iup-stack/fftw/rdft/scalar/r2cb/hc2cbdft2_32.c

1951 lines
49 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:15 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft2_32 -include rdft/scalar/hc2cb.h */
/*
* This function contains 498 FP additions, 260 FP multiplications,
* (or, 300 additions, 62 multiplications, 198 fused multiply/add),
* 122 stack variables, 7 constants, and 128 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) {
E T3h, T4B, Tv, T3K, T6T, T8Y, T7i, T8L, T7f, T8X, T1G, T4Y, T1j, T4K, T2M;
E T4X, T6d, T8C, T66, T8o, T6M, T8K, T2P, T4L, T3o, T4C, T4q, T5q, T6C, T8p;
E T6z, T8B, TK, TZ, T10, T32, T39, T3L, T4t, T4E, T8t, T8F, T4w, T4F, T8w;
E T8E, T6l, T6E, T6s, T6F, T28, T51, T2R, T4P, T71, T90, T7k, T8P, T2z, T50;
E T2S, T4S, T78, T91, T7l, T8S;
{
E T16, T3l, T2H, T3m, T3, T6, T7, T2E, T13, Ta, Td, Te, T1c, T3j, T3i;
E T2J, T1h, T2K, Tt, T6Q, T6R, T1z, T1E, T6a, T6b, T3g, Tm, T6N, T6O, T1o;
E T1t, T67, T68, T3d, T4o, T4p;
{
E T14, T15, T2F, T2G;
T14 = Ip[0];
T15 = Im[WS(rs, 15)];
T16 = T14 + T15;
T3l = T14 - T15;
T2F = Ip[WS(rs, 8)];
T2G = Im[WS(rs, 7)];
T2H = T2F + T2G;
T3m = T2F - T2G;
{
E T1, T2, T4, T5;
T1 = Rp[0];
T2 = Rm[WS(rs, 15)];
T3 = T1 + T2;
T4 = Rp[WS(rs, 8)];
T5 = Rm[WS(rs, 7)];
T6 = T4 + T5;
T7 = T3 + T6;
T2E = T1 - T2;
T13 = T4 - T5;
}
}
{
E T19, T1a, T1b, T18, T1e, T1f, T1g, T1d;
{
E T8, T9, Tb, Tc;
T19 = Ip[WS(rs, 4)];
T1a = Im[WS(rs, 11)];
T1b = T19 + T1a;
T8 = Rp[WS(rs, 4)];
T9 = Rm[WS(rs, 11)];
Ta = T8 + T9;
T18 = T8 - T9;
T1e = Im[WS(rs, 3)];
T1f = Ip[WS(rs, 12)];
T1g = T1e + T1f;
Tb = Rm[WS(rs, 3)];
Tc = Rp[WS(rs, 12)];
Td = Tb + Tc;
T1d = Tb - Tc;
}
Te = Ta + Td;
T1c = T18 + T1b;
T3j = T1f - T1e;
T3i = T19 - T1a;
T2J = T18 - T1b;
T1h = T1d + T1g;
T2K = T1d - T1g;
}
{
E Tp, T1A, T1y, T3e, Ts, T1v, T1D, T3f;
{
E Tn, To, T1w, T1x;
Tn = Rm[WS(rs, 1)];
To = Rp[WS(rs, 14)];
Tp = Tn + To;
T1A = Tn - To;
T1w = Im[WS(rs, 1)];
T1x = Ip[WS(rs, 14)];
T1y = T1w + T1x;
T3e = T1x - T1w;
}
{
E Tq, Tr, T1B, T1C;
Tq = Rp[WS(rs, 6)];
Tr = Rm[WS(rs, 9)];
Ts = Tq + Tr;
T1v = Tq - Tr;
T1B = Ip[WS(rs, 6)];
T1C = Im[WS(rs, 9)];
T1D = T1B + T1C;
T3f = T1B - T1C;
}
Tt = Tp + Ts;
T6Q = T1A + T1D;
T6R = T1v + T1y;
T1z = T1v - T1y;
T1E = T1A - T1D;
T6a = Tp - Ts;
T6b = T3e - T3f;
T3g = T3e + T3f;
}
{
E Ti, T1p, T1n, T3b, Tl, T1k, T1s, T3c;
{
E Tg, Th, T1l, T1m;
Tg = Rp[WS(rs, 2)];
Th = Rm[WS(rs, 13)];
Ti = Tg + Th;
T1p = Tg - Th;
T1l = Ip[WS(rs, 2)];
T1m = Im[WS(rs, 13)];
T1n = T1l + T1m;
T3b = T1l - T1m;
}
{
E Tj, Tk, T1q, T1r;
Tj = Rp[WS(rs, 10)];
Tk = Rm[WS(rs, 5)];
Tl = Tj + Tk;
T1k = Tj - Tk;
T1q = Ip[WS(rs, 10)];
T1r = Im[WS(rs, 5)];
T1s = T1q + T1r;
T3c = T1q - T1r;
}
Tm = Ti + Tl;
T6N = T1p + T1s;
T6O = T1n - T1k;
T1o = T1k + T1n;
T1t = T1p - T1s;
T67 = Ti - Tl;
T68 = T3b - T3c;
T3d = T3b + T3c;
}
T3h = T3d + T3g;
T4B = Tm - Tt;
{
E Tf, Tu, T6P, T6S;
Tf = T7 + Te;
Tu = Tm + Tt;
Tv = Tf + Tu;
T3K = Tf - Tu;
T6P = FMA(KP414213562, T6O, T6N);
T6S = FMA(KP414213562, T6R, T6Q);
T6T = T6P - T6S;
T8Y = T6P + T6S;
}
{
E T7g, T7h, T7d, T7e;
T7g = FNMS(KP414213562, T6N, T6O);
T7h = FNMS(KP414213562, T6Q, T6R);
T7i = T7g + T7h;
T8L = T7h - T7g;
T7d = T2E + T2H;
T7e = T1c + T1h;
T7f = FNMS(KP707106781, T7e, T7d);
T8X = FMA(KP707106781, T7e, T7d);
}
{
E T1u, T1F, T17, T1i;
T1u = FMA(KP414213562, T1t, T1o);
T1F = FNMS(KP414213562, T1E, T1z);
T1G = T1u + T1F;
T4Y = T1F - T1u;
T17 = T13 + T16;
T1i = T1c - T1h;
T1j = FMA(KP707106781, T1i, T17);
T4K = FNMS(KP707106781, T1i, T17);
}
{
E T2I, T2L, T69, T6c;
T2I = T2E - T2H;
T2L = T2J + T2K;
T2M = FMA(KP707106781, T2L, T2I);
T4X = FNMS(KP707106781, T2L, T2I);
T69 = T67 - T68;
T6c = T6a + T6b;
T6d = T69 + T6c;
T8C = T69 - T6c;
}
{
E T64, T65, T6K, T6L;
T64 = T3 - T6;
T65 = T3j - T3i;
T66 = T64 + T65;
T8o = T64 - T65;
T6K = T16 - T13;
T6L = T2J - T2K;
T6M = FMA(KP707106781, T6L, T6K);
T8K = FNMS(KP707106781, T6L, T6K);
}
{
E T2N, T2O, T3k, T3n;
T2N = FNMS(KP414213562, T1o, T1t);
T2O = FMA(KP414213562, T1z, T1E);
T2P = T2N + T2O;
T4L = T2N - T2O;
T3k = T3i + T3j;
T3n = T3l + T3m;
T3o = T3k + T3n;
T4C = T3n - T3k;
}
T4o = T7 - Te;
T4p = T3g - T3d;
T4q = T4o + T4p;
