iup-stack/fftw/rdft/scalar/r2cb/r2cbIII_32.c

712 lines
21 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:01 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -name r2cbIII_32 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 174 FP additions, 100 FP multiplications,
* (or, 106 additions, 32 multiplications, 68 fused multiply/add),
* 65 stack variables, 18 constants, and 64 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
DK(KP1_913880671, +1.913880671464417729871595773960539938965698411);
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
DK(KP1_763842528, +1.763842528696710059425513727320776699016885241);
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
DK(KP1_546020906, +1.546020906725473921621813219516939601942082586);
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
DK(KP1_990369453, +1.990369453344393772489673906218959843150949737);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
E T7, T2i, T2E, Tz, T1e, T1I, T1Z, T1x, Te, T22, T2F, T2j, T1h, T1y, TK;
E T1J, Tm, T2B, TW, T1k, T1C, T1M, T28, T2m, Tt, T2A, T17, T1j, T1F, T1L;
E T2d, T2l;
{
E T3, Tv, T1d, T2g, T6, T1a, Ty, T2h;
{
E T1, T2, T1b, T1c;
T1 = Cr[0];
T2 = Cr[WS(csr, 15)];
T3 = T1 + T2;
Tv = T1 - T2;
T1b = Ci[0];
T1c = Ci[WS(csi, 15)];
T1d = T1b + T1c;
T2g = T1c - T1b;
}
{
E T4, T5, Tw, Tx;
T4 = Cr[WS(csr, 8)];
T5 = Cr[WS(csr, 7)];
T6 = T4 + T5;
T1a = T4 - T5;
Tw = Ci[WS(csi, 8)];
Tx = Ci[WS(csi, 7)];
Ty = Tw + Tx;
T2h = Tx - Tw;
}
T7 = T3 + T6;
T2i = T2g - T2h;
T2E = T2h + T2g;
Tz = Tv - Ty;
T1e = T1a + T1d;
T1I = T1a - T1d;
T1Z = T3 - T6;
T1x = Tv + Ty;
}
{
E Ta, TA, TD, T20, Td, TF, TI, T21;
{
E T8, T9, TB, TC;
T8 = Cr[WS(csr, 4)];
T9 = Cr[WS(csr, 11)];
Ta = T8 + T9;
TA = T8 - T9;
TB = Ci[WS(csi, 4)];
TC = Ci[WS(csi, 11)];
TD = TB + TC;
T20 = TC - TB;
}
{
E Tb, Tc, TG, TH;
Tb = Cr[WS(csr, 3)];
Tc = Cr[WS(csr, 12)];
Td = Tb + Tc;
TF = Tb - Tc;
TG = Ci[WS(csi, 3)];
TH = Ci[WS(csi, 12)];
TI = TG + TH;
T21 = TG - TH;
}
Te = Ta + Td;
T22 = T20 - T21;
T2F = T20 + T21;
T2j = Ta - Td;
{
E T1f, T1g, TE, TJ;
T1f = TF + TI;
T1g = TA + TD;
T1h = T1f - T1g;
T1y = T1g + T1f;
TE = TA - TD;
TJ = TF - TI;
TK = TE + TJ;
T1J = TE - TJ;
}
}
{
E Ti, TM, TU, T25, Tl, TR, TP, T26, TQ, TV;
{
E Tg, Th, TS, TT;
Tg = Cr[WS(csr, 2)];
Th = Cr[WS(csr, 13)];
Ti = Tg + Th;
TM = Tg - Th;
TS = Ci[WS(csi, 2)];
TT = Ci[WS(csi, 13)];
TU = TS + TT;
T25 = TS - TT;
}
{
E Tj, Tk, TN, TO;
Tj = Cr[WS(csr, 10)];
Tk = Cr[WS(csr, 5)];
Tl = Tj + Tk;
TR = Tj - Tk;
TN = Ci[WS(csi, 10)];
TO = Ci[WS(csi, 5)];
TP = TN + TO;
