iup-stack/fftw/rdft/scalar/r2cf/hc2cf_12.c

582 lines
14 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:31 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cf_12 -include rdft/scalar/hc2cf.h */
/*
* This function contains 118 FP additions, 68 FP multiplications,
* (or, 72 additions, 22 multiplications, 46 fused multiply/add),
* 47 stack variables, 2 constants, and 48 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cf_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2s, T1s, T2f, T1d, T21, T1H;
E T1Z, Te, T2p, T1l, T2h, TT, T1V, T1A, T1T;
T1 = Rp[0];
T2i = Rm[0];
{
E Th, Tk, Ti, T2d, Tg, Tj;
Th = Rp[WS(rs, 3)];
Tk = Rm[WS(rs, 3)];
Tg = W[10];
Ti = Tg * Th;
T2d = Tg * Tk;
Tj = W[11];
Tl = FMA(Tj, Tk, Ti);
T2e = FNMS(Tj, Th, T2d);
}
{
E TW, TZ, TX, T1X, TV, TY;
TW = Ip[WS(rs, 4)];
TZ = Im[WS(rs, 4)];
TV = W[16];
TX = TV * TW;
T1X = TV * TZ;
TY = W[17];
T10 = FMA(TY, TZ, TX);
T1Y = FNMS(TY, TW, T1X);
}
{
E TC, TF, TD, T1R, TB, TE;
TC = Ip[WS(rs, 1)];
TF = Im[WS(rs, 1)];
TB = W[4];
TD = TB * TC;
T1R = TB * TF;
TE = W[5];
TG = FMA(TE, TF, TD);
T1S = FNMS(TE, TC, T1R);
}
{
E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts;
Tn = Rp[WS(rs, 5)];
Tq = Rm[WS(rs, 5)];
Tm = W[18];
To = Tm * Tn;
T1o = Tm * Tq;
Tt = Rp[WS(rs, 1)];
Tw = Rm[WS(rs, 1)];
Ts = W[2];
Tu = Ts * Tt;
T1q = Ts * Tw;
{
E Tr, T1p, Tx, T1r, Tp, Tv;
Tp = W[19];
Tr = FMA(Tp, Tq, To);
T1p = FNMS(Tp, Tn, T1o);
Tv = W[3];
Tx = FMA(Tv, Tw, Tu);
T1r = FNMS(Tv, Tt, T1q);
Ty = Tr + Tx;
T2s = Tx - Tr;
T1s = T1p - T1r;
T2f = T1p + T1r;
}
}
{
E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17;
T12 = Ip[0];
T15 = Im[0];
T11 = W[0];
T13 = T11 * T12;
T1D = T11 * T15;
T18 = Ip[WS(rs, 2)];
T1b = Im[WS(rs, 2)];
T17 = W[8];
T19 = T17 * T18;
T1F = T17 * T1b;
{
E T16, T1E, T1c, T1G, T14, T1a;
T14 = W[1];
T16 = FMA(T14, T15, T13);
T1E = FNMS(T14, T12, T1D);
T1a = W[9];
T1c = FMA(T1a, T1b, T19);
T1G = FNMS(T1a, T18, T1F);
T1d = T16 + T1c;
T21 = T1c - T16;
T1H = T1E - T1G;
T1Z = T1E + T1G;
}
}
{
E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8;
T3 = Rp[WS(rs, 2)];
T6 = Rm[WS(rs, 2)];
T2 = W[6];
T4 = T2 * T3;
T1h = T2 * T6;
T9 = Rp[WS(rs, 4)];
Tc = Rm[WS(rs, 4)];
T8 = W[14];
Ta = T8 * T9;
T1j = T8 * Tc;
{
E T7, T1i, Td, T1k, T5, Tb;
T5 = W[7];
T7 = FMA(T5, T6, T4);
T1i = FNMS(T5, T3, T1h);
Tb = W[15];
Td = FMA(Tb, Tc, Ta);
T1k = FNMS(Tb, T9, T1j);
Te = T7 + Td;
T2p = Td - T7;
T1l = T1i - T1k;
T2h = T1i + T1k;
}
}
{
E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN;
TI = Ip[WS(rs, 3)];
TL = Im[WS(rs, 3)];
TH = W[12];
TJ = TH * TI;
T1w = TH * TL;
TO = Ip[WS(rs, 5)];