T5q = T4o - T4p;
{
E T6A, T6B, T6x, T6y;
T6A = T67 + T68;
T6B = T6b - T6a;
T6C = T6A + T6B;
T8p = T6B - T6A;
T6x = Ta - Td;
T6y = T3l - T3m;
T6z = T6x + T6y;
T8B = T6y - T6x;
}
}
{
E TC, T6V, T6Y, T1M, T23, T6f, T6j, T31, TY, T6n, T6p, T2i, T2n, T2w, T35;
E T2v, TJ, T6g, T6i, T1R, T1W, T25, T2Y, T24, TR, T72, T75, T2d, T2u, T6m;
E T6q, T38;
{
E Ty, T1Z, T1L, T2Z, TB, T1I, T22, T30;
{
E Tw, Tx, T1J, T1K;
Tw = Rp[WS(rs, 1)];
Tx = Rm[WS(rs, 14)];
Ty = Tw + Tx;
T1Z = Tw - Tx;
T1J = Ip[WS(rs, 1)];
T1K = Im[WS(rs, 14)];
T1L = T1J + T1K;
T2Z = T1J - T1K;
}
{
E Tz, TA, T20, T21;
Tz = Rp[WS(rs, 9)];
TA = Rm[WS(rs, 6)];
TB = Tz + TA;
T1I = Tz - TA;
T20 = Ip[WS(rs, 9)];
T21 = Im[WS(rs, 6)];
T22 = T20 + T21;
T30 = T20 - T21;
}
TC = Ty + TB;
T6V = T1L - T1I;
T6Y = T1Z + T22;
T1M = T1I + T1L;
T23 = T1Z - T22;
T6f = Ty - TB;
T6j = T2Z - T30;
T31 = T2Z + T30;
}
{
E TU, T2e, T2h, T33, TX, T2j, T2m, T34;
{
E TS, TT, T2f, T2g;
TS = Rp[WS(rs, 3)];
TT = Rm[WS(rs, 12)];
TU = TS + TT;
T2e = TS - TT;
T2f = Ip[WS(rs, 3)];
T2g = Im[WS(rs, 12)];
T2h = T2f + T2g;
T33 = T2f - T2g;
}
{
E TV, TW, T2k, T2l;
TV = Rm[WS(rs, 4)];
TW = Rp[WS(rs, 11)];
TX = TV + TW;
T2j = TV - TW;
T2k = Im[WS(rs, 4)];
T2l = Ip[WS(rs, 11)];
T2m = T2k + T2l;
T34 = T2l - T2k;
}
TY = TU + TX;
T6n = T34 - T33;
T6p = TU - TX;
T2i = T2e + T2h;
T2n = T2j + T2m;
T2w = T2j - T2m;
T35 = T33 + T34;
T2v = T2e - T2h;
}
{
E TF, T1N, T1Q, T2W, TI, T1S, T1V, T2X;
{
E TD, TE, T1O, T1P;
TD = Rp[WS(rs, 5)];
TE = Rm[WS(rs, 10)];
TF = TD + TE;
T1N = TD - TE;
T1O = Ip[WS(rs, 5)];
T1P = Im[WS(rs, 10)];
T1Q = T1O + T1P;
T2W = T1O - T1P;
}
{
E TG, TH, T1T, T1U;
TG = Rm[WS(rs, 2)];
TH = Rp[WS(rs, 13)];
TI = TG + TH;
T1S = TG - TH;
T1T = Im[WS(rs, 2)];
T1U = Ip[WS(rs, 13)];
T1V = T1T + T1U;
T2X = T1U - T1T;
}
TJ = TF + TI;
T6g = T2X - T2W;
T6i = TF - TI;
T1R = T1N + T1Q;
T1W = T1S + T1V;
T25 = T1S - T1V;
T2Y = T2W + T2X;
T24 = T1N - T1Q;
}
{
E TN, T2q, T2c, T36, TQ, T29, T2t, T37;
{
E TL, TM, T2a, T2b;
TL = Rm[0];
TM = Rp[WS(rs, 15)];
TN = TL + TM;
T2q = TL - TM;
T2a = Im[0];
T2b = Ip[WS(rs, 15)];
T2c = T2a + T2b;
T36 = T2b - T2a;
}
{
E TO, TP, T2r, T2s;
TO = Rp[WS(rs, 7)];
TP = Rm[WS(rs, 8)];
TQ = TO + TP;
T29 = TO - TP;
T2r = Ip[WS(rs, 7)];
T2s = Im[WS(rs, 8)];
T2t = T2r + T2s;
T37 = T2r - T2s;
}
TR = TN + TQ;
T72 = T29 + T2c;
T75 = T2q + T2t;
T2d = T29 - T2c;
T2u = T2q - T2t;
T6m = TN - TQ;
T6q = T36 - T37;
T38 = T36 + T37;
}
{
E T4r, T4s, T8r, T8s;
TK = TC + TJ;
TZ = TR + TY;
T10 = TK + TZ;
T32 = T2Y + T31;
T39 = T35 + T38;
T3L = T39 - T32;
T4r = TC - TJ;
T4s = T31 - T2Y;
T4t = T4r - T4s;
T4E = T4r + T4s;
T8r = T6q - T6p;
T8s = T6m - T6n;
T8t = FMA(KP414213562, T8s, T8r);
T8F = FNMS(KP414213562, T8r, T8s);
{
E T4u, T4v, T8u, T8v;
T4u = TR - TY;
T4v = T38 - T35;
T4w = T4u + T4v;
T4F = T4v - T4u;
T8u = T6j - T6i;
T8v = T6f - T6g;
T8w = FNMS(KP414213562, T8v, T8u);
T8E = FMA(KP414213562, T8u, T8v);
}
}
{
E T6h, T6k, T6o, T6r;
T6h = T6f + T6g;
T6k = T6i + T6j;
T6l = FNMS(KP414213562, T6k, T6h);
T6E = FMA(KP414213562, T6h, T6k);
T6o = T6m + T6n;
T6r = T6p + T6q;
T6s = FMA(KP414213562, T6r, T6o);
T6F = FNMS(KP414213562, T6o, T6r);
{
E T1Y, T4O, T27, T4N, T1X, T26;
T1X = T1R - T1W;
T1Y = FMA(KP707106781, T1X, T1M);
T4O = FNMS(KP707106781, T1X, T1M);
T26 = T24 + T25;
T27 = FMA(KP707106781, T26, T23);
T4N = FNMS(KP707106781, T26, T23);
T28 = FMA(KP198912367, T27, T1Y);
T51 = FNMS(KP668178637, T4N, T4O);
T2R = FNMS(KP198912367, T1Y, T27);
T4P = FMA(KP668178637, T4O, T4N);
}
}
{
E T6X, T8O, T70, T8N, T6W, T6Z;
T6W = T25 - T24;
T6X = FNMS(KP707106781, T6W, T6V);
T8O = FMA(KP707106781, T6W, T6V);
T6Z = T1R + T1W;
T70 = FNMS(KP707106781, T6Z, T6Y);
T8N = FMA(KP707106781, T6Z, T6Y);
T71 = FMA(KP668178637, T70, T6X);
T90 = FNMS(KP198912367, T8N, T8O);
T7k = FNMS(KP668178637, T6X, T70);
T8P = FMA(KP198912367, T8O, T8N);
}
{
E T2p, T4R, T2y, T4Q, T2o, T2x;
T2o = T2i - T2n;
T2p = FMA(KP707106781, T2o, T2d);
T4R = FNMS(KP707106781, T2o, T2d);
T2x = T2v + T2w;
T2y = FMA(KP707106781, T2x, T2u);
T4Q = FNMS(KP707106781, T2x, T2u);
T2z = FNMS(KP198912367, T2y, T2p);
T50 = FMA(KP668178637, T4Q, T4R);
T2S = FMA(KP198912367, T2p, T2y);
