iup-stack/fftw/rdft/scalar/r2cb/r2cbIII_16.c

317 lines
9.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:01 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 66 FP additions, 36 FP multiplications,
* (or, 46 additions, 16 multiplications, 20 fused multiply/add),
* 40 stack variables, 9 constants, and 32 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
E T7, TW, T13, Tj, TA, TK, TP, TH, Te, TX, T12, To, Tt, TC, TS;
E TB, TT, TY;
{
E T3, Tf, Tz, TU, T6, Tw, Ti, TV;
{
E T1, T2, Tx, Ty;
T1 = Cr[0];
T2 = Cr[WS(csr, 7)];
T3 = T1 + T2;
Tf = T1 - T2;
Tx = Ci[0];
Ty = Ci[WS(csi, 7)];
Tz = Tx + Ty;
TU = Ty - Tx;
}
{
E T4, T5, Tg, Th;
T4 = Cr[WS(csr, 4)];
T5 = Cr[WS(csr, 3)];
T6 = T4 + T5;
Tw = T4 - T5;
Tg = Ci[WS(csi, 4)];
Th = Ci[WS(csi, 3)];
Ti = Tg + Th;
TV = Th - Tg;
}
T7 = T3 + T6;
TW = TU - TV;
T13 = TV + TU;
Tj = Tf - Ti;
TA = Tw + Tz;
TK = Tw - Tz;
TP = T3 - T6;
TH = Tf + Ti;
}
{
E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ;
{
E T8, T9, Tl, Tm;
T8 = Cr[WS(csr, 2)];
T9 = Cr[WS(csr, 5)];
Ta = T8 + T9;
Tk = T8 - T9;
Tl = Ci[WS(csi, 2)];
Tm = Ci[WS(csi, 5)];
Tn = Tl + Tm;
TR = Tl - Tm;
}
{
E Tb, Tc, Tq, Tr;
Tb = Cr[WS(csr, 1)];
Tc = Cr[WS(csr, 6)];
Td = Tb + Tc;
Tp = Tb - Tc;
Tq = Ci[WS(csi, 1)];
Tr = Ci[WS(csi, 6)];
Ts = Tq + Tr;
TQ = Tr - Tq;
}
Te = Ta + Td;
TX = Ta - Td;
T12 = TR + TQ;
To = Tk - Tn;
Tt = Tp - Ts;
TC = Tk + Tn;
TS = TQ - TR;
TB = Tp + Ts;
}
R0[0] = KP2_000000000 * (T7 + Te);
R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12);
TT = TP + TS;
TY = TW - TX;
R0[WS(rs, 1)] = KP1_847759065 * (FMA(KP414213562, TY, TT));
R0[WS(rs, 5)] = KP1_847759065 * (FNMS(KP414213562, TT, TY));
{
E T11, T14, TZ, T10;
T11 = T7 - Te;
T14 = T12 + T13;
R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14);
R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11);
TZ = TX + TW;
T10 = TP - TS;
R0[WS(rs, 3)] = KP1_847759065 * (FMA(KP414213562, T10, TZ));
R0[WS(rs, 7)] = -(KP1_847759065 * (FNMS(KP414213562, TZ, T10)));
}
{
E TJ, TO, TM, TN, TI, TL;
TI = TC + TB;
TJ = FNMS(KP707106781, TI, TH);
TO = FMA(KP707106781, TI, TH);
TL = To - Tt;
TM = FNMS(KP707106781, TL, TK);
TN = FMA(KP707106781, TL, TK);
R1[WS(rs, 1)] = KP1_662939224 * (FMA(KP668178637, TM, TJ));
R1[WS(rs, 7)] = -(KP1_961570560 * (FNMS(KP198912367, TN, TO)));
R1[WS(rs, 5)] = KP1_662939224 * (FNMS(KP668178637, TJ, TM));
R1[WS(rs, 3)] = KP1_961570560 * (FMA(KP198912367, TO, TN));
}
{
E Tv, TG, TE, TF, Tu, TD;
Tu = To + Tt;
Tv = FMA(KP707106781, Tu, Tj);
TG = FNMS(KP707106781, Tu, Tj);
TD = TB - TC;
TE = FNMS(KP707106781, TD, TA);
TF = FMA(KP707106781, TD, TA);
R1[0] = KP1_961570560 * (FNMS(KP198912367, TE, Tv));
R1[WS(rs, 6)] = -(KP1_662939224 * (FMA(KP668178637, TF, TG)));
R1[WS(rs, 4)] = -(KP1_961570560 * (FMA(KP198912367, Tv, TE)));
R1[WS(rs, 2)] = -(KP1_662939224 * (FNMS(KP668178637, TG, TF)));
}
}
}
}
static const kr2c_desc desc = { 16, "r2cbIII_16", { 46, 16, 20, 0 }, &GENUS };
void X(codelet_r2cbIII_16) (planner *p) { X(kr2c_register) (p, r2cbIII_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 66 FP additions, 32 FP multiplications,