T26 = TN - TO;
}
Tm = Ti + Tl;
T2B = T26 + T25;
TQ = TM - TP;
TV = TR + TU;
TW = FNMS(KP414213562, TV, TQ);
T1k = FMA(KP414213562, TQ, TV);
{
E T1A, T1B, T24, T27;
T1A = TR - TU;
T1B = TM + TP;
T1C = FMA(KP414213562, T1B, T1A);
T1M = FNMS(KP414213562, T1A, T1B);
T24 = Ti - Tl;
T27 = T25 - T26;
T28 = T24 - T27;
T2m = T24 + T27;
}
}
{
E Tp, TX, T14, T2a, Ts, T15, T10, T2b, T11, T16;
{
E Tn, To, T12, T13;
Tn = Cr[WS(csr, 1)];
To = Cr[WS(csr, 14)];
Tp = Tn + To;
TX = Tn - To;
T12 = Ci[WS(csi, 1)];
T13 = Ci[WS(csi, 14)];
T14 = T12 + T13;
T2a = T13 - T12;
}
{
E Tq, Tr, TY, TZ;
Tq = Cr[WS(csr, 6)];
Tr = Cr[WS(csr, 9)];
Ts = Tq + Tr;
T15 = Tq - Tr;
TY = Ci[WS(csi, 6)];
TZ = Ci[WS(csi, 9)];
T10 = TY + TZ;
T2b = TY - TZ;
}
Tt = Tp + Ts;
T2A = T2b + T2a;
T11 = TX - T10;
T16 = T14 - T15;
T17 = FNMS(KP414213562, T16, T11);
T1j = FMA(KP414213562, T11, T16);
{
E T1D, T1E, T29, T2c;
T1D = T15 + T14;
T1E = TX + T10;
T1F = FNMS(KP414213562, T1E, T1D);
T1L = FMA(KP414213562, T1D, T1E);
T29 = Tp - Ts;
T2c = T2a - T2b;
T2d = T29 + T2c;
T2l = T29 - T2c;
}
}
{
E Tf, Tu, T2L, T2M, T2N, T2O;
Tf = T7 + Te;
Tu = Tm + Tt;
T2L = Tf - Tu;
T2M = T2B + T2A;
T2N = T2F + T2E;
T2O = T2M + T2N;
R0[0] = KP2_000000000 * (Tf + Tu);
R0[WS(rs, 8)] = KP2_000000000 * (T2N - T2M);
R0[WS(rs, 4)] = KP1_414213562 * (T2L + T2O);
R0[WS(rs, 12)] = KP1_414213562 * (T2O - T2L);
}
{
E T2t, T2y, T2w, T2x;
{
E T2r, T2s, T2u, T2v;
T2r = T1Z - T22;
T2s = T2m + T2l;
T2t = FNMS(KP707106781, T2s, T2r);
T2y = FMA(KP707106781, T2s, T2r);
T2u = T2j + T2i;
T2v = T28 - T2d;
T2w = FNMS(KP707106781, T2v, T2u);
T2x = FMA(KP707106781, T2v, T2u);
}
R0[WS(rs, 3)] = KP1_662939224 * (FMA(KP668178637, T2w, T2t));
R0[WS(rs, 15)] = -(KP1_961570560 * (FNMS(KP198912367, T2x, T2y)));
R0[WS(rs, 11)] = KP1_662939224 * (FNMS(KP668178637, T2t, T2w));
R0[WS(rs, 7)] = KP1_961570560 * (FMA(KP198912367, T2y, T2x));
}
{
E T2D, T2K, T2I, T2J;
{
E T2z, T2C, T2G, T2H;
T2z = T7 - Te;
T2C = T2A - T2B;
T2D = T2z + T2C;
T2K = T2z - T2C;
T2G = T2E - T2F;
T2H = Tm - Tt;
T2I = T2G - T2H;
T2J = T2H + T2G;
}
R0[WS(rs, 2)] = KP1_847759065 * (FMA(KP414213562, T2I, T2D));
R0[WS(rs, 14)] = -(KP1_847759065 * (FNMS(KP414213562, T2J, T2K)));
R0[WS(rs, 10)] = KP1_847759065 * (FNMS(KP414213562, T2D, T2I));
R0[WS(rs, 6)] = KP1_847759065 * (FMA(KP414213562, T2K, T2J));
}
{
E T19, T1o, T1m, T1n;
{
E TL, T18, T1i, T1l;
TL = FMA(KP707106781, TK, Tz);
T18 = TW + T17;
T19 = FMA(KP923879532, T18, TL);
T1o = FNMS(KP923879532, T18, TL);
T1i = FNMS(KP707106781, T1h, T1e);
T1l = T1j - T1k;