T4S = FNMS(KP668178637, T4R, T4Q);
}
{
E T74, T8R, T77, T8Q, T73, T76;
T73 = T2v - T2w;
T74 = FNMS(KP707106781, T73, T72);
T8R = FMA(KP707106781, T73, T72);
T76 = T2i + T2n;
T77 = FNMS(KP707106781, T76, T75);
T8Q = FMA(KP707106781, T76, T75);
T78 = FMA(KP668178637, T77, T74);
T91 = FNMS(KP198912367, T8Q, T8R);
T7l = FNMS(KP668178637, T74, T77);
T8S = FMA(KP198912367, T8R, T8Q);
}
}
{
E T11, T3q, T3x, T3t, T3v, T3w, T3F, T2B, T3A, T2U, T3D, T2C, T3r, T3B, T3H;
E T2V, T3s, T2D;
{
E T3a, T3p, T3u, T12, T3z;
T11 = Tv + T10;
T3a = T32 + T39;
T3p = T3h + T3o;
T3q = T3a + T3p;
T3x = T3p - T3a;
T3u = Tv - T10;
T3t = W[30];
T3v = T3t * T3u;
T3w = W[31];
T3F = T3w * T3u;
{
E T1H, T2A, T2Q, T2T;
T1H = FMA(KP923879532, T1G, T1j);
T2A = T28 + T2z;
T2B = FMA(KP980785280, T2A, T1H);
T3A = FNMS(KP980785280, T2A, T1H);
T2Q = FMA(KP923879532, T2P, T2M);
T2T = T2R + T2S;
T2U = FMA(KP980785280, T2T, T2Q);
T3D = FNMS(KP980785280, T2T, T2Q);
}
T12 = W[0];
T2C = T12 * T2B;
T3r = T12 * T2U;
T3z = W[32];
T3B = T3z * T3A;
T3H = T3z * T3D;
}
T2D = W[1];
T2V = FMA(T2D, T2U, T2C);
T3s = FNMS(T2D, T2B, T3r);
Rp[0] = T11 - T2V;
Ip[0] = T3q + T3s;
Rm[0] = T11 + T2V;
Im[0] = T3s - T3q;
{
E T3y, T3G, T3E, T3I, T3C;
T3y = FNMS(T3w, T3x, T3v);
T3G = FMA(T3t, T3x, T3F);
T3C = W[33];
T3E = FMA(T3C, T3D, T3B);
T3I = FNMS(T3C, T3A, T3H);
Rp[WS(rs, 8)] = T3y - T3E;
Ip[WS(rs, 8)] = T3G + T3I;
Rm[WS(rs, 8)] = T3y + T3E;
Im[WS(rs, 8)] = T3I - T3G;
}
}
{
E T3R, T4b, T47, T49, T4a, T4j, T3J, T3N, T3O, T43, T3W, T4e, T41, T4h, T3X;
E T45, T4f, T4l;
{
E T3P, T3Q, T48, T3M, T3T, T4d;
T3P = TK - TZ;
T3Q = T3o - T3h;
T3R = T3P + T3Q;
T4b = T3Q - T3P;
T48 = T3K - T3L;
T47 = W[46];
T49 = T47 * T48;
T4a = W[47];
T4j = T4a * T48;
T3M = T3K + T3L;
T3J = W[14];
T3N = T3J * T3M;
T3O = W[15];
T43 = T3O * T3M;
{
E T3U, T3V, T3Z, T40;
T3U = FNMS(KP923879532, T1G, T1j);
T3V = T2R - T2S;
T3W = FMA(KP980785280, T3V, T3U);
T4e = FNMS(KP980785280, T3V, T3U);
T3Z = FNMS(KP923879532, T2P, T2M);
T40 = T2z - T28;
T41 = FMA(KP980785280, T40, T3Z);
T4h = FNMS(KP980785280, T40, T3Z);
}
T3T = W[16];
T3X = T3T * T3W;
T45 = T3T * T41;
T4d = W[48];
T4f = T4d * T4e;
T4l = T4d * T4h;
}
{
E T3S, T44, T42, T46, T3Y;
T3S = FNMS(T3O, T3R, T3N);
T44 = FMA(T3J, T3R, T43);
T3Y = W[17];
T42 = FMA(T3Y, T41, T3X);
T46 = FNMS(T3Y, T3W, T45);
Rp[WS(rs, 4)] = T3S - T42;
Ip[WS(rs, 4)] = T44 + T46;
Rm[WS(rs, 4)] = T3S + T42;
Im[WS(rs, 4)] = T46 - T44;
}
{
E T4c, T4k, T4i, T4m, T4g;
T4c = FNMS(T4a, T4b, T49);
T4k = FMA(T47, T4b, T4j);
T4g = W[49];
T4i = FMA(T4g, T4h, T4f);
T4m = FNMS(T4g, T4e, T4l);
Rp[WS(rs, 12)] = T4c - T4i;
Ip[WS(rs, 12)] = T4k + T4m;
Rm[WS(rs, 12)] = T4c + T4i;
Im[WS(rs, 12)] = T4m - T4k;
}
}
{
E T4H, T5d, T4n, T4z, T4A, T55, T59, T5b, T5c, T5l, T4U, T5g, T53, T5j, T4V;
E T57, T5h, T5n, T4D, T4G;
T4D = T4B + T4C;
T4G = T4E + T4F;
T4H = FMA(KP707106781, T4G, T4D);
T5d = FNMS(KP707106781, T4G, T4D);
{
E T4y, T5a, T4x, T4J, T5f;
T4x = T4t + T4w;
T4y = FMA(KP707106781, T4x, T4q);
T5a = FNMS(KP707106781, T4x, T4q);
T4n = W[6];
T4z = T4n * T4y;
T4A = W[7];
T55 = T4A * T4y;
T59 = W[38];
T5b = T59 * T5a;
T5c = W[39];
T5l = T5c * T5a;
{
E T4M, T4T, T4Z, T52;
T4M = FMA(KP923879532, T4L, T4K);
T4T = T4P - T4S;
T4U = FMA(KP831469612, T4T, T4M);
T5g = FNMS(KP831469612, T4T, T4M);
T4Z = FMA(KP923879532, T4Y, T4X);
T52 = T50 - T51;
T53 = FMA(KP831469612, T52, T4Z);
T5j = FNMS(KP831469612, T52, T4Z);
}
T4J = W[8];
T4V = T4J * T4U;
T57 = T4J * T53;
T5f = W[40];
T5h = T5f * T5g;
T5n = T5f * T5j;
}
{
E T4I, T56, T54, T58, T4W;
T4I = FNMS(T4A, T4H, T4z);
T56 = FMA(T4n, T4H, T55);
T4W = W[9];
T54 = FMA(T4W, T53, T4V);
T58 = FNMS(T4W, T4U, T57);
Rp[WS(rs, 2)] = T4I - T54;
Ip[WS(rs, 2)] = T56 + T58;
Rm[WS(rs, 2)] = T4I + T54;
Im[WS(rs, 2)] = T58 - T56;
}
{
E T5e, T5m, T5k, T5o, T5i;
T5e = FNMS(T5c, T5d, T5b);
T5m = FMA(T59, T5d, T5l);
T5i = W[41];
T5k = FMA(T5i, T5j, T5h);
T5o = FNMS(T5i, T5g, T5n);
Rp[WS(rs, 10)] = T5e - T5k;
Ip[WS(rs, 10)] = T5m + T5o;
Rm[WS(rs, 10)] = T5e + T5k;
Im[WS(rs, 10)] = T5o - T5m;
}
}
{
E T5x, T5R, T5p, T5t, T5u, T5J, T5N, T5P, T5Q, T5Z, T5C, T5U, T5H, T5X, T5D;