TR = Im[WS(rs, 5)];
TN = W[20];
TP = TN * TO;
T1y = TN * TR;
{
E TM, T1x, TS, T1z, TK, TQ;
TK = W[13];
TM = FMA(TK, TL, TJ);
T1x = FNMS(TK, TI, T1w);
TQ = W[21];
TS = FMA(TQ, TR, TP);
T1z = FNMS(TQ, TO, T1y);
TT = TM + TS;
T1V = TS - TM;
T1A = T1x - T1z;
T1T = T1x + T1z;
}
}
{
E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c;
{
E Tf, Tz, T2g, T2j;
Tf = T1 + Te;
Tz = Tl + Ty;
TA = Tf + Tz;
T28 = Tf - Tz;
T2g = T2e + T2f;
T2j = T2h + T2i;
T2k = T2g + T2j;
T2m = T2j - T2g;
}
{
E TU, T1e, T29, T2a;
TU = TG + TT;
T1e = T10 + T1d;
T1f = TU + T1e;
T2l = TU - T1e;
T29 = T1S + T1T;
T2a = T1Y + T1Z;
T2b = T29 - T2a;
T2c = T29 + T2a;
}
Rm[WS(rs, 5)] = TA - T1f;
Im[WS(rs, 5)] = T2c - T2k;
Rp[0] = TA + T1f;
Ip[0] = T2c + T2k;
Rp[WS(rs, 3)] = T28 - T2b;
Ip[WS(rs, 3)] = T2l + T2m;
Rm[WS(rs, 2)] = T28 + T2b;
Im[WS(rs, 2)] = T2l - T2m;
}
{
E T1m, T1K, T2q, T2z, T2t, T2y, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I;
E T1O;
{
E T1g, T2o, T2r, T1n;
T1g = FNMS(KP500000000, Te, T1);
T1m = FNMS(KP866025403, T1l, T1g);
T1K = FMA(KP866025403, T1l, T1g);
T2o = FNMS(KP500000000, T2h, T2i);
T2q = FMA(KP866025403, T2p, T2o);
T2z = FNMS(KP866025403, T2p, T2o);
T2r = FNMS(KP500000000, T2f, T2e);
T2t = FMA(KP866025403, T2s, T2r);
T2y = FNMS(KP866025403, T2s, T2r);
T1n = FNMS(KP500000000, Ty, Tl);
T1t = FNMS(KP866025403, T1s, T1n);
T1L = FMA(KP866025403, T1s, T1n);
}
{
E T1v, T1U, T20, T1C;
T1v = FNMS(KP500000000, TT, TG);
T1B = FNMS(KP866025403, T1A, T1v);
T1N = FMA(KP866025403, T1A, T1v);
T1U = FNMS(KP500000000, T1T, T1S);
T1W = FNMS(KP866025403, T1V, T1U);
T25 = FMA(KP866025403, T1V, T1U);
T20 = FNMS(KP500000000, T1Z, T1Y);
T22 = FNMS(KP866025403, T21, T20);
T26 = FMA(KP866025403, T21, T20);
T1C = FNMS(KP500000000, T1d, T10);
T1I = FNMS(KP866025403, T1H, T1C);
T1O = FMA(KP866025403, T1H, T1C);
}
{
E T1u, T1J, T2x, T2A;
T1u = T1m + T1t;
T1J = T1B + T1I;
Rp[WS(rs, 2)] = T1u - T1J;
Rm[WS(rs, 3)] = T1u + T1J;
T2x = T1W + T22;
T2A = T2y + T2z;
Im[WS(rs, 3)] = -(T2x + T2A);
Ip[WS(rs, 2)] = T2A - T2x;
}
{
E T1M, T1P, T2v, T2w;
T1M = T1K + T1L;
T1P = T1N + T1O;
Rm[WS(rs, 1)] = T1M - T1P;
Rp[WS(rs, 4)] = T1M + T1P;
T2v = T25 + T26;
T2w = T2t + T2q;
Im[WS(rs, 1)] = T2v - T2w;
Ip[WS(rs, 4)] = T2v + T2w;
}
{
E T1Q, T23, T2B, T2C;
T1Q = T1m - T1t;
T23 = T1W - T22;
Rm[0] = T1Q - T23;
Rp[WS(rs, 5)] = T1Q + T23;
T2B = T1I - T1B;
T2C = T2z - T2y;
Im[0] = T2B - T2C;
Ip[WS(rs, 5)] = T2B + T2C;
}
{
E T24, T27, T2n, T2u;
T24 = T1K - T1L;
T27 = T25 - T26;
Rm[WS(rs, 4)] = T24 - T27;
Rp[WS(rs, 1)] = T24 + T27;
T2n = T1O - T1N;
T2u = T2q - T2t;
Im[WS(rs, 4)] = T2n - T2u;
