iup-stack/fftw/rdft/scalar/r2cb/r2cb_12.c

221 lines
6.4 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:48 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */
/*
* This function contains 38 FP additions, 16 FP multiplications,
* (or, 22 additions, 0 multiplications, 16 fused multiply/add),
* 25 stack variables, 2 constants, and 24 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
E T8, Tb, Tk, Tz, Tu, Tv, Tn, Ty, T3, Tp, Tf, T6, Tq, Ti;
{
E T9, Ta, Tl, Tm;
T8 = Cr[WS(csr, 3)];
T9 = Cr[WS(csr, 5)];
Ta = Cr[WS(csr, 1)];
Tb = T9 + Ta;
Tk = FNMS(KP2_000000000, T8, Tb);
Tz = T9 - Ta;
Tu = Ci[WS(csi, 3)];
Tl = Ci[WS(csi, 5)];
Tm = Ci[WS(csi, 1)];
Tv = Tl + Tm;
Tn = Tl - Tm;
Ty = FMA(KP2_000000000, Tu, Tv);
}
{
E Te, T1, T2, Td;
Te = Ci[WS(csi, 4)];
T1 = Cr[0];
T2 = Cr[WS(csr, 4)];
Td = T1 - T2;
T3 = FMA(KP2_000000000, T2, T1);
Tp = FNMS(KP1_732050807, Te, Td);
Tf = FMA(KP1_732050807, Te, Td);
}
{
E Th, T4, T5, Tg;
Th = Ci[WS(csi, 2)];
T4 = Cr[WS(csr, 6)];
T5 = Cr[WS(csr, 2)];
Tg = T4 - T5;
T6 = FMA(KP2_000000000, T5, T4);
Tq = FMA(KP1_732050807, Th, Tg);
Ti = FNMS(KP1_732050807, Th, Tg);
}
{
E T7, Tc, Tx, TA;
T7 = T3 + T6;
Tc = T8 + Tb;
R0[WS(rs, 3)] = FNMS(KP2_000000000, Tc, T7);
R0[0] = FMA(KP2_000000000, Tc, T7);
{
E Tj, To, TB, TC;
Tj = Tf + Ti;
To = FMA(KP1_732050807, Tn, Tk);
R0[WS(rs, 1)] = Tj + To;
R0[WS(rs, 4)] = Tj - To;
TB = Tf - Ti;
TC = FNMS(KP1_732050807, Tz, Ty);
R1[WS(rs, 2)] = TB - TC;
R1[WS(rs, 5)] = TB + TC;
}
Tx = Tp - Tq;
TA = FMA(KP1_732050807, Tz, Ty);
R1[0] = Tx - TA;
R1[WS(rs, 3)] = Tx + TA;
{
E Tt, Tw, Tr, Ts;
Tt = T3 - T6;
Tw = Tu - Tv;
R1[WS(rs, 4)] = FNMS(KP2_000000000, Tw, Tt);
R1[WS(rs, 1)] = FMA(KP2_000000000, Tw, Tt);
Tr = Tp + Tq;
Ts = FNMS(KP1_732050807, Tn, Tk);
R0[WS(rs, 5)] = Tr + Ts;
R0[WS(rs, 2)] = Tr - Ts;
}
}
}
}
}
static const kr2c_desc desc = { 12, "r2cb_12", { 22, 0, 16, 0 }, &GENUS };
void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */
/*
* This function contains 38 FP additions, 10 FP multiplications,
* (or, 34 additions, 6 multiplications, 4 fused multiply/add),
* 25 stack variables, 2 constants, and 24 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
E T8, Tb, Tm, TA, Tw, Tx, Tp, TB, T3, Tr, Tg, T6, Ts, Tk;
{
E T9, Ta, Tn, To;
T8 = Cr[WS(csr, 3)];
T9 = Cr[WS(csr, 5)];
Ta = Cr[WS(csr, 1)];
Tb = T9 + Ta;
Tm = FMS(KP2_000000000, T8, Tb);
TA = KP1_732050807 * (T9 - Ta);
Tw = Ci[WS(csi, 3)];
Tn = Ci[WS(csi, 5)];
To = Ci[WS(csi, 1)];
Tx = Tn + To;
Tp = KP1_732050807 * (Tn - To);
TB = FMA(KP2_000000000, Tw, Tx);
}
{
E Tf, T1, T2, Td, Te;
Te = Ci[WS(csi, 4)];
Tf = KP1_732050807 * Te;
T1 = Cr[0];
T2 = Cr[WS(csr, 4)];
Td = T1 - T2;
T3 = FMA(KP2_000000000, T2, T1);
Tr = Td - Tf;
Tg = Td + Tf;
}
{
E Tj, T4, T5, Th, Ti;
Ti = Ci[WS(csi, 2)];
Tj = KP1_732050807 * Ti;
T4 = Cr[WS(csr, 6)];
T5 = Cr[WS(csr, 2)];
Th = T4 - T5;
T6 = FMA(KP2_000000000, T5, T4);
Ts = Th + Tj;
Tk = Th - Tj;
}
{
E T7, Tc, Tz, TC;
T7 = T3 + T6;
Tc = KP2_000000000 * (T8 + Tb);
R0[WS(rs, 3)] = T7 - Tc;
R0[0] = T7 + Tc;
{
E Tl, Tq, TD, TE;
Tl = Tg + Tk;
Tq = Tm - Tp;
R0[WS(rs, 1)] = Tl - Tq;
R0[WS(rs, 4)] = Tl + Tq;
TD = Tg - Tk;
TE = TB - TA;
R1[WS(rs, 2)] = TD - TE;
R1[WS(rs, 5)] = TD + TE;
}
Tz = Tr - Ts;
TC = TA + TB;
R1[0] = Tz - TC;
R1[WS(rs, 3)] = Tz + TC;
{
E Tv, Ty, Tt, Tu;
Tv = T3 - T6;
Ty = KP2_000000000 * (Tw - Tx);
R1[WS(rs, 4)] = Tv - Ty;
R1[WS(rs, 1)] = Tv + Ty;
Tt = Tr + Ts;
Tu = Tm + Tp;
R0[WS(rs, 5)] = Tt - Tu;
R0[WS(rs, 2)] = Tt + Tu;
}
}
}
}
}
static const kr2c_desc desc = { 12, "r2cb_12", { 34, 6, 4, 0 }, &GENUS };
void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc);
}
#endif