T1m = FNMS(KP923879532, T1l, T1i);
T1n = FMA(KP923879532, T1l, T1i);
}
R1[0] = KP1_990369453 * (FNMS(KP098491403, T1m, T19));
R1[WS(rs, 12)] = -(KP1_546020906 * (FMA(KP820678790, T1n, T1o)));
R1[WS(rs, 8)] = -(KP1_990369453 * (FMA(KP098491403, T19, T1m)));
R1[WS(rs, 4)] = -(KP1_546020906 * (FNMS(KP820678790, T1o, T1n)));
}
{
E T1r, T1w, T1u, T1v;
{
E T1p, T1q, T1s, T1t;
T1p = FNMS(KP707106781, TK, Tz);
T1q = T1k + T1j;
T1r = FNMS(KP923879532, T1q, T1p);
T1w = FMA(KP923879532, T1q, T1p);
T1s = FMA(KP707106781, T1h, T1e);
T1t = TW - T17;
T1u = FMA(KP923879532, T1t, T1s);
T1v = FNMS(KP923879532, T1t, T1s);
}
R1[WS(rs, 2)] = KP1_763842528 * (FNMS(KP534511135, T1u, T1r));
R1[WS(rs, 14)] = -(KP1_913880671 * (FMA(KP303346683, T1v, T1w)));
R1[WS(rs, 10)] = -(KP1_763842528 * (FMA(KP534511135, T1r, T1u)));
R1[WS(rs, 6)] = -(KP1_913880671 * (FNMS(KP303346683, T1w, T1v)));
}
{
E T1T, T1Y, T1W, T1X;
{
E T1R, T1S, T1U, T1V;
T1R = FMA(KP707106781, T1y, T1x);
T1S = T1M + T1L;
T1T = FNMS(KP923879532, T1S, T1R);
T1Y = FMA(KP923879532, T1S, T1R);
T1U = FMA(KP707106781, T1J, T1I);
T1V = T1C + T1F;
T1W = FNMS(KP923879532, T1V, T1U);
T1X = FMA(KP923879532, T1V, T1U);
}
R1[WS(rs, 3)] = KP1_546020906 * (FMA(KP820678790, T1W, T1T));
R1[WS(rs, 15)] = -(KP1_990369453 * (FNMS(KP098491403, T1X, T1Y)));
R1[WS(rs, 11)] = KP1_546020906 * (FNMS(KP820678790, T1T, T1W));
R1[WS(rs, 7)] = KP1_990369453 * (FMA(KP098491403, T1Y, T1X));
}
{
E T2f, T2q, T2o, T2p;
{
E T23, T2e, T2k, T2n;
T23 = T1Z + T22;
T2e = T28 + T2d;
T2f = FMA(KP707106781, T2e, T23);
T2q = FNMS(KP707106781, T2e, T23);
T2k = T2i - T2j;
T2n = T2l - T2m;
T2o = FMA(KP707106781, T2n, T2k);
T2p = FNMS(KP707106781, T2n, T2k);
}
R0[WS(rs, 1)] = KP1_961570560 * (FMA(KP198912367, T2o, T2f));
R0[WS(rs, 13)] = -(KP1_662939224 * (FNMS(KP668178637, T2p, T2q)));
R0[WS(rs, 9)] = KP1_961570560 * (FNMS(KP198912367, T2f, T2o));
R0[WS(rs, 5)] = KP1_662939224 * (FMA(KP668178637, T2q, T2p));
}
{
E T1H, T1Q, T1O, T1P;
{
E T1z, T1G, T1K, T1N;
T1z = FNMS(KP707106781, T1y, T1x);
T1G = T1C - T1F;
T1H = FMA(KP923879532, T1G, T1z);
T1Q = FNMS(KP923879532, T1G, T1z);
T1K = FNMS(KP707106781, T1J, T1I);
T1N = T1L - T1M;
T1O = FMA(KP923879532, T1N, T1K);
T1P = FNMS(KP923879532, T1N, T1K);
}
R1[WS(rs, 1)] = KP1_913880671 * (FMA(KP303346683, T1O, T1H));
R1[WS(rs, 13)] = -(KP1_763842528 * (FNMS(KP534511135, T1P, T1Q)));
R1[WS(rs, 9)] = KP1_913880671 * (FNMS(KP303346683, T1H, T1O));
R1[WS(rs, 5)] = KP1_763842528 * (FMA(KP534511135, T1Q, T1P));
}
}
}
}
static const kr2c_desc desc = { 32, "r2cbIII_32", { 106, 32, 68, 0 }, &GENUS };
