iup-stack/fftw/rdft/scalar/r2cb/hc2cbdft_12.c

644 lines
16 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:12 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */
/*
* This function contains 142 FP additions, 68 FP multiplications,
* (or, 96 additions, 22 multiplications, 46 fused multiply/add),
* 55 stack variables, 2 constants, and 48 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
E Tv, TC, TD, T1L, T1M, T2y, Tb, T1Z, T1E, T2D, T1e, T1U, TY, T2o, T13;
E T18, T19, T1O, T1P, T2E, Tm, T1V, T1H, T2z, T1h, T20, TO, T2p;
{
E T1, T4, Tu, TS, Tp, Ts, Tt, TT, T6, T9, TB, TV, Tw, Tz, TA;
E TW;
{
E T2, T3, Tq, Tr;
T1 = Rp[0];
T2 = Rp[WS(rs, 4)];
T3 = Rm[WS(rs, 3)];
T4 = T2 + T3;
Tu = T2 - T3;
TS = FNMS(KP500000000, T4, T1);
Tp = Ip[0];
Tq = Ip[WS(rs, 4)];
Tr = Im[WS(rs, 3)];
Ts = Tq - Tr;
Tt = FNMS(KP500000000, Ts, Tp);
TT = Tr + Tq;
}
{
E T7, T8, Tx, Ty;
T6 = Rm[WS(rs, 5)];
T7 = Rm[WS(rs, 1)];
T8 = Rp[WS(rs, 2)];
T9 = T7 + T8;
TB = T7 - T8;
TV = FNMS(KP500000000, T9, T6);
Tw = Im[WS(rs, 5)];
Tx = Im[WS(rs, 1)];
Ty = Ip[WS(rs, 2)];
Tz = Tx - Ty;
TA = FNMS(KP500000000, Tz, Tw);
TW = Tx + Ty;
}
{
E T5, Ta, T1C, T1D;
Tv = FMA(KP866025403, Tu, Tt);
TC = FNMS(KP866025403, TB, TA);
TD = Tv + TC;
T1L = FNMS(KP866025403, Tu, Tt);
T1M = FMA(KP866025403, TB, TA);
T2y = T1L + T1M;
T5 = T1 + T4;
Ta = T6 + T9;
Tb = T5 + Ta;
T1Z = T5 - Ta;
T1C = FMA(KP866025403, TT, TS);
T1D = FNMS(KP866025403, TW, TV);
T1E = T1C + T1D;
T2D = T1C - T1D;
{
E T1c, T1d, TU, TX;
T1c = Tp + Ts;
T1d = Tw + Tz;
T1e = T1c - T1d;
T1U = T1c + T1d;
TU = FNMS(KP866025403, TT, TS);
TX = FMA(KP866025403, TW, TV);
TY = TU - TX;
T2o = TU + TX;
}
}
}
{
E Tc, Tf, TE, T12, TZ, T10, TH, T11, Th, Tk, TJ, T17, T14, T15, TM;
E T16;
{
E Td, Te, TF, TG;
Tc = Rp[WS(rs, 3)];
Td = Rm[WS(rs, 4)];
Te = Rm[0];
Tf = Td + Te;
TE = FNMS(KP500000000, Tf, Tc);
T12 = Td - Te;
TZ = Ip[WS(rs, 3)];
TF = Im[WS(rs, 4)];
TG = Im[0];
T10 = TF + TG;
TH = TF - TG;
T11 = FMA(KP500000000, T10, TZ);
}
{
E Ti, Tj, TK, TL;
Th = Rm[WS(rs, 2)];
Ti = Rp[WS(rs, 1)];
Tj = Rp[WS(rs, 5)];
Tk = Ti + Tj;
TJ = FNMS(KP500000000, Tk, Th);
T17 = Ti - Tj;
T14 = Im[WS(rs, 2)];
TK = Ip[WS(rs, 5)];
TL = Ip[WS(rs, 1)];
T15 = TK + TL;
TM = TK - TL;