Ip[WS(rs, 1)] = T2n + T2u;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 12 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 12, "hc2cf_12", twinstr, &GENUS, { 72, 22, 46, 0 } };
void X(codelet_hc2cf_12) (planner *p) {
X(khc2c_register) (p, hc2cf_12, &desc, HC2C_VIA_RDFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cf_12 -include rdft/scalar/hc2cf.h */
/*
* This function contains 118 FP additions, 60 FP multiplications,
* (or, 88 additions, 30 multiplications, 30 fused multiply/add),
* 47 stack variables, 2 constants, and 48 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cf_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
E T1, T1W, T18, T22, Tc, T15, T1V, T23, TR, T1E, T1o, T1D, T12, T1l, T1F;
E T1G, Ti, T1S, T1d, T25, Tt, T1a, T1T, T26, TA, T1y, T1j, T1B, TL, T1g;
E T1z, T1A;
{
E T6, T16, Tb, T17;
T1 = Rp[0];
T1W = Rm[0];
{
E T3, T5, T2, T4;
T3 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 2)];
T2 = W[6];
T4 = W[7];
T6 = FMA(T2, T3, T4 * T5);
T16 = FNMS(T4, T3, T2 * T5);
}
{
E T8, Ta, T7, T9;
T8 = Rp[WS(rs, 4)];
Ta = Rm[WS(rs, 4)];
T7 = W[14];
T9 = W[15];
Tb = FMA(T7, T8, T9 * Ta);
T17 = FNMS(T9, T8, T7 * Ta);
}
T18 = KP866025403 * (T16 - T17);
T22 = KP866025403 * (Tb - T6);
Tc = T6 + Tb;
T15 = FNMS(KP500000000, Tc, T1);
T1V = T16 + T17;
T23 = FNMS(KP500000000, T1V, T1W);
}
{
E T11, T1n, TW, T1m;
{
E TO, TQ, TN, TP;
TO = Ip[WS(rs, 4)];
TQ = Im[WS(rs, 4)];
TN = W[16];
TP = W[17];
TR = FMA(TN, TO, TP * TQ);
T1E = FNMS(TP, TO, TN * TQ);
}
{
E TY, T10, TX, TZ;
TY = Ip[WS(rs, 2)];
T10 = Im[WS(rs, 2)];
TX = W[8];
TZ = W[9];
T11 = FMA(TX, TY, TZ * T10);
T1n = FNMS(TZ, TY, TX * T10);
}
{
E TT, TV, TS, TU;
TT = Ip[0];
TV = Im[0];
TS = W[0];
TU = W[1];
TW = FMA(TS, TT, TU * TV);
T1m = FNMS(TU, TT, TS * TV);
}
T1o = KP866025403 * (T1m - T1n);
T1D = KP866025403 * (T11 - TW);
T12 = TW + T11;
T1l = FNMS(KP500000000, T12, TR);
T1F = T1m + T1n;
T1G = FNMS(KP500000000, T1F, T1E);
}
{
E Ts, T1c, Tn, T1b;
{
E Tf, Th, Te, Tg;
Tf = Rp[WS(rs, 3)];
Th = Rm[WS(rs, 3)];
Te = W[10];
Tg = W[11];
Ti = FMA(Te, Tf, Tg * Th);
T1S = FNMS(Tg, Tf, Te * Th);
}
{
E Tp, Tr, To, Tq;
Tp = Rp[WS(rs, 1)];
Tr = Rm[WS(rs, 1)];
To = W[2];
Tq = W[3];
Ts = FMA(To, Tp, Tq * Tr);
T1c = FNMS(Tq, Tp, To * Tr);
}
{
E Tk, Tm, Tj, Tl;
Tk = Rp[WS(rs, 5)];
Tm = Rm[WS(rs, 5)];
Tj = W[18];
Tl = W[19];
Tn = FMA(Tj, Tk, Tl * Tm);
T1b = FNMS(Tl, Tk, Tj * Tm);
}
T1d = KP866025403 * (T1b - T1c);
T25 = KP866025403 * (Ts - Tn);
Tt = Tn + Ts;
T1a = FNMS(KP500000000, Tt, Ti);
T1T = T1b + T1c;
T26 = FNMS(KP500000000, T1T, T1S);
}
{
E TK, T1i, TF, T1h;