void X(codelet_r2cbIII_32) (planner *p) { X(kr2c_register) (p, r2cbIII_32, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -name r2cbIII_32 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 174 FP additions, 84 FP multiplications,
* (or, 138 additions, 48 multiplications, 36 fused multiply/add),
* 66 stack variables, 19 constants, and 64 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_913880671, +1.913880671464417729871595773960539938965698411);
DK(KP580569354, +0.580569354508924735272384751634790549382952557);
DK(KP942793473, +0.942793473651995297112775251810508755314920638);
DK(KP1_763842528, +1.763842528696710059425513727320776699016885241);
DK(KP1_546020906, +1.546020906725473921621813219516939601942082586);
DK(KP1_268786568, +1.268786568327290996430343226450986741351374190);
DK(KP196034280, +0.196034280659121203988391127777283691722273346);
DK(KP1_990369453, +1.990369453344393772489673906218959843150949737);
DK(KP765366864, +0.765366864730179543456919968060797733522689125);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP390180644, +0.390180644032256535696569736954044481855383236);
DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
E T7, T2i, T2F, Tz, T1k, T1I, T1Z, T1x, Te, T22, T2E, T2j, T1f, T1y, TK;
E T1J, Tm, T2B, TW, T1a, T1C, T1L, T28, T2l, Tt, T2A, T17, T1b, T1F, T1M;
E T2d, T2m;
{
E T3, Tv, T1j, T2h, T6, T1g, Ty, T2g;
{
E T1, T2, T1h, T1i;
T1 = Cr[0];
T2 = Cr[WS(csr, 15)];
T3 = T1 + T2;
Tv = T1 - T2;
T1h = Ci[0];
T1i = Ci[WS(csi, 15)];
T1j = T1h + T1i;
T2h = T1i - T1h;
}
{
E T4, T5, Tw, Tx;
T4 = Cr[WS(csr, 8)];
T5 = Cr[WS(csr, 7)];
T6 = T4 + T5;
T1g = T4 - T5;
Tw = Ci[WS(csi, 8)];
Tx = Ci[WS(csi, 7)];
Ty = Tw + Tx;
T2g = Tw - Tx;
}
T7 = T3 + T6;
T2i = T2g + T2h;
T2F = T2h - T2g;
Tz = Tv - Ty;
T1k = T1g + T1j;
T1I = T1g - T1j;
T1Z = T3 - T6;
T1x = Tv + Ty;
}
{
E Ta, TA, TD, T21, Td, TF, TI, T20;
{
E T8, T9, TB, TC;
T8 = Cr[WS(csr, 4)];
T9 = Cr[WS(csr, 11)];
Ta = T8 + T9;
TA = T8 - T9;
TB = Ci[WS(csi, 4)];
TC = Ci[WS(csi, 11)];
TD = TB + TC;
T21 = TB - TC;
}
{
E Tb, Tc, TG, TH;
Tb = Cr[WS(csr, 3)];
Tc = Cr[WS(csr, 12)];
Td = Tb + Tc;
TF = Tb - Tc;
TG = Ci[WS(csi, 3)];
TH = Ci[WS(csi, 12)];
TI = TG + TH;
T20 = TH - TG;
}
Te = Ta + Td;
T22 = T20 - T21;
T2E = T21 + T20;
T2j = Ta - Td;
{
E T1d, T1e, TE, TJ;
T1d = TA + TD;
T1e = TF + TI;
T1f = KP707106781 * (T1d - T1e);
T1y = KP707106781 * (T1d + T1e);
TE = TA - TD;
TJ = TF - TI;
TK = KP707106781 * (TE + TJ);
T1J = KP707106781 * (TE - TJ);
}
}
{
E Ti, TM, TU, T25, Tl, TR, TP, T26, TQ, TV;