T16 = FMA(KP500000000, T15, T14);
}
{
E Tg, Tl, T1F, T1G;
T13 = FMA(KP866025403, T12, T11);
T18 = FNMS(KP866025403, T17, T16);
T19 = T13 + T18;
T1O = FNMS(KP866025403, T12, T11);
T1P = FMA(KP866025403, T17, T16);
T2E = T1O + T1P;
Tg = Tc + Tf;
Tl = Th + Tk;
Tm = Tg + Tl;
T1V = Tg - Tl;
T1F = FNMS(KP866025403, TH, TE);
T1G = FNMS(KP866025403, TM, TJ);
T1H = T1F + T1G;
T2z = T1F - T1G;
{
E T1f, T1g, TI, TN;
T1f = TZ - T10;
T1g = T15 - T14;
T1h = T1f + T1g;
T20 = T1f - T1g;
TI = FMA(KP866025403, TH, TE);
TN = FMA(KP866025403, TM, TJ);
TO = TI - TN;
T2p = TI + TN;
}
}
}
{
E Tn, T1i, TP, T1a, TQ, T1j, To, T1b, T1k, TR;
Tn = Tb + Tm;
T1i = T1e + T1h;
TP = TD + TO;
T1a = TY - T19;
To = W[0];
TQ = To * TP;
T1j = To * T1a;
TR = W[1];
T1b = FMA(TR, T1a, TQ);
T1k = FNMS(TR, TP, T1j);
Rp[0] = Tn - T1b;
Ip[0] = T1i + T1k;
Rm[0] = Tn + T1b;
Im[0] = T1k - T1i;
}
{
E T1p, T1l, T1n, T1o, T1x, T1s, T1v, T1t, T1z, T1m, T1r;
T1p = T1e - T1h;
T1m = Tb - Tm;
T1l = W[10];
T1n = T1l * T1m;
T1o = W[11];
T1x = T1o * T1m;
T1s = TD - TO;
T1v = TY + T19;
T1r = W[12];
T1t = T1r * T1s;
T1z = T1r * T1v;
{
E T1q, T1y, T1w, T1A, T1u;
T1q = FNMS(T1o, T1p, T1n);
T1y = FMA(T1l, T1p, T1x);
T1u = W[13];
T1w = FMA(T1u, T1v, T1t);
T1A = FNMS(T1u, T1s, T1z);
Rp[WS(rs, 3)] = T1q - T1w;
Ip[WS(rs, 3)] = T1y + T1A;
Rm[WS(rs, 3)] = T1q + T1w;
Im[WS(rs, 3)] = T1A - T1y;
}
}
{
E T1R, T2b, T27, T29, T2a, T2l, T1B, T1J, T1K, T25, T1W, T21, T1X, T23, T2e;
E T2h, T2f, T2j;
{
E T1N, T1Q, T28, T1I, T1T, T2d;
T1N = T1L - T1M;
T1Q = T1O - T1P;
T1R = T1N - T1Q;
T2b = T1N + T1Q;
T28 = T1E + T1H;
T27 = W[14];
T29 = T27 * T28;
T2a = W[15];
T2l = T2a * T28;
T1I = T1E - T1H;
T1B = W[2];
T1J = T1B * T1I;
T1K = W[3];
T25 = T1K * T1I;
T1W = T1U - T1V;
T21 = T1Z + T20;
T1T = W[4];
T1X = T1T * T1W;
T23 = T1T * T21;
T2e = T1V + T1U;
T2h = T1Z - T20;
T2d = W[16];
T2f = T2d * T2e;
T2j = T2d * T2h;
}
{
E T1S, T26, T22, T24, T1Y;
T1S = FNMS(T1K, T1R, T1J);
T26 = FMA(T1B, T1R, T25);
T1Y = W[5];
T22 = FMA(T1Y, T21, T1X);
T24 = FNMS(T1Y, T1W, T23);
Rp[WS(rs, 1)] = T1S - T22;
Ip[WS(rs, 1)] = T24 + T26;
Rm[WS(rs, 1)] = T22 + T1S;
Im[WS(rs, 1)] = T24 - T26;
}
{
E T2c, T2m, T2i, T2k, T2g;
T2c = FNMS(T2a, T2b, T29);
T2m = FMA(T27, T2b, T2l);
T2g = W[17];
