iup-stack/fftw/rdft/scalar/r2cf/hc2cfdft_6.c

340 lines
8.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:36 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */
/*
* This function contains 58 FP additions, 44 FP multiplications,
* (or, 36 additions, 22 multiplications, 22 fused multiply/add),
* 27 stack variables, 2 constants, and 24 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
E T3, TQ, TJ, T12, Tu, TX, TB, T10, Td, TS, Tk, TV;
{
E T1, T2, TI, TD, TE, TF;
T1 = Ip[0];
T2 = Im[0];
TI = T1 + T2;
TD = Rm[0];
TE = Rp[0];
TF = TD - TE;
T3 = T1 - T2;
TQ = TE + TD;
{
E TC, TG, TH, T11;
TC = W[0];
TG = TC * TF;
TH = W[1];
T11 = TH * TF;
TJ = FNMS(TH, TI, TG);
T12 = FMA(TC, TI, T11);
}
}
{
E To, TA, Tt, Tx;
{
E Tm, Tn, Tr, Ts;
Tm = Rm[WS(rs, 2)];
Tn = Rp[WS(rs, 2)];
To = Tm - Tn;
TA = Tn + Tm;
Tr = Ip[WS(rs, 2)];
Ts = Im[WS(rs, 2)];
Tt = Tr + Ts;
Tx = Tr - Ts;
}
{
E Tp, TW, Tl, Tq;
Tl = W[8];
Tp = Tl * To;
TW = Tl * Tt;
Tq = W[9];
Tu = FNMS(Tq, Tt, Tp);
TX = FMA(Tq, To, TW);
}
{
E Tw, Ty, Tz, TZ;
Tw = W[6];
Ty = Tw * Tx;
Tz = W[7];
TZ = Tz * Tx;
TB = FNMS(Tz, TA, Ty);
T10 = FMA(Tw, TA, TZ);
}
}
{
E T7, Tg, Tc, Tj;
{
E T5, T6, Ta, Tb;
T5 = Ip[WS(rs, 1)];
T6 = Im[WS(rs, 1)];
T7 = T5 + T6;
Tg = T5 - T6;
Ta = Rp[WS(rs, 1)];
Tb = Rm[WS(rs, 1)];
Tc = Ta - Tb;
Tj = Ta + Tb;
}
{
E T4, T8, T9, TR;
T4 = W[5];
T8 = T4 * T7;
T9 = W[4];
TR = T9 * T7;
Td = FMA(T9, Tc, T8);
TS = FNMS(T4, Tc, TR);
}
{
E Tf, Th, Ti, TU;
Tf = W[2];
Th = Tf * Tg;
Ti = W[3];
TU = Ti * Tg;
Tk = FNMS(Ti, Tj, Th);
TV = FMA(Tf, Tj, TU);
}
}
{
E Te, T1d, TL, T1g, T1c, T1e, T19, T1f;
Te = T3 - Td;
T1d = TQ + TS;
{
E Tv, TK, T1a, T1b;
Tv = Tk + Tu;
TK = TB + TJ;
TL = Tv + TK;
T1g = Tv - TK;
T1a = TV + TX;
T1b = T10 + T12;
T1c = T1a - T1b;
T1e = T1a + T1b;
}
Ip[0] = KP500000000 * (Te + TL);
Rp[0] = KP500000000 * (T1d + T1e);
T19 = FNMS(KP500000000, TL, Te);
Ip[WS(rs, 2)] = KP500000000 * (FMA(KP866025403, T1c, T19));
Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP866025403, T1c, T19)));
T1f = FNMS(KP500000000, T1e, T1d);
Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP866025403, T1g, T1f));
Rm[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T1g, T1f));
}
{
E TP, TT, TO, T16, T14, T18, T15, T17;
TP = Td + T3;
TT = TQ - TS;
{
E TM, TN, TY, T13;
TM = Tu - Tk;
TN = TJ - TB;
TO = TM + TN;
T16 = TN - TM;
TY = TV - TX;
T13 = T10 - T12;
T14 = TY + T13;
T18 = T13 - TY;
}
Im[WS(rs, 2)] = KP500000000 * (TO - TP);
Rm[WS(rs, 2)] = KP500000000 * (TT + T14);
T15 = FNMS(KP500000000, T14, TT);
Rp[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T16, T15));
Rm[0] = KP500000000 * (FNMS(KP866025403, T16, T15));
T17 = FMA(KP500000000, TO, TP);
Ip[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T18, T17));
Im[0] = -(KP500000000 * (FNMS(KP866025403, T18, T17)));