* (or, 54 additions, 20 multiplications, 12 fused multiply/add),
* 40 stack variables, 9 constants, and 32 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
DK(KP390180644, +0.390180644032256535696569736954044481855383236);
DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
DK(KP765366864, +0.765366864730179543456919968060797733522689125);
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
E T7, TW, T13, Tj, TD, TK, TP, TH, Te, TX, T12, To, Tt, Tx, TS;
E Tw, TT, TY;
{
E T3, Tf, TC, TV, T6, Tz, Ti, TU;
{
E T1, T2, TA, TB;
T1 = Cr[0];
T2 = Cr[WS(csr, 7)];
T3 = T1 + T2;
Tf = T1 - T2;
TA = Ci[0];
TB = Ci[WS(csi, 7)];
TC = TA + TB;
TV = TB - TA;
}
{
E T4, T5, Tg, Th;
T4 = Cr[WS(csr, 4)];
T5 = Cr[WS(csr, 3)];
T6 = T4 + T5;
Tz = T4 - T5;
Tg = Ci[WS(csi, 4)];
Th = Ci[WS(csi, 3)];
Ti = Tg + Th;
TU = Tg - Th;
}
T7 = T3 + T6;
TW = TU + TV;
T13 = TV - TU;
Tj = Tf - Ti;
TD = Tz + TC;
TK = Tz - TC;
TP = T3 - T6;
TH = Tf + Ti;
}
{
E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ;
{
E T8, T9, Tl, Tm;
T8 = Cr[WS(csr, 2)];
T9 = Cr[WS(csr, 5)];
Ta = T8 + T9;
Tk = T8 - T9;
Tl = Ci[WS(csi, 2)];
Tm = Ci[WS(csi, 5)];
Tn = Tl + Tm;
TR = Tl - Tm;
}
{
E Tb, Tc, Tq, Tr;
Tb = Cr[WS(csr, 1)];
Tc = Cr[WS(csr, 6)];
Td = Tb + Tc;
Tp = Tb - Tc;
Tq = Ci[WS(csi, 1)];
Tr = Ci[WS(csi, 6)];
Ts = Tq + Tr;
TQ = Tr - Tq;
}
Te = Ta + Td;
TX = Ta - Td;
T12 = TR + TQ;
To = Tk - Tn;
Tt = Tp - Ts;
Tx = Tp + Ts;
TS = TQ - TR;
Tw = Tk + Tn;
}
R0[0] = KP2_000000000 * (T7 + Te);
R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12);
TT = TP + TS;
TY = TW - TX;
R0[WS(rs, 1)] = FMA(KP1_847759065, TT, KP765366864 * TY);
R0[WS(rs, 5)] = FNMS(KP765366864, TT, KP1_847759065 * TY);
{
E T11, T14, TZ, T10;
T11 = T7 - Te;
T14 = T12 + T13;
R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14);
R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11);
TZ = TP - TS;
T10 = TX + TW;
R0[WS(rs, 3)] = FMA(KP765366864, TZ, KP1_847759065 * T10);
R0[WS(rs, 7)] = FNMS(KP1_847759065, TZ, KP765366864 * T10);
}
{
E TJ, TN, TM, TO, TI, TL;
TI = KP707106781 * (Tw + Tx);
TJ = TH - TI;
TN = TH + TI;
TL = KP707106781 * (To - Tt);
TM = TK - TL;
TO = TL + TK;
R1[WS(rs, 1)] = FMA(KP1_662939224, TJ, KP1_111140466 * TM);
R1[WS(rs, 7)] = FNMS(KP1_961570560, TN, KP390180644 * TO);
R1[WS(rs, 5)] = FNMS(KP1_111140466, TJ, KP1_662939224 * TM);
R1[WS(rs, 3)] = FMA(KP390180644, TN, KP1_961570560 * TO);
}
{
E Tv, TF, TE, TG, Tu, Ty;
Tu = KP707106781 * (To + Tt);
Tv = Tj + Tu;
TF = Tj - Tu;
Ty = KP707106781 * (Tw - Tx);
TE = Ty + TD;
TG = Ty - TD;
R1[0] = FNMS(KP390180644, TE, KP1_961570560 * Tv);
R1[WS(rs, 6)] = FNMS(KP1_662939224, TF, KP1_111140466 * TG);
R1[WS(rs, 4)] = -(FMA(KP390180644, Tv, KP1_961570560 * TE));
R1[WS(rs, 2)] = FMA(KP1_111140466, TF, KP1_662939224 * TG);
}
}
}
}
static const kr2c_desc desc = { 16, "r2cbIII_16", { 54, 20, 12, 0 }, &GENUS };
void X(codelet_r2cbIII_16) (planner *p) { X(kr2c_register) (p, r2cbIII_16, &desc);
}
#endif