T2i = FMA(T2g, T2h, T2f);
T2k = FNMS(T2g, T2e, T2j);
Rp[WS(rs, 4)] = T2c - T2i;
Ip[WS(rs, 4)] = T2k + T2m;
Rm[WS(rs, 4)] = T2i + T2c;
Im[WS(rs, 4)] = T2k - T2m;
}
}
{
E T2v, T2P, T2L, T2N, T2O, T2X, T2n, T2r, T2s, T2H, T2A, T2F, T2B, T2J, T2S;
E T2V, T2T, T2Z;
{
E T2t, T2u, T2M, T2q, T2x, T2R;
T2t = Tv - TC;
T2u = T13 - T18;
T2v = T2t + T2u;
T2P = T2t - T2u;
T2M = T2o - T2p;
T2L = W[18];
T2N = T2L * T2M;
T2O = W[19];
T2X = T2O * T2M;
T2q = T2o + T2p;
T2n = W[6];
T2r = T2n * T2q;
T2s = W[7];
T2H = T2s * T2q;
T2A = T2y + T2z;
T2F = T2D - T2E;
T2x = W[8];
T2B = T2x * T2A;
T2J = T2x * T2F;
T2S = T2y - T2z;
T2V = T2D + T2E;
T2R = W[20];
T2T = T2R * T2S;
T2Z = T2R * T2V;
}
{
E T2w, T2I, T2G, T2K, T2C;
T2w = FNMS(T2s, T2v, T2r);
T2I = FMA(T2n, T2v, T2H);
T2C = W[9];
T2G = FMA(T2C, T2F, T2B);
T2K = FNMS(T2C, T2A, T2J);
Rp[WS(rs, 2)] = T2w - T2G;
Ip[WS(rs, 2)] = T2I + T2K;
Rm[WS(rs, 2)] = T2w + T2G;
Im[WS(rs, 2)] = T2K - T2I;
}
{
E T2Q, T2Y, T2W, T30, T2U;
T2Q = FNMS(T2O, T2P, T2N);
T2Y = FMA(T2L, T2P, T2X);
T2U = W[21];
T2W = FMA(T2U, T2V, T2T);
T30 = FNMS(T2U, T2S, T2Z);
Rp[WS(rs, 5)] = T2Q - T2W;
Ip[WS(rs, 5)] = T2Y + T30;
Rm[WS(rs, 5)] = T2Q + T2W;
Im[WS(rs, 5)] = T30 - T2Y;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 12 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 96, 22, 46, 0 } };
void X(codelet_hc2cbdft_12) (planner *p) {
X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */
/*
* This function contains 142 FP additions, 60 FP multiplications,
* (or, 112 additions, 30 multiplications, 30 fused multiply/add),
* 47 stack variables, 2 constants, and 48 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN;
E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O;
{
E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV;
T1 = Rp[0];
Tq = Ip[0];
T6 = Rm[WS(rs, 5)];
TA = Im[WS(rs, 5)];
{
E T2, T3, Tr, Ts;
T2 = Rp[WS(rs, 4)];
T3 = Rm[WS(rs, 3)];
T4 = T2 + T3;
Tp = KP866025403 * (T2 - T3);
Tr = Im[WS(rs, 3)];
Ts = Ip[WS(rs, 4)];
Tt = Tr - Ts;
TS = KP866025403 * (Tr + Ts);
}
{
E T7, T8, Tx, Ty;
T7 = Rm[WS(rs, 1)];
T8 = Rp[WS(rs, 2)];
T9 = T7 + T8;
Tw = KP866025403 * (T7 - T8);
Tx = Im[WS(rs, 1)];
Ty = Ip[WS(rs, 2)];
Tz = Tx - Ty;
TV = KP866025403 * (Tx + Ty);