{
E Tx, Tz, Tw, Ty;
Tx = Ip[WS(rs, 1)];
Tz = Im[WS(rs, 1)];
Tw = W[4];
Ty = W[5];
TA = FMA(Tw, Tx, Ty * Tz);
T1y = FNMS(Ty, Tx, Tw * Tz);
}
{
E TH, TJ, TG, TI;
TH = Ip[WS(rs, 5)];
TJ = Im[WS(rs, 5)];
TG = W[20];
TI = W[21];
TK = FMA(TG, TH, TI * TJ);
T1i = FNMS(TI, TH, TG * TJ);
}
{
E TC, TE, TB, TD;
TC = Ip[WS(rs, 3)];
TE = Im[WS(rs, 3)];
TB = W[12];
TD = W[13];
TF = FMA(TB, TC, TD * TE);
T1h = FNMS(TD, TC, TB * TE);
}
T1j = KP866025403 * (T1h - T1i);
T1B = KP866025403 * (TK - TF);
TL = TF + TK;
T1g = FNMS(KP500000000, TL, TA);
T1z = T1h + T1i;
T1A = FNMS(KP500000000, T1z, T1y);
}
{
E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R;
{
E Td, Tu, T1U, T1X;
Td = T1 + Tc;
Tu = Ti + Tt;
Tv = Td + Tu;
T1N = Td - Tu;
T1U = T1S + T1T;
T1X = T1V + T1W;
T1Y = T1U + T1X;
T20 = T1X - T1U;
}
{
E TM, T13, T1O, T1P;
TM = TA + TL;
T13 = TR + T12;
T14 = TM + T13;
T1Z = TM - T13;
T1O = T1y + T1z;
T1P = T1E + T1F;
T1Q = T1O - T1P;
T1R = T1O + T1P;
}
Rm[WS(rs, 5)] = Tv - T14;
Im[WS(rs, 5)] = T1R - T1Y;
Rp[0] = Tv + T14;
Ip[0] = T1R + T1Y;
Rp[WS(rs, 3)] = T1N - T1Q;
Ip[WS(rs, 3)] = T1Z + T20;
Rm[WS(rs, 2)] = T1N + T1Q;
Im[WS(rs, 2)] = T1Z - T20;
}
{
E T1t, T1J, T28, T2a, T1w, T21, T1M, T29;
{
E T1r, T1s, T24, T27;
T1r = T15 + T18;
T1s = T1a + T1d;
T1t = T1r + T1s;
T1J = T1r - T1s;
T24 = T22 + T23;
T27 = T25 + T26;
T28 = T24 - T27;
T2a = T27 + T24;
}
{
E T1u, T1v, T1K, T1L;
T1u = T1g + T1j;
T1v = T1l + T1o;
T1w = T1u + T1v;
T21 = T1v - T1u;
T1K = T1B + T1A;
T1L = T1D + T1G;
T1M = T1K - T1L;
T29 = T1K + T1L;
}
Rm[WS(rs, 1)] = T1t - T1w;
Im[WS(rs, 1)] = T29 - T2a;
Rp[WS(rs, 4)] = T1t + T1w;
Ip[WS(rs, 4)] = T29 + T2a;
Rm[WS(rs, 4)] = T1J - T1M;
Im[WS(rs, 4)] = T21 - T28;
Rp[WS(rs, 1)] = T1J + T1M;
Ip[WS(rs, 1)] = T21 + T28;
}
{
E T1f, T1x, T2e, T2g, T1q, T2f, T1I, T2b;
{
E T19, T1e, T2c, T2d;
T19 = T15 - T18;
T1e = T1a - T1d;
T1f = T19 + T1e;
T1x = T19 - T1e;
T2c = T26 - T25;
T2d = T23 - T22;
T2e = T2c + T2d;
T2g = T2d - T2c;
}
{
E T1k, T1p, T1C, T1H;
T1k = T1g - T1j;
T1p = T1l - T1o;
T1q = T1k + T1p;
T2f = T1p - T1k;
T1C = T1A - T1B;
T1H = T1D - T1G;
T1I = T1C + T1H;
T2b = T1H - T1C;
}
Rp[WS(rs, 2)] = T1f - T1q;
Ip[WS(rs, 2)] = T2b + T2e;
Rm[WS(rs, 3)] = T1f + T1q;
Im[WS(rs, 3)] = T2b - T2e;
Rm[0] = T1x - T1I;
Im[0] = T2f - T2g;
Rp[WS(rs, 5)] = T1x + T1I;
Ip[WS(rs, 5)] = T2f + T2g;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 12 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 12, "hc2cf_12", twinstr, &GENUS, { 88, 30, 30, 0 } };
void X(codelet_hc2cf_12) (planner *p) {
X(khc2c_register) (p, hc2cf_12, &desc, HC2C_VIA_RDFT);
}
#endif