E T5L, T5V, T61, T5v, T5w;
T5v = T4C - T4B;
T5w = T4t - T4w;
T5x = FMA(KP707106781, T5w, T5v);
T5R = FNMS(KP707106781, T5w, T5v);
{
E T5s, T5O, T5r, T5z, T5T;
T5r = T4F - T4E;
T5s = FMA(KP707106781, T5r, T5q);
T5O = FNMS(KP707106781, T5r, T5q);
T5p = W[22];
T5t = T5p * T5s;
T5u = W[23];
T5J = T5u * T5s;
T5N = W[54];
T5P = T5N * T5O;
T5Q = W[55];
T5Z = T5Q * T5O;
{
E T5A, T5B, T5F, T5G;
T5A = FNMS(KP923879532, T4L, T4K);
T5B = T51 + T50;
T5C = FNMS(KP831469612, T5B, T5A);
T5U = FMA(KP831469612, T5B, T5A);
T5F = FNMS(KP923879532, T4Y, T4X);
T5G = T4P + T4S;
T5H = FNMS(KP831469612, T5G, T5F);
T5X = FMA(KP831469612, T5G, T5F);
}
T5z = W[24];
T5D = T5z * T5C;
T5L = T5z * T5H;
T5T = W[56];
T5V = T5T * T5U;
T61 = T5T * T5X;
}
{
E T5y, T5K, T5I, T5M, T5E;
T5y = FNMS(T5u, T5x, T5t);
T5K = FMA(T5p, T5x, T5J);
T5E = W[25];
T5I = FMA(T5E, T5H, T5D);
T5M = FNMS(T5E, T5C, T5L);
Rp[WS(rs, 6)] = T5y - T5I;
Ip[WS(rs, 6)] = T5K + T5M;
Rm[WS(rs, 6)] = T5y + T5I;
Im[WS(rs, 6)] = T5M - T5K;
}
{
E T5S, T60, T5Y, T62, T5W;
T5S = FNMS(T5Q, T5R, T5P);
T60 = FMA(T5N, T5R, T5Z);
T5W = W[57];
T5Y = FMA(T5W, T5X, T5V);
T62 = FNMS(T5W, T5U, T61);
Rp[WS(rs, 14)] = T5S - T5Y;
Ip[WS(rs, 14)] = T60 + T62;
Rm[WS(rs, 14)] = T5S + T5Y;
Im[WS(rs, 14)] = T62 - T60;
}
}
{
E T6H, T7x, T63, T6v, T6w, T7p, T7t, T7v, T7w, T7F, T7a, T7A, T7n, T7D, T7b;
E T7r, T7B, T7H;
{
E T6D, T6G, T6J, T7z;
T6D = FMA(KP707106781, T6C, T6z);
T6G = T6E + T6F;
T6H = FMA(KP923879532, T6G, T6D);
T7x = FNMS(KP923879532, T6G, T6D);
{
E T6u, T7u, T6e, T6t;
T6e = FMA(KP707106781, T6d, T66);
T6t = T6l + T6s;
T6u = FMA(KP923879532, T6t, T6e);
T7u = FNMS(KP923879532, T6t, T6e);
T63 = W[2];
T6v = T63 * T6u;
T6w = W[3];
T7p = T6w * T6u;
T7t = W[34];
T7v = T7t * T7u;
T7w = W[35];
T7F = T7w * T7u;
}
{
E T6U, T79, T7j, T7m;
T6U = FMA(KP923879532, T6T, T6M);
T79 = T71 - T78;
T7a = FMA(KP831469612, T79, T6U);
T7A = FNMS(KP831469612, T79, T6U);
T7j = FNMS(KP923879532, T7i, T7f);
T7m = T7k + T7l;
T7n = FMA(KP831469612, T7m, T7j);
T7D = FNMS(KP831469612, T7m, T7j);
}
T6J = W[4];
T7b = T6J * T7a;
T7r = T6J * T7n;
T7z = W[36];
T7B = T7z * T7A;
T7H = T7z * T7D;
}
{
E T6I, T7q, T7o, T7s, T7c;
T6I = FNMS(T6w, T6H, T6v);
T7q = FMA(T63, T6H, T7p);
T7c = W[5];
T7o = FMA(T7c, T7n, T7b);
T7s = FNMS(T7c, T7a, T7r);
Rp[WS(rs, 1)] = T6I - T7o;
Ip[WS(rs, 1)] = T7q + T7s;
Rm[WS(rs, 1)] = T6I + T7o;
Im[WS(rs, 1)] = T7s - T7q;
}
{
E T7y, T7G, T7E, T7I, T7C;
T7y = FNMS(T7w, T7x, T7v);
T7G = FMA(T7t, T7x, T7F);
T7C = W[37];
T7E = FMA(T7C, T7D, T7B);
T7I = FNMS(T7C, T7A, T7H);
Rp[WS(rs, 9)] = T7y - T7E;
Ip[WS(rs, 9)] = T7G + T7I;
Rm[WS(rs, 9)] = T7y + T7E;
Im[WS(rs, 9)] = T7I - T7G;
}
}
{
E T8H, T9d, T8n, T8z, T8A, T95, T99, T9b, T9c, T9l, T8U, T9g, T93, T9j, T8V;
E T97, T9h, T9n;
{
E T8D, T8G, T8J, T9f;
T8D = FMA(KP707106781, T8C, T8B);
T8G = T8E - T8F;
T8H = FMA(KP923879532, T8G, T8D);
T9d = FNMS(KP923879532, T8G, T8D);
{
E T8y, T9a, T8q, T8x;
T8q = FMA(KP707106781, T8p, T8o);
T8x = T8t - T8w;
T8y = FMA(KP923879532, T8x, T8q);
T9a = FNMS(KP923879532, T8x, T8q);
T8n = W[10];
T8z = T8n * T8y;
T8A = W[11];
T95 = T8A * T8y;
T99 = W[42];
T9b = T99 * T9a;
T9c = W[43];
T9l = T9c * T9a;
}
{
E T8M, T8T, T8Z, T92;
T8M = FMA(KP923879532, T8L, T8K);
T8T = T8P - T8S;
T8U = FMA(KP980785280, T8T, T8M);
T9g = FNMS(KP980785280, T8T, T8M);
T8Z = FNMS(KP923879532, T8Y, T8X);
T92 = T90 + T91;
T93 = FNMS(KP980785280, T92, T8Z);
T9j = FMA(KP980785280, T92, T8Z);
}
T8J = W[12];
T8V = T8J * T8U;
T97 = T8J * T93;
T9f = W[44];
T9h = T9f * T9g;
T9n = T9f * T9j;
}
{
E T8I, T96, T94, T98, T8W;
T8I = FNMS(T8A, T8H, T8z);
T96 = FMA(T8n, T8H, T95);
T8W = W[13];
T94 = FMA(T8W, T93, T8V);
T98 = FNMS(T8W, T8U, T97);
Rp[WS(rs, 3)] = T8I - T94;
Ip[WS(rs, 3)] = T96 + T98;
Rm[WS(rs, 3)] = T8I + T94;
Im[WS(rs, 3)] = T98 - T96;
}
{
E T9e, T9m, T9k, T9o, T9i;
T9e = FNMS(T9c, T9d, T9b);
T9m = FMA(T99, T9d, T9l);
T9i = W[45];
T9k = FMA(T9i, T9j, T9h);
T9o = FNMS(T9i, T9g, T9n);
Rp[WS(rs, 11)] = T9e - T9k;
Ip[WS(rs, 11)] = T9m + T9o;
Rm[WS(rs, 11)] = T9e + T9k;
Im[WS(rs, 11)] = T9o - T9m;
}
}
{
E T9x, T9R, T9p, T9t, T9u, T9J, T9N, T9P, T9Q, T9Z, T9C, T9U, T9H, T9X, T9D;