}
{
E Tu, TB, TU, TR;
Tu = FMA(KP500000000, Tt, Tq);
Tv = Tp + Tu;
T1E = Tu - Tp;
TB = FMS(KP500000000, Tz, TA);
TC = Tw + TB;
T1F = TB - Tw;
TU = FNMS(KP500000000, T9, T6);
TW = TU + TV;
T1x = TU - TV;
TR = FNMS(KP500000000, T4, T1);
TT = TR - TS;
T1w = TR + TS;
{
E T1b, T1c, T5, Ta;
T1b = Tq - Tt;
T1c = Tz + TA;
T1d = T1b - T1c;
T1N = T1b + T1c;
T5 = T1 + T4;
Ta = T6 + T9;
Tb = T5 + Ta;
T1R = T5 - Ta;
}
}
}
{
E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14;
Tc = Rp[WS(rs, 3)];
T10 = Ip[WS(rs, 3)];
Th = Rm[WS(rs, 2)];
T15 = Im[WS(rs, 2)];
{
E Td, Te, TF, TG;
Td = Rm[WS(rs, 4)];
Te = Rm[0];
Tf = Td + Te;
TY = KP866025403 * (Td - Te);
TF = Im[WS(rs, 4)];
TG = Im[0];
TH = KP866025403 * (TF - TG);
TZ = TF + TG;
}
{
E Ti, Tj, TK, TL;
Ti = Rp[WS(rs, 1)];
Tj = Rp[WS(rs, 5)];
Tk = Ti + Tj;
T13 = KP866025403 * (Ti - Tj);
TK = Ip[WS(rs, 5)];
TL = Ip[WS(rs, 1)];
TM = KP866025403 * (TK - TL);
T14 = TK + TL;
}
{
E TE, TJ, T16, T11;
TE = FNMS(KP500000000, Tf, Tc);
TI = TE + TH;
T1z = TE - TH;
TJ = FNMS(KP500000000, Tk, Th);
TN = TJ + TM;
T1A = TJ - TM;
T16 = FMA(KP500000000, T14, T15);
T17 = T13 - T16;
T1I = T13 + T16;
T11 = FMA(KP500000000, TZ, T10);
T12 = TY + T11;
T1H = T11 - TY;
{
E T1e, T1f, Tg, Tl;
T1e = T10 - TZ;
T1f = T14 - T15;
T1g = T1e + T1f;
T1S = T1e - T1f;
Tg = Tc + Tf;
Tl = Th + Tk;
Tm = Tg + Tl;
T1O = Tg - Tl;
}
}
}
{
E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t;
Tn = Tb + Tm;
T1h = T1d + T1g;
{
E TD, TO, TX, T18;
TD = Tv - TC;
TO = TI - TN;
TP = TD + TO;
T1p = TD - TO;
TX = TT - TW;
T18 = T12 - T17;
T19 = TX - T18;
T1r = TX + T18;
{
E T1k, T1m, T1j, T1l;
T1k = Tb - Tm;
T1m = T1d - T1g;
T1j = W[10];
T1l = W[11];
T1n = FNMS(T1l, T1m, T1j * T1k);
T1t = FMA(T1l, T1k, T1j * T1m);
}
}
{
E T1a, T1i, To, TQ;
To = W[0];
TQ = W[1];
T1a = FMA(To, TP, TQ * T19);
T1i = FNMS(TQ, TP, To * T19);
Rp[0] = Tn - T1a;
Ip[0] = T1h + T1i;
Rm[0] = Tn + T1a;
Im[0] = T1i - T1h;
}
{
E T1s, T1u, T1o, T1q;
T1o = W[12];
T1q = W[13];
T1s = FMA(T1o, T1p, T1q * T1r);
T1u = FNMS(T1q, T1p, T1o * T1r);
Rp[WS(rs, 3)] = T1n - T1s;
Ip[WS(rs, 3)] = T1t + T1u;
Rm[WS(rs, 3)] = T1n + T1s;
Im[WS(rs, 3)] = T1u - T1t;
}
}
{
E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27;
{
