +0.353553390593273762200422181052424519642417969);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP;
E T16, TU, T17, T1i, T1j;
{
E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To;
Tt = Ip[0];
Tu = Im[0];
TD = Tt + Tu;
Tz = Rm[0];
TA = Rp[0];
TB = Tz - TA;
{
E Tl, Tm, Tp, Tq;
Tl = Ip[WS(rs, 2)];
Tm = Im[WS(rs, 2)];
Tn = Tl - Tm;
TI = Tl + Tm;
Tp = Rp[WS(rs, 2)];
Tq = Rm[WS(rs, 2)];
Tr = Tp + Tq;
TG = Tp - Tq;
}
Tv = Tt - Tu;
TX = TA + Tz;
Tk = W[6];
To = W[7];
Ts = FNMS(To, Tr, Tk * Tn);
TY = FMA(Tk, Tr, To * Tn);
{
E Ty, TC, TF, TH;
Ty = W[0];
TC = W[1];
TE = FNMS(TC, TD, Ty * TB);
T1a = FMA(TC, TB, Ty * TD);
TF = W[8];
TH = W[9];
TJ = FMA(TF, TG, TH * TI);
T19 = FNMS(TH, TG, TF * TI);
}
T1l = TJ + TE;
T1m = T1a - T19;
}
{
E T4, TO, T8, TM, Td, TT, Th, TR;
{
E T2, T3, T6, T7;
T2 = Ip[WS(rs, 1)];
T3 = Im[WS(rs, 1)];
T4 = T2 - T3;
TO = T2 + T3;
T6 = Rp[WS(rs, 1)];
T7 = Rm[WS(rs, 1)];
T8 = T6 + T7;
TM = T6 - T7;
}
{
E Tb, Tc, Tf, Tg;
Tb = Ip[WS(rs, 3)];
Tc = Im[WS(rs, 3)];
Td = Tb - Tc;
TT = Tb + Tc;
Tf = Rp[WS(rs, 3)];
Tg = Rm[WS(rs, 3)];
Th = Tf + Tg;
TR = Tf - Tg;
}
{
E T1, T5, Ta, Te;
T1 = W[2];
T5 = W[3];
T9 = FNMS(T5, T8, T1 * T4);
T10 = FMA(T1, T8, T5 * T4);
Ta = W[10];
Te = W[11];
Ti = FNMS(Te, Th, Ta * Td);
T11 = FMA(Ta, Th, Te * Td);
{
E TL, TN, TQ, TS;
TL = W[4];
TN = W[5];
TP = FMA(TL, TM, TN * TO);
T16 = FNMS(TN, TM, TL * TO);
TQ = W[12];
TS = W[13];
TU = FMA(TQ, TR, TS * TT);
T17 = FNMS(TS, TR, TQ * TT);
}
T1i = T17 - T16;
T1j = TP - TU;
}
}
{
E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x;
{
E T1f, T1g, T1u, T1v;
T1f = Tv - Ts;
T1g = T10 - T11;
T1h = KP500000000 * (T1f - T1g);
T1t = KP500000000 * (T1g + T1f);
T1u = T1i - T1j;
T1v = T1l + T1m;
T1w = KP353553390 * (T1u - T1v);
T1y = KP353553390 * (T1u + T1v);
}
{
E T1k, T1n, T1p, T1q;
T1k = T1i + T1j;
T1n = T1l - T1m;
T1o = KP353553390 * (T1k + T1n);
T1s = KP353553390 * (T1n - T1k);
T1p = TX - TY;
T1q = T9 - Ti;
T1r = KP500000000 * (T1p - T1q);
T1x = KP500000000 * (T1p + T1q);
}
Ip[WS(rs, 1)] = T1h + T1o;
Rp[WS(rs, 1)] = T1x + T1y;
Im[WS(rs, 2)] = T1o - T1h;
Rm[WS(rs, 2)] = T1x - T1y;
Rm[0] = T1r - T1s;
Im[0] = T1w - T1t;
Rp[WS(rs, 3)] = T1r + T1s;
Ip[WS(rs, 3)] = T1t + T1w;
}
{
E Tx, T15, T1c, T1e, TW, T14, T13, T1d;
{
E Tj, Tw, T18, T1b;
Tj = T9 + Ti;
Tw = Ts + Tv;
Tx = Tj + Tw;
T15 = Tw - Tj;
T18 = T16 + T17;
T1b = T19 + T1a;
T1c = T18 - T1b;
T1e = T18 + T1b;
}
{
E TK, TV, TZ, T12;
TK = TE - TJ;
TV = TP + TU;
TW = TK - TV;
T14 = TV + TK;
TZ = TX + TY;
T12 = T10 + T11;
T13 = TZ - T12;
T1d = TZ + T12;
}
Ip[0] = KP500000000 * (Tx + TW);
Rp[0] = KP500000000 * (T1d + T1e);
Im[WS(rs, 3)] = KP500000000 * (TW - Tx);
Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e);
Rm[WS(rs, 1)] = KP500000000 * (T13 - T14);
Im[WS(rs, 1)] = KP500000000 * (T1c - T15);
Rp[WS(rs, 2)] = KP500000000 * (T13 + T14);
Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 8 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, { 68, 30, 14, 0 } };
void X(codelet_hc2cfdft_8) (planner *p) {
X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
}
#endif