E T9L, T9V, Ta1;
{
E T9v, T9w, T9z, T9T;
T9v = FNMS(KP707106781, T8C, T8B);
T9w = T8w + T8t;
T9x = FNMS(KP923879532, T9w, T9v);
T9R = FMA(KP923879532, T9w, T9v);
{
E T9s, T9O, T9q, T9r;
T9q = FNMS(KP707106781, T8p, T8o);
T9r = T8E + T8F;
T9s = FNMS(KP923879532, T9r, T9q);
T9O = FMA(KP923879532, T9r, T9q);
T9p = W[26];
T9t = T9p * T9s;
T9u = W[27];
T9J = T9u * T9s;
T9N = W[58];
T9P = T9N * T9O;
T9Q = W[59];
T9Z = T9Q * T9O;
}
{
E T9A, T9B, T9F, T9G;
T9A = FNMS(KP923879532, T8L, T8K);
T9B = T91 - T90;
T9C = FMA(KP980785280, T9B, T9A);
T9U = FNMS(KP980785280, T9B, T9A);
T9F = FMA(KP923879532, T8Y, T8X);
T9G = T8P + T8S;
T9H = FNMS(KP980785280, T9G, T9F);
T9X = FMA(KP980785280, T9G, T9F);
}
T9z = W[28];
T9D = T9z * T9C;
T9L = T9z * T9H;
T9T = W[60];
T9V = T9T * T9U;
Ta1 = T9T * T9X;
}
{
E T9y, T9K, T9I, T9M, T9E;
T9y = FNMS(T9u, T9x, T9t);
T9K = FMA(T9p, T9x, T9J);
T9E = W[29];
T9I = FMA(T9E, T9H, T9D);
T9M = FNMS(T9E, T9C, T9L);
Rp[WS(rs, 7)] = T9y - T9I;
Ip[WS(rs, 7)] = T9K + T9M;
Rm[WS(rs, 7)] = T9y + T9I;
Im[WS(rs, 7)] = T9M - T9K;
}
{
E T9S, Ta0, T9Y, Ta2, T9W;
T9S = FNMS(T9Q, T9R, T9P);
Ta0 = FMA(T9N, T9R, T9Z);
T9W = W[61];
T9Y = FMA(T9W, T9X, T9V);
Ta2 = FNMS(T9W, T9U, Ta1);
Rp[WS(rs, 15)] = T9S - T9Y;
Ip[WS(rs, 15)] = Ta0 + Ta2;
Rm[WS(rs, 15)] = T9S + T9Y;
Im[WS(rs, 15)] = Ta2 - Ta0;
}
}
{
E T7R, T8b, T7J, T7N, T7O, T83, T87, T89, T8a, T8j, T7W, T8e, T81, T8h, T7X;
E T85, T8f, T8l;
{
E T7P, T7Q, T7T, T8d;
T7P = FNMS(KP707106781, T6C, T6z);
T7Q = T6l - T6s;
T7R = FMA(KP923879532, T7Q, T7P);
T8b = FNMS(KP923879532, T7Q, T7P);
{
E T7M, T88, T7K, T7L;
T7K = FNMS(KP707106781, T6d, T66);
T7L = T6F - T6E;
T7M = FMA(KP923879532, T7L, T7K);
T88 = FNMS(KP923879532, T7L, T7K);
T7J = W[18];
T7N = T7J * T7M;
T7O = W[19];
T83 = T7O * T7M;
T87 = W[50];
T89 = T87 * T88;
T8a = W[51];
T8j = T8a * T88;
}
{
E T7U, T7V, T7Z, T80;
T7U = FNMS(KP923879532, T6T, T6M);
T7V = T7k - T7l;
T7W = FMA(KP831469612, T7V, T7U);
T8e = FNMS(KP831469612, T7V, T7U);
T7Z = FMA(KP923879532, T7i, T7f);
T80 = T71 + T78;
T81 = FNMS(KP831469612, T80, T7Z);
T8h = FMA(KP831469612, T80, T7Z);
}
T7T = W[20];
T7X = T7T * T7W;
T85 = T7T * T81;
T8d = W[52];
T8f = T8d * T8e;
T8l = T8d * T8h;
}
{
E T7S, T84, T82, T86, T7Y;
T7S = FNMS(T7O, T7R, T7N);
T84 = FMA(T7J, T7R, T83);
T7Y = W[21];
T82 = FMA(T7Y, T81, T7X);
T86 = FNMS(T7Y, T7W, T85);
Rp[WS(rs, 5)] = T7S - T82;
Ip[WS(rs, 5)] = T84 + T86;
Rm[WS(rs, 5)] = T7S + T82;
Im[WS(rs, 5)] = T86 - T84;
}
{
E T8c, T8k, T8i, T8m, T8g;
T8c = FNMS(T8a, T8b, T89);
T8k = FMA(T87, T8b, T8j);
T8g = W[53];
T8i = FMA(T8g, T8h, T8f);
T8m = FNMS(T8g, T8e, T8l);
Rp[WS(rs, 13)] = T8c - T8i;
Ip[WS(rs, 13)] = T8k + T8m;
Rm[WS(rs, 13)] = T8c + T8i;
Im[WS(rs, 13)] = T8m - T8k;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 32 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 32, "hc2cbdft2_32", twinstr, &GENUS, { 300, 62, 198, 0 } };
void X(codelet_hc2cbdft2_32) (planner *p) {
X(khc2c_register) (p, hc2cbdft2_32, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft2_32 -include rdft/scalar/hc2cb.h */
/*
* This function contains 498 FP additions, 208 FP multiplications,
* (or, 404 additions, 114 multiplications, 94 fused multiply/add),
* 102 stack variables, 7 constants, and 128 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) {
E Tf, T4a, T6h, T7Z, T6P, T8e, T1j, T4v, T2R, T4L, T5C, T7E, T6a, T7U, T3n;
E T4q, TZ, T38, T2p, T4B, T7M, T7R, T2y, T4C, T5Y, T63, T6C, T86, T4i, T4n;
E T6z, T85, TK, T31, T1Y, T4y, T7J, T7Q, T27, T4z, T5R, T62, T6v, T83, T4f;
E T4m, T6s, T82, Tu, T4p, T6o, T8f, T6M, T80, T1G, T4K, T2I, T4w, T5J, T7T;
E T67, T7F, T3g, T4b;
{
E T3, T2M, T16, T3k, T6, T13, T2P, T3l, Td, T3i, T1h, T2K, Ta, T3h, T1c;
E T2J;
{
E T1, T2, T2N, T2O;
T1 = Rp[0];
T2 = Rm[WS(rs, 15)];
T3 = T1 + T2;
T2M = T1 - T2;
{
E T14, T15, T4, T5;
T14 = Ip[0];
T15 = Im[WS(rs, 15)];
T16 = T14 + T15;
T3k = T14 - T15;
T4 = Rp[WS(rs, 8)];
T5 = Rm[WS(rs, 7)];
T6 = T4 + T5;
T13 = T4 - T5;
}
T2N = Ip[WS(rs, 8)];
T2O = Im[WS(rs, 7)];
T2P = T2N + T2O;
T3l = T2N - T2O;
{
E Tb, Tc, T1d, T1e, T1f, T1g;
Tb = Rm[WS(rs, 3)];
Tc = Rp[WS(rs, 12)];
T1d = Tb - Tc;