E T1y, T1B, T1G, T1J;
T1y = T1w + T1x;
T1B = T1z + T1A;
T1C = T1y - T1B;
T1Y = T1y + T1B;
T1G = T1E + T1F;
T1J = T1H - T1I;
T1K = T1G - T1J;
T20 = T1G + T1J;
}
{
E T1P, T1T, T1M, T1Q;
T1P = T1N - T1O;
T1T = T1R + T1S;
T1M = W[4];
T1Q = W[5];
T1U = FMA(T1M, T1P, T1Q * T1T);
T1V = FNMS(T1Q, T1P, T1M * T1T);
}
{
E T23, T25, T22, T24;
T23 = T1O + T1N;
T25 = T1R - T1S;
T22 = W[16];
T24 = W[17];
T26 = FMA(T22, T23, T24 * T25);
T27 = FNMS(T24, T23, T22 * T25);
}
{
E T1L, T1W, T1v, T1D;
T1v = W[2];
T1D = W[3];
T1L = FNMS(T1D, T1K, T1v * T1C);
T1W = FMA(T1D, T1C, T1v * T1K);
Rp[WS(rs, 1)] = T1L - T1U;
Ip[WS(rs, 1)] = T1V + T1W;
Rm[WS(rs, 1)] = T1U + T1L;
Im[WS(rs, 1)] = T1V - T1W;
}
{
E T21, T28, T1X, T1Z;
T1X = W[14];
T1Z = W[15];
T21 = FNMS(T1Z, T20, T1X * T1Y);
T28 = FMA(T1Z, T1Y, T1X * T20);
Rp[WS(rs, 4)] = T21 - T26;
Ip[WS(rs, 4)] = T27 + T28;
Rm[WS(rs, 4)] = T26 + T21;
Im[WS(rs, 4)] = T27 - T28;
}
}
{
E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z;
{
E T2a, T2b, T2n, T2o;
T2a = TT + TW;
T2b = TI + TN;
T2c = T2a + T2b;
T2u = T2a - T2b;
T2n = T1w - T1x;
T2o = T1H + T1I;
T2p = T2n - T2o;
T2B = T2n + T2o;
}
{
E T2e, T2f, T2j, T2k;
T2e = Tv + TC;
T2f = T12 + T17;
T2g = T2e + T2f;
T2w = T2e - T2f;
T2j = T1E - T1F;
T2k = T1z - T1A;
T2l = T2j + T2k;
T2z = T2j - T2k;
}
{
E T2h, T2r, T2q, T2s;
{
E T29, T2d, T2i, T2m;
T29 = W[6];
T2d = W[7];
T2h = FNMS(T2d, T2g, T29 * T2c);
T2r = FMA(T2d, T2c, T29 * T2g);
T2i = W[8];
T2m = W[9];
T2q = FMA(T2i, T2l, T2m * T2p);
T2s = FNMS(T2m, T2l, T2i * T2p);
}
Rp[WS(rs, 2)] = T2h - T2q;
Ip[WS(rs, 2)] = T2r + T2s;
Rm[WS(rs, 2)] = T2h + T2q;
Im[WS(rs, 2)] = T2s - T2r;
}
{
E T2x, T2D, T2C, T2E;
{
E T2t, T2v, T2y, T2A;
T2t = W[18];
T2v = W[19];
T2x = FNMS(T2v, T2w, T2t * T2u);
T2D = FMA(T2v, T2u, T2t * T2w);
T2y = W[20];
T2A = W[21];
T2C = FMA(T2y, T2z, T2A * T2B);
T2E = FNMS(T2A, T2z, T2y * T2B);
}
Rp[WS(rs, 5)] = T2x - T2C;
Ip[WS(rs, 5)] = T2D + T2E;
Rm[WS(rs, 5)] = T2x + T2C;
Im[WS(rs, 5)] = T2E - T2D;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 12 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, { 112, 30, 30, 0 } };
void X(codelet_hc2cbdft_12) (planner *p) {
X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);
}
#endif