{
E Tg, Th, TS, TT;
Tg = Cr[WS(csr, 2)];
Th = Cr[WS(csr, 13)];
Ti = Tg + Th;
TM = Tg - Th;
TS = Ci[WS(csi, 2)];
TT = Ci[WS(csi, 13)];
TU = TS + TT;
T25 = TS - TT;
}
{
E Tj, Tk, TN, TO;
Tj = Cr[WS(csr, 10)];
Tk = Cr[WS(csr, 5)];
Tl = Tj + Tk;
TR = Tj - Tk;
TN = Ci[WS(csi, 10)];
TO = Ci[WS(csi, 5)];
TP = TN + TO;
T26 = TN - TO;
}
Tm = Ti + Tl;
T2B = T26 + T25;
TQ = TM - TP;
TV = TR + TU;
TW = FNMS(KP382683432, TV, KP923879532 * TQ);
T1a = FMA(KP382683432, TQ, KP923879532 * TV);
{
E T1A, T1B, T24, T27;
T1A = TM + TP;
T1B = TU - TR;
T1C = FNMS(KP923879532, T1B, KP382683432 * T1A);
T1L = FMA(KP923879532, T1A, KP382683432 * T1B);
T24 = Ti - Tl;
T27 = T25 - T26;
T28 = T24 - T27;
T2l = T24 + T27;
}
}
{
E Tp, TX, T15, T2a, Ts, T12, T10, T2b, T11, T16;
{
E Tn, To, T13, T14;
Tn = Cr[WS(csr, 1)];
To = Cr[WS(csr, 14)];
Tp = Tn + To;
TX = Tn - To;
T13 = Ci[WS(csi, 1)];
T14 = Ci[WS(csi, 14)];
T15 = T13 + T14;
T2a = T14 - T13;
}
{
E Tq, Tr, TY, TZ;
Tq = Cr[WS(csr, 6)];
Tr = Cr[WS(csr, 9)];
Ts = Tq + Tr;
T12 = Tq - Tr;
TY = Ci[WS(csi, 6)];
TZ = Ci[WS(csi, 9)];
T10 = TY + TZ;
T2b = TY - TZ;
}
Tt = Tp + Ts;
T2A = T2b + T2a;
T11 = TX - T10;
T16 = T12 - T15;
T17 = FMA(KP923879532, T11, KP382683432 * T16);
T1b = FNMS(KP382683432, T11, KP923879532 * T16);
{
E T1D, T1E, T29, T2c;
T1D = TX + T10;
T1E = T12 + T15;
T1F = FNMS(KP923879532, T1E, KP382683432 * T1D);
T1M = FMA(KP923879532, T1D, KP382683432 * T1E);
T29 = Tp - Ts;
T2c = T2a - T2b;
T2d = T29 + T2c;
T2m = T2c - T29;
}
}
{
E Tf, Tu, T2L, T2M, T2N, T2O;
Tf = T7 + Te;
Tu = Tm + Tt;
T2L = Tf - Tu;
T2M = T2B + T2A;
T2N = T2F - T2E;
T2O = T2M + T2N;
R0[0] = KP2_000000000 * (Tf + Tu);
R0[WS(rs, 8)] = KP2_000000000 * (T2N - T2M);
R0[WS(rs, 4)] = KP1_414213562 * (T2L + T2O);
R0[WS(rs, 12)] = KP1_414213562 * (T2O - T2L);
}
{
E T2t, T2x, T2w, T2y;
{
E T2r, T2s, T2u, T2v;
T2r = T1Z - T22;
T2s = KP707106781 * (T2m - T2l);
T2t = T2r + T2s;
T2x = T2r - T2s;
T2u = T2j + T2i;
T2v = KP707106781 * (T28 - T2d);
T2w = T2u - T2v;
T2y = T2v + T2u;
}
R0[WS(rs, 3)] = FMA(KP1_662939224, T2t, KP1_111140466 * T2w);
R0[WS(rs, 15)] = FNMS(KP1_961570560, T2x, KP390180644 * T2y);
R0[WS(rs, 11)] = FNMS(KP1_111140466, T2t, KP1_662939224 * T2w);
R0[WS(rs, 7)] = FMA(KP390180644, T2x, KP1_961570560 * T2y);
}
{
E T2D, T2J, T2I, T2K;
{
E T2z, T2C, T2G, T2H;
T2z = T7 - Te;
T2C = T2A - T2B;
T2D = T2z + T2C;
T2J = T2z - T2C;
T2G = T2E + T2F;
T2H = Tm - Tt;
T2I = T2G - T2H;
T2K = T2H + T2G;
}
R0[WS(rs, 2)] = FMA(KP1_847759065, T2D, KP765366864 * T2I);