T1e = Im[WS(rs, 3)];
T1f = Ip[WS(rs, 12)];
T1g = T1e + T1f;
Td = Tb + Tc;
T3i = T1f - T1e;
T1h = T1d + T1g;
T2K = T1d - T1g;
}
{
E T8, T9, T18, T19, T1a, T1b;
T8 = Rp[WS(rs, 4)];
T9 = Rm[WS(rs, 11)];
T18 = T8 - T9;
T19 = Ip[WS(rs, 4)];
T1a = Im[WS(rs, 11)];
T1b = T19 + T1a;
Ta = T8 + T9;
T3h = T19 - T1a;
T1c = T18 + T1b;
T2J = T18 - T1b;
}
}
{
E T7, Te, T6f, T6g;
T7 = T3 + T6;
Te = Ta + Td;
Tf = T7 + Te;
T4a = T7 - Te;
T6f = T16 - T13;
T6g = KP707106781 * (T2J - T2K);
T6h = T6f + T6g;
T7Z = T6f - T6g;
}
{
E T6N, T6O, T17, T1i;
T6N = T2M + T2P;
T6O = KP707106781 * (T1c + T1h);
T6P = T6N - T6O;
T8e = T6O + T6N;
T17 = T13 + T16;
T1i = KP707106781 * (T1c - T1h);
T1j = T17 + T1i;
T4v = T17 - T1i;
}
{
E T2L, T2Q, T5A, T5B;
T2L = KP707106781 * (T2J + T2K);
T2Q = T2M - T2P;
T2R = T2L + T2Q;
T4L = T2Q - T2L;
T5A = T3 - T6;
T5B = T3i - T3h;
T5C = T5A + T5B;
T7E = T5A - T5B;
}
{
E T68, T69, T3j, T3m;
T68 = Ta - Td;
T69 = T3k - T3l;
T6a = T68 + T69;
T7U = T69 - T68;
T3j = T3h + T3i;
T3m = T3k + T3l;
T3n = T3j + T3m;
T4q = T3m - T3j;
}
}
{
E TR, T5S, T29, T2t, T2c, T5W, T2w, T37, TY, T5T, T5V, T2i, T2n, T2r, T34;
E T2q, T6A, T6B;
{
E TL, TM, TN, TO, TP, TQ;
TL = Rm[0];
TM = Rp[WS(rs, 15)];
TN = TL + TM;
TO = Rp[WS(rs, 7)];
TP = Rm[WS(rs, 8)];
TQ = TO + TP;
TR = TN + TQ;
T5S = TN - TQ;
T29 = TO - TP;
T2t = TL - TM;
}
{
E T2a, T2b, T35, T2u, T2v, T36;
T2a = Im[0];
T2b = Ip[WS(rs, 15)];
T35 = T2b - T2a;
T2u = Ip[WS(rs, 7)];
T2v = Im[WS(rs, 8)];
T36 = T2u - T2v;
T2c = T2a + T2b;
T5W = T35 - T36;
T2w = T2u + T2v;
T37 = T35 + T36;
}
{
E TU, T2e, T2h, T32, TX, T2j, T2m, T33;
{
E TS, TT, T2f, T2g;
TS = Rp[WS(rs, 3)];
TT = Rm[WS(rs, 12)];
TU = TS + TT;
T2e = TS - TT;
T2f = Ip[WS(rs, 3)];
T2g = Im[WS(rs, 12)];
T2h = T2f + T2g;
T32 = T2f - T2g;
}
{
E TV, TW, T2k, T2l;
TV = Rm[WS(rs, 4)];
TW = Rp[WS(rs, 11)];
TX = TV + TW;
T2j = TV - TW;
T2k = Im[WS(rs, 4)];
T2l = Ip[WS(rs, 11)];
T2m = T2k + T2l;
T33 = T2l - T2k;
}
TY = TU + TX;
T5T = T33 - T32;
T5V = TU - TX;
T2i = T2e + T2h;
T2n = T2j + T2m;
T2r = T2j - T2m;
T34 = T32 + T33;
T2q = T2e - T2h;
}
TZ = TR + TY;
T38 = T34 + T37;
{
E T2d, T2o, T7K, T7L;
T2d = T29 - T2c;
T2o = KP707106781 * (T2i - T2n);
T2p = T2d + T2o;
T4B = T2d - T2o;
T7K = T5S - T5T;
T7L = T5W - T5V;
T7M = FMA(KP382683432, T7K, KP923879532 * T7L);
T7R = FNMS(KP923879532, T7K, KP382683432 * T7L);
}
{
E T2s, T2x, T5U, T5X;
T2s = KP707106781 * (T2q + T2r);
T2x = T2t - T2w;
T2y = T2s + T2x;
T4C = T2x - T2s;
T5U = T5S + T5T;
T5X = T5V + T5W;
T5Y = FMA(KP923879532, T5U, KP382683432 * T5X);
T63 = FNMS(KP382683432, T5U, KP923879532 * T5X);
}
T6A = T2t + T2w;
T6B = KP707106781 * (T2i + T2n);
T6C = T6A - T6B;
T86 = T6B + T6A;
{
E T4g, T4h, T6x, T6y;
T4g = TR - TY;
T4h = T37 - T34;
T4i = T4g + T4h;
T4n = T4h - T4g;
T6x = KP707106781 * (T2q - T2r);
T6y = T29 + T2c;
T6z = T6x - T6y;
T85 = T6y + T6x;
}
}
{
E TC, T5L, T1I, T22, T1L, T5P, T25, T30, TJ, T5M, T5O, T1R, T1W, T20, T2X;
E T1Z, T6t, T6u;
{
E Tw, Tx, Ty, Tz, TA, TB;
Tw = Rp[WS(rs, 1)];
Tx = Rm[WS(rs, 14)];
Ty = Tw + Tx;
Tz = Rp[WS(rs, 9)];
TA = Rm[WS(rs, 6)];
TB = Tz + TA;
TC = Ty + TB;
T5L = Ty - TB;
T1I = Tz - TA;
T22 = Tw - Tx;
}
{
E T1J, T1K, T2Y, T23, T24, T2Z;
T1J = Ip[WS(rs, 1)];
T1K = Im[WS(rs, 14)];
T2Y = T1J - T1K;
T23 = Ip[WS(rs, 9)];
T24 = Im[WS(rs, 6)];
T2Z = T23 - T24;
T1L = T1J + T1K;
T5P = T2Y - T2Z;
T25 = T23 + T24;
T30 = T2Y + T2Z;
}
{
E TF, T1N, T1Q, T2V, TI, T1S, T1V, T2W;
{
E TD, TE, T1O, T1P;
TD = Rp[WS(rs, 5)];
TE = Rm[WS(rs, 10)];
TF = TD + TE;
T1N = TD - TE;
T1O = Ip[WS(rs, 5)];
T1P = Im[WS(rs, 10)];
T1Q = T1O + T1P;
T2V = T1O - T1P;
}
{
E TG, TH, T1T, T1U;
TG = Rm[WS(rs, 2)];
TH = Rp[WS(rs, 13)];
TI = TG + TH;
T1S = TG - TH;
T1T = Im[WS(rs, 2)];
T1U = Ip[WS(rs, 13)];
T1V = T1T + T1U;
T2W = T1U - T1T;
}
TJ = TF + TI;
T5M = T2W - T2V;
T5O = TF - TI;
T1R = T1N + T1Q;
T1W = T1S + T1V;
T20 = T1S - T1V;
T2X = T2V + T2W;
T1Z = T1N - T1Q;
}
TK = TC + TJ;
T31 = T2X + T30;
{
E T1M, T1X, T7H, T7I;
T1M = T1I + T1L;
T1X = KP707106781 * (T1R - T1W);
T1Y = T1M + T1X;
T4y = T1M - T1X;
T7H = T5L - T5M;
T7I = T5P - T5O;
T7J = FNMS(KP923879532, T7I, KP382683432 * T7H);