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 6 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, { 36, 22, 22, 0 } };
void X(codelet_hc2cfdft_6) (planner *p) {
X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */
/*
* This function contains 58 FP additions, 36 FP multiplications,
* (or, 44 additions, 22 multiplications, 14 fused multiply/add),
* 40 stack variables, 3 constants, and 24 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP433012701, +0.433012701892219323381861585376468091735701313);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
E T3, TM, Tc, TN, Ts, T10, TI, TR, TF, T11, TH, TU;
{
E T1, T2, TD, Tz, TA, TB, T7, Tf, Tb, Th, Tq, Tw, Tm, Tu, T4;
E T8;
{
E T5, T6, T9, Ta;
T1 = Ip[0];
T2 = Im[0];
TD = T1 + T2;
Tz = Rm[0];
TA = Rp[0];
TB = Tz - TA;
T5 = Ip[WS(rs, 1)];
T6 = Im[WS(rs, 1)];
T7 = T5 + T6;
Tf = T5 - T6;
T9 = Rp[WS(rs, 1)];
Ta = Rm[WS(rs, 1)];
Tb = T9 - Ta;
Th = T9 + Ta;
{
E To, Tp, Tk, Tl;
To = Rp[WS(rs, 2)];
Tp = Rm[WS(rs, 2)];
Tq = To - Tp;
Tw = To + Tp;
Tk = Ip[WS(rs, 2)];
Tl = Im[WS(rs, 2)];
Tm = Tk + Tl;
Tu = Tk - Tl;
}
}
T3 = T1 - T2;
TM = TA + Tz;
T4 = W[5];
T8 = W[4];
Tc = FMA(T4, T7, T8 * Tb);
TN = FNMS(T4, Tb, T8 * T7);
{
E Ti, TP, Tr, TQ;
{
E Te, Tg, Tj, Tn;
Te = W[2];
Tg = W[3];
Ti = FNMS(Tg, Th, Te * Tf);
TP = FMA(Tg, Tf, Te * Th);
Tj = W[9];
Tn = W[8];
Tr = FMA(Tj, Tm, Tn * Tq);
TQ = FNMS(Tj, Tq, Tn * Tm);
}
Ts = Ti - Tr;
T10 = TP + TQ;
TI = Ti + Tr;
TR = TP - TQ;
}
{
E Tx, TS, TE, TT;
{
E Tt, Tv, Ty, TC;
Tt = W[6];
Tv = W[7];
Tx = FNMS(Tv, Tw, Tt * Tu);
TS = FMA(Tv, Tu, Tt * Tw);
Ty = W[0];
TC = W[1];
TE = FNMS(TC, TD, Ty * TB);
TT = FMA(TC, TB, Ty * TD);
}
TF = Tx + TE;
T11 = TS + TT;
TH = TE - Tx;
TU = TS - TT;
}
}
{
E T12, Td, TG, TZ;
T12 = KP433012701 * (T10 - T11);
Td = T3 - Tc;
TG = Ts + TF;
TZ = FNMS(KP250000000, TG, KP500000000 * Td);
Ip[0] = KP500000000 * (Td + TG);
Im[WS(rs, 1)] = T12 - TZ;
Ip[WS(rs, 2)] = TZ + T12;
}
{
E T16, T13, T14, T15;
T16 = KP433012701 * (Ts - TF);
T13 = TM + TN;
T14 = T10 + T11;
T15 = FNMS(KP250000000, T14, KP500000000 * T13);
Rp[WS(rs, 2)] = T15 - T16;
Rp[0] = KP500000000 * (T13 + T14);
Rm[WS(rs, 1)] = T16 + T15;
}
{
E TY, TJ, TK, TX;
TY = KP433012701 * (TU - TR);
TJ = TH - TI;
TK = Tc + T3;
TX = FMA(KP500000000, TK, KP250000000 * TJ);
Im[WS(rs, 2)] = KP500000000 * (TJ - TK);
Im[0] = TY - TX;
Ip[WS(rs, 1)] = TX + TY;
}
{
E TL, TO, TV, TW;
TL = KP433012701 * (TI + TH);
TO = TM - TN;
TV = TR + TU;
TW = FNMS(KP250000000, TV, KP500000000 * TO);
Rp[WS(rs, 1)] = TL + TW;
Rm[WS(rs, 2)] = KP500000000 * (TO + TV);
Rm[0] = TW - TL;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 6 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, { 44, 22, 14, 0 } };
void X(codelet_hc2cfdft_6) (planner *p) {
X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
}
#endif