R0[WS(rs, 14)] = FNMS(KP1_847759065, T2J, KP765366864 * T2K);
R0[WS(rs, 10)] = FNMS(KP765366864, T2D, KP1_847759065 * T2I);
R0[WS(rs, 6)] = FMA(KP765366864, T2J, KP1_847759065 * T2K);
}
{
E T19, T1n, T1m, T1o;
{
E TL, T18, T1c, T1l;
TL = Tz + TK;
T18 = TW + T17;
T19 = TL + T18;
T1n = TL - T18;
T1c = T1a + T1b;
T1l = T1f + T1k;
T1m = T1c + T1l;
T1o = T1c - T1l;
}
R1[0] = FNMS(KP196034280, T1m, KP1_990369453 * T19);
R1[WS(rs, 12)] = FNMS(KP1_546020906, T1n, KP1_268786568 * T1o);
R1[WS(rs, 8)] = -(FMA(KP196034280, T19, KP1_990369453 * T1m));
R1[WS(rs, 4)] = FMA(KP1_268786568, T1n, KP1_546020906 * T1o);
}
{
E T1r, T1v, T1u, T1w;
{
E T1p, T1q, T1s, T1t;
T1p = Tz - TK;
T1q = T1b - T1a;
T1r = T1p + T1q;
T1v = T1p - T1q;
T1s = T1f - T1k;
T1t = TW - T17;
T1u = T1s - T1t;
T1w = T1t + T1s;
}
R1[WS(rs, 2)] = FMA(KP1_763842528, T1r, KP942793473 * T1u);
R1[WS(rs, 14)] = FNMS(KP1_913880671, T1v, KP580569354 * T1w);
R1[WS(rs, 10)] = FNMS(KP942793473, T1r, KP1_763842528 * T1u);
R1[WS(rs, 6)] = FMA(KP580569354, T1v, KP1_913880671 * T1w);
}
{
E T1T, T1X, T1W, T1Y;
{
E T1R, T1S, T1U, T1V;
T1R = T1x + T1y;
T1S = T1L + T1M;
T1T = T1R - T1S;
T1X = T1R + T1S;
T1U = T1J + T1I;
T1V = T1C - T1F;
T1W = T1U - T1V;
T1Y = T1V + T1U;
}
R1[WS(rs, 3)] = FMA(KP1_546020906, T1T, KP1_268786568 * T1W);
R1[WS(rs, 15)] = FNMS(KP1_990369453, T1X, KP196034280 * T1Y);
R1[WS(rs, 11)] = FNMS(KP1_268786568, T1T, KP1_546020906 * T1W);
R1[WS(rs, 7)] = FMA(KP196034280, T1X, KP1_990369453 * T1Y);
}
{
E T2f, T2p, T2o, T2q;
{
E T23, T2e, T2k, T2n;
T23 = T1Z + T22;
T2e = KP707106781 * (T28 + T2d);
T2f = T23 + T2e;
T2p = T23 - T2e;
T2k = T2i - T2j;
T2n = KP707106781 * (T2l + T2m);
T2o = T2k - T2n;
T2q = T2n + T2k;
}
R0[WS(rs, 1)] = FMA(KP1_961570560, T2f, KP390180644 * T2o);
R0[WS(rs, 13)] = FNMS(KP1_662939224, T2p, KP1_111140466 * T2q);
R0[WS(rs, 9)] = FNMS(KP390180644, T2f, KP1_961570560 * T2o);
R0[WS(rs, 5)] = FMA(KP1_111140466, T2p, KP1_662939224 * T2q);
}
{
E T1H, T1P, T1O, T1Q;
{
E T1z, T1G, T1K, T1N;
T1z = T1x - T1y;
T1G = T1C + T1F;
T1H = T1z + T1G;
T1P = T1z - T1G;
T1K = T1I - T1J;
T1N = T1L - T1M;
T1O = T1K - T1N;
T1Q = T1N + T1K;
}
R1[WS(rs, 1)] = FMA(KP1_913880671, T1H, KP580569354 * T1O);
R1[WS(rs, 13)] = FNMS(KP1_763842528, T1P, KP942793473 * T1Q);
R1[WS(rs, 9)] = FNMS(KP580569354, T1H, KP1_913880671 * T1O);
R1[WS(rs, 5)] = FMA(KP942793473, T1P, KP1_763842528 * T1Q);
}
}
}
}
static const kr2c_desc desc = { 32, "r2cbIII_32", { 138, 48, 36, 0 }, &GENUS };
void X(codelet_r2cbIII_32) (planner *p) { X(kr2c_register) (p, r2cbIII_32, &desc);
}
#endif