T7Q = FMA(KP923879532, T7H, KP382683432 * T7I);
}
{
E T21, T26, T5N, T5Q;
T21 = KP707106781 * (T1Z + T20);
T26 = T22 - T25;
T27 = T21 + T26;
T4z = T26 - T21;
T5N = T5L + T5M;
T5Q = T5O + T5P;
T5R = FNMS(KP382683432, T5Q, KP923879532 * T5N);
T62 = FMA(KP382683432, T5N, KP923879532 * T5Q);
}
T6t = T22 + T25;
T6u = KP707106781 * (T1R + T1W);
T6v = T6t - T6u;
T83 = T6u + T6t;
{
E T4d, T4e, T6q, T6r;
T4d = TC - TJ;
T4e = T30 - T2X;
T4f = T4d - T4e;
T4m = T4d + T4e;
T6q = T1L - T1I;
T6r = KP707106781 * (T1Z - T20);
T6s = T6q + T6r;
T82 = T6q - T6r;
}
}
{
E Ti, T3a, Tl, T3b, T1o, T1t, T6j, T6i, T5E, T5D, Tp, T3d, Ts, T3e, T1z;
E T1E, T6m, T6l, T5H, T5G;
{
E T1p, T1n, T1k, T1s;
{
E Tg, Th, T1l, T1m;
Tg = Rp[WS(rs, 2)];
Th = Rm[WS(rs, 13)];
Ti = Tg + Th;
T1p = Tg - Th;
T1l = Ip[WS(rs, 2)];
T1m = Im[WS(rs, 13)];
T1n = T1l + T1m;
T3a = T1l - T1m;
}
{
E Tj, Tk, T1q, T1r;
Tj = Rp[WS(rs, 10)];
Tk = Rm[WS(rs, 5)];
Tl = Tj + Tk;
T1k = Tj - Tk;
T1q = Ip[WS(rs, 10)];
T1r = Im[WS(rs, 5)];
T1s = T1q + T1r;
T3b = T1q - T1r;
}
T1o = T1k + T1n;
T1t = T1p - T1s;
T6j = T1p + T1s;
T6i = T1n - T1k;
T5E = T3a - T3b;
T5D = Ti - Tl;
}
{
E T1A, T1y, T1v, T1D;
{
E Tn, To, T1w, T1x;
Tn = Rm[WS(rs, 1)];
To = Rp[WS(rs, 14)];
Tp = Tn + To;
T1A = Tn - To;
T1w = Im[WS(rs, 1)];
T1x = Ip[WS(rs, 14)];
T1y = T1w + T1x;
T3d = T1x - T1w;
}
{
E Tq, Tr, T1B, T1C;
Tq = Rp[WS(rs, 6)];
Tr = Rm[WS(rs, 9)];
Ts = Tq + Tr;
T1v = Tq - Tr;
T1B = Ip[WS(rs, 6)];
T1C = Im[WS(rs, 9)];
T1D = T1B + T1C;
T3e = T1B - T1C;
}
T1z = T1v - T1y;
T1E = T1A - T1D;
T6m = T1A + T1D;
T6l = T1v + T1y;
T5H = T3d - T3e;
T5G = Tp - Ts;
}
{
E Tm, Tt, T6k, T6n;
Tm = Ti + Tl;
Tt = Tp + Ts;
Tu = Tm + Tt;
T4p = Tm - Tt;
T6k = FMA(KP382683432, T6i, KP923879532 * T6j);
T6n = FMA(KP382683432, T6l, KP923879532 * T6m);
T6o = T6k - T6n;
T8f = T6k + T6n;
}
{
E T6K, T6L, T1u, T1F;
T6K = FNMS(KP923879532, T6i, KP382683432 * T6j);
T6L = FNMS(KP923879532, T6l, KP382683432 * T6m);
T6M = T6K + T6L;
T80 = T6K - T6L;
T1u = FMA(KP923879532, T1o, KP382683432 * T1t);
T1F = FNMS(KP382683432, T1E, KP923879532 * T1z);
T1G = T1u + T1F;
T4K = T1F - T1u;
}
{
E T2G, T2H, T5F, T5I;
T2G = FNMS(KP382683432, T1o, KP923879532 * T1t);
T2H = FMA(KP382683432, T1z, KP923879532 * T1E);
T2I = T2G + T2H;
T4w = T2G - T2H;
T5F = T5D - T5E;
T5I = T5G + T5H;
T5J = KP707106781 * (T5F + T5I);
T7T = KP707106781 * (T5F - T5I);
}
{
E T65, T66, T3c, T3f;
T65 = T5D + T5E;
T66 = T5H - T5G;
T67 = KP707106781 * (T65 + T66);
T7F = KP707106781 * (T66 - T65);
T3c = T3a + T3b;
T3f = T3d + T3e;
T3g = T3c + T3f;
T4b = T3f - T3c;
}
}
{
E T11, T3s, T3p, T3u, T3K, T40, T3G, T3Y, T2T, T43, T3z, T3P, T2B, T45, T3x;
E T3T;
{
E Tv, T10, T3E, T3F;
Tv = Tf + Tu;
T10 = TK + TZ;
T11 = Tv + T10;
T3s = Tv - T10;
{
E T39, T3o, T3I, T3J;
T39 = T31 + T38;
T3o = T3g + T3n;
T3p = T39 + T3o;
T3u = T3o - T39;
T3I = TK - TZ;
T3J = T3n - T3g;
T3K = T3I + T3J;
T40 = T3J - T3I;
}
T3E = Tf - Tu;
T3F = T38 - T31;
T3G = T3E + T3F;
T3Y = T3E - T3F;
{
E T2S, T3N, T2F, T3O, T2D, T2E;
T2S = T2I + T2R;
T3N = T1j - T1G;
T2D = FNMS(KP195090322, T1Y, KP980785280 * T27);
T2E = FMA(KP195090322, T2p, KP980785280 * T2y);
T2F = T2D + T2E;
T3O = T2D - T2E;
T2T = T2F + T2S;
T43 = T3N - T3O;
T3z = T2S - T2F;
T3P = T3N + T3O;
}
{
E T1H, T3S, T2A, T3R, T28, T2z;
T1H = T1j + T1G;
T3S = T2R - T2I;
T28 = FMA(KP980785280, T1Y, KP195090322 * T27);
T2z = FNMS(KP195090322, T2y, KP980785280 * T2p);
T2A = T28 + T2z;
T3R = T2z - T28;
T2B = T1H + T2A;
T45 = T3S - T3R;
T3x = T1H - T2A;
T3T = T3R + T3S;
}
}
{
E T2U, T3q, T12, T2C;
T12 = W[0];
T2C = W[1];
T2U = FMA(T12, T2B, T2C * T2T);
T3q = FNMS(T2C, T2B, T12 * T2T);
Rp[0] = T11 - T2U;
Ip[0] = T3p + T3q;
Rm[0] = T11 + T2U;
Im[0] = T3q - T3p;
}
{
E T41, T47, T46, T48;
{
E T3X, T3Z, T42, T44;
T3X = W[46];
T3Z = W[47];
T41 = FNMS(T3Z, T40, T3X * T3Y);
T47 = FMA(T3Z, T3Y, T3X * T40);
T42 = W[48];
T44 = W[49];
T46 = FMA(T42, T43, T44 * T45);
T48 = FNMS(T44, T43, T42 * T45);
}
Rp[WS(rs, 12)] = T41 - T46;
Ip[WS(rs, 12)] = T47 + T48;
Rm[WS(rs, 12)] = T41 + T46;
Im[WS(rs, 12)] = T48 - T47;
}
{
E T3v, T3B, T3A, T3C;
{
E T3r, T3t, T3w, T3y;
T3r = W[30];
T3t = W[31];
