iup-stack/fftw/rdft/scalar/r2cb/r2cb_14.c

259 lines
9.0 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:48 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */
/*
* This function contains 62 FP additions, 44 FP multiplications,
* (or, 18 additions, 0 multiplications, 44 fused multiply/add),
* 46 stack variables, 7 constants, and 28 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
E T3, Te, To, TK, Tu, TM, Tr, TL, Tv, TA, TX, TS, TN, TF, T6;
E Tf, Tc, Th, T9, Tg, Tj, Tx, TU, TP, TH, TC, T1, T2, Td, Ti;
T1 = Cr[0];
T2 = Cr[WS(csr, 7)];
T3 = T1 - T2;
Te = T1 + T2;
{
E Tm, Tn, T4, T5;
Tm = Ci[WS(csi, 4)];
Tn = Ci[WS(csi, 3)];
To = Tm - Tn;
TK = Tm + Tn;
{
E Ts, Tt, Tp, Tq;
Ts = Ci[WS(csi, 6)];
Tt = Ci[WS(csi, 1)];
Tu = Ts - Tt;
TM = Ts + Tt;
Tp = Ci[WS(csi, 2)];
Tq = Ci[WS(csi, 5)];
Tr = Tp - Tq;
TL = Tp + Tq;
}
Tv = FMA(KP554958132, Tu, Tr);
TA = FMA(KP554958132, To, Tu);
TX = FNMS(KP554958132, TL, TK);
TS = FMA(KP554958132, TK, TM);
TN = FMA(KP554958132, TM, TL);
TF = FNMS(KP554958132, Tr, To);
T4 = Cr[WS(csr, 2)];
T5 = Cr[WS(csr, 5)];
T6 = T4 - T5;
Tf = T4 + T5;
{
E Ta, Tb, T7, T8;
Ta = Cr[WS(csr, 6)];
Tb = Cr[WS(csr, 1)];
Tc = Ta - Tb;
Th = Ta + Tb;
T7 = Cr[WS(csr, 4)];
T8 = Cr[WS(csr, 3)];
T9 = T7 - T8;
Tg = T7 + T8;
}
Tj = FNMS(KP356895867, Tg, Tf);
Tx = FNMS(KP356895867, Tf, Th);
TU = FNMS(KP356895867, Tc, T9);
TP = FNMS(KP356895867, T6, Tc);
TH = FNMS(KP356895867, T9, T6);
TC = FNMS(KP356895867, Th, Tg);
}
Td = T6 + T9 + Tc;
R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3);
Ti = Tf + Tg + Th;
R0[0] = FMA(KP2_000000000, Ti, Te);
{
E Tw, Tl, Tk, TY, TW, TV;
Tw = FMA(KP801937735, Tv, To);
Tk = FNMS(KP692021471, Tj, Th);
Tl = FNMS(KP1_801937735, Tk, Te);
R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl);
R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl);
TY = FNMS(KP801937735, TX, TM);
TV = FNMS(KP692021471, TU, T6);
TW = FNMS(KP1_801937735, TV, T3);
R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW);
R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW);
}
{
E TB, Tz, Ty, TO, TJ, TI;
TB = FNMS(KP801937735, TA, Tr);
Ty = FNMS(KP692021471, Tx, Tg);
Tz = FNMS(KP1_801937735, Ty, Te);
R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz);
R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz);
TO = FMA(KP801937735, TN, TK);
TI = FNMS(KP692021471, TH, Tc);
TJ = FNMS(KP1_801937735, TI, T3);
R1[0] = FNMS(KP1_949855824, TO, TJ);
R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ);
}
{
E TT, TR, TQ, TG, TE, TD;
TT = FNMS(KP801937735, TS, TL);
TQ = FNMS(KP692021471, TP, T9);
TR = FNMS(KP1_801937735, TQ, T3);
R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR);
R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR);
TG = FNMS(KP801937735, TF, Tu);
TD = FNMS(KP692021471, TC, Tf);
TE = FNMS(KP1_801937735, TD, Te);
R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE);
R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE);
}
}
}
}
static const kr2c_desc desc = { 14, "r2cb_14", { 18, 0, 44, 0 }, &GENUS };
void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */
/*
* This function contains 62 FP additions, 38 FP multiplications,
* (or, 36 additions, 12 multiplications, 26 fused multiply/add),
* 28 stack variables, 7 constants, and 28 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
DK(KP445041867, +0.445041867912628808577805128993589518932711138);
DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
DK(KP867767478, +0.867767478235116240951536665696717509219981456);
DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1;
E T2;
T1 = Cr[0];
T2 = Cr[WS(csr, 7)];
T3 = T1 - T2;
Td = T1 + T2;
{
E T4, T5, To, Tp;
T4 = Cr[WS(csr, 2)];
T5 = Cr[WS(csr, 5)];
T6 = T4 - T5;
Te = T4 + T5;
To = Ci[WS(csi, 2)];
Tp = Ci[WS(csi, 5)];
Tq = To - Tp;
Tz = To + Tp;
}
{
E Tl, Tm, Ta, Tb;
Tl = Ci[WS(csi, 6)];
Tm = Ci[WS(csi, 1)];
Tn = Tl - Tm;
Ty = Tl + Tm;
Ta = Cr[WS(csr, 6)];
Tb = Cr[WS(csr, 1)];
Tc = Ta - Tb;
Tg = Ta + Tb;
}
{
E Ti, Tj, T7, T8;
Ti = Ci[WS(csi, 4)];
Tj = Ci[WS(csi, 3)];
Tk = Ti - Tj;
Tx = Ti + Tj;
T7 = Cr[WS(csr, 4)];
T8 = Cr[WS(csr, 3)];
T9 = T7 - T8;
Tf = T7 + T8;
}
R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3);
R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td);
{
E Tr, Th, TE, TD;
Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq);
Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te);
R0[WS(rs, 2)] = Th - Tr;
R0[WS(rs, 5)] = Th + Tr;
TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz);
TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6);
R1[WS(rs, 2)] = TD - TE;
R1[WS(rs, 4)] = TD + TE;
}
{
E Tt, Ts, TA, Tw;
Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq);
Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te);
R0[WS(rs, 6)] = Ts - Tt;
R0[WS(rs, 1)] = Ts + Tt;
TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz);
Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6);
R1[WS(rs, 5)] = Tw - TA;
R1[WS(rs, 1)] = Tw + TA;
}
{
E TC, TB, Tv, Tu;
TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty);
TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9);
R1[0] = TB - TC;
R1[WS(rs, 6)] = TB + TC;
Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn);
Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf);
R0[WS(rs, 4)] = Tu - Tv;
R0[WS(rs, 3)] = Tu + Tv;
}
}
}
}
static const kr2c_desc desc = { 14, "r2cb_14", { 36, 12, 26, 0 }, &GENUS };
void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc);
}
#endif