T3v = FNMS(T3t, T3u, T3r * T3s);
T3B = FMA(T3t, T3s, T3r * T3u);
T3w = W[32];
T3y = W[33];
T3A = FMA(T3w, T3x, T3y * T3z);
T3C = FNMS(T3y, T3x, T3w * T3z);
}
Rp[WS(rs, 8)] = T3v - T3A;
Ip[WS(rs, 8)] = T3B + T3C;
Rm[WS(rs, 8)] = T3v + T3A;
Im[WS(rs, 8)] = T3C - T3B;
}
{
E T3L, T3V, T3U, T3W;
{
E T3D, T3H, T3M, T3Q;
T3D = W[14];
T3H = W[15];
T3L = FNMS(T3H, T3K, T3D * T3G);
T3V = FMA(T3H, T3G, T3D * T3K);
T3M = W[16];
T3Q = W[17];
T3U = FMA(T3M, T3P, T3Q * T3T);
T3W = FNMS(T3Q, T3P, T3M * T3T);
}
Rp[WS(rs, 4)] = T3L - T3U;
Ip[WS(rs, 4)] = T3V + T3W;
Rm[WS(rs, 4)] = T3L + T3U;
Im[WS(rs, 4)] = T3W - T3V;
}
}
{
E T7O, T8m, T7W, T8o, T8E, T8U, T8A, T8S, T8h, T8X, T8t, T8J, T89, T8Z, T8r;
E T8N;
{
E T7G, T7N, T8y, T8z;
T7G = T7E + T7F;
T7N = T7J + T7M;
T7O = T7G + T7N;
T8m = T7G - T7N;
{
E T7S, T7V, T8C, T8D;
T7S = T7Q + T7R;
T7V = T7T + T7U;
T7W = T7S + T7V;
T8o = T7V - T7S;
T8C = T7J - T7M;
T8D = T7U - T7T;
T8E = T8C + T8D;
T8U = T8D - T8C;
}
T8y = T7E - T7F;
T8z = T7R - T7Q;
T8A = T8y + T8z;
T8S = T8y - T8z;
{
E T8g, T8H, T8d, T8I, T8b, T8c;
T8g = T8e - T8f;
T8H = T7Z - T80;
T8b = FNMS(KP980785280, T82, KP195090322 * T83);
T8c = FNMS(KP980785280, T85, KP195090322 * T86);
T8d = T8b + T8c;
T8I = T8b - T8c;
T8h = T8d + T8g;
T8X = T8H - T8I;
T8t = T8g - T8d;
T8J = T8H + T8I;
}
{
E T81, T8L, T88, T8M, T84, T87;
T81 = T7Z + T80;
T8L = T8f + T8e;
T84 = FMA(KP195090322, T82, KP980785280 * T83);
T87 = FMA(KP195090322, T85, KP980785280 * T86);
T88 = T84 - T87;
T8M = T84 + T87;
T89 = T81 + T88;
T8Z = T8M + T8L;
T8r = T81 - T88;
T8N = T8L - T8M;
}
}
{
E T7X, T8j, T8i, T8k;
{
E T7D, T7P, T7Y, T8a;
T7D = W[10];
T7P = W[11];
T7X = FNMS(T7P, T7W, T7D * T7O);
T8j = FMA(T7P, T7O, T7D * T7W);
T7Y = W[12];
T8a = W[13];
T8i = FMA(T7Y, T89, T8a * T8h);
T8k = FNMS(T8a, T89, T7Y * T8h);
}
Rp[WS(rs, 3)] = T7X - T8i;
Ip[WS(rs, 3)] = T8j + T8k;
Rm[WS(rs, 3)] = T7X + T8i;
Im[WS(rs, 3)] = T8k - T8j;
}
{
E T8V, T91, T90, T92;
{
E T8R, T8T, T8W, T8Y;
T8R = W[58];
T8T = W[59];
T8V = FNMS(T8T, T8U, T8R * T8S);
T91 = FMA(T8T, T8S, T8R * T8U);
T8W = W[60];
T8Y = W[61];
T90 = FMA(T8W, T8X, T8Y * T8Z);
T92 = FNMS(T8Y, T8X, T8W * T8Z);
}
Rp[WS(rs, 15)] = T8V - T90;
Ip[WS(rs, 15)] = T91 + T92;
Rm[WS(rs, 15)] = T8V + T90;
Im[WS(rs, 15)] = T92 - T91;
}
{
E T8p, T8v, T8u, T8w;
{
E T8l, T8n, T8q, T8s;
T8l = W[42];
T8n = W[43];
T8p = FNMS(T8n, T8o, T8l * T8m);
T8v = FMA(T8n, T8m, T8l * T8o);
T8q = W[44];
T8s = W[45];
T8u = FMA(T8q, T8r, T8s * T8t);
T8w = FNMS(T8s, T8r, T8q * T8t);
}
Rp[WS(rs, 11)] = T8p - T8u;
Ip[WS(rs, 11)] = T8v + T8w;
Rm[WS(rs, 11)] = T8p + T8u;
Im[WS(rs, 11)] = T8w - T8v;
}
{
E T8F, T8P, T8O, T8Q;
{
E T8x, T8B, T8G, T8K;
T8x = W[26];
T8B = W[27];
T8F = FNMS(T8B, T8E, T8x * T8A);
T8P = FMA(T8B, T8A, T8x * T8E);
T8G = W[28];
T8K = W[29];
T8O = FMA(T8G, T8J, T8K * T8N);
T8Q = FNMS(T8K, T8J, T8G * T8N);
}
Rp[WS(rs, 7)] = T8F - T8O;
Ip[WS(rs, 7)] = T8P + T8Q;
Rm[WS(rs, 7)] = T8F + T8O;
Im[WS(rs, 7)] = T8Q - T8P;
}
}
{
E T4k, T4S, T4s, T4U, T5a, T5q, T56, T5o, T4N, T5t, T4Z, T5f, T4F, T5v, T4X;
E T5j;
{
E T4c, T4j, T54, T55;
T4c = T4a + T4b;
T4j = KP707106781 * (T4f + T4i);
T4k = T4c + T4j;
T4S = T4c - T4j;
{
E T4o, T4r, T58, T59;
T4o = KP707106781 * (T4m + T4n);
T4r = T4p + T4q;
T4s = T4o + T4r;
T4U = T4r - T4o;
T58 = KP707106781 * (T4f - T4i);
T59 = T4q - T4p;
T5a = T58 + T59;
T5q = T59 - T58;
}
T54 = T4a - T4b;
T55 = KP707106781 * (T4n - T4m);
T56 = T54 + T55;
T5o = T54 - T55;
{
E T4M, T5d, T4J, T5e, T4H, T4I;
T4M = T4K + T4L;
T5d = T4v - T4w;
T4H = FNMS(KP831469612, T4y, KP555570233 * T4z);
T4I = FMA(KP831469612, T4B, KP555570233 * T4C);
T4J = T4H + T4I;
T5e = T4H - T4I;
T4N = T4J + T4M;
T5t = T5d - T5e;
T4Z = T4M - T4J;
T5f = T5d + T5e;
}
{
E T4x, T5i, T4E, T5h, T4A, T4D;
T4x = T4v + T4w;
T5i = T4L - T4K;
T4A = FMA(KP555570233, T4y, KP831469612 * T4z);
T4D = FNMS(KP831469612, T4C, KP555570233 * T4B);
T4E = T4A + T4D;
T5h = T4D - T4A;
T4F = T4x + T4E;
T5v = T5i - T5h;
T4X = T4x - T4E;
T5j = T5h + T5i;
}
}
{
E T4t, T4P, T4O, T4Q;
{
E T49, T4l, T4u, T4G;
T49 = W[6];
T4l = W[7];
T4t = FNMS(T4l, T4s, T49 * T4k);
T4P = FMA(T4l, T4k, T49 * T4s);
T4u = W[8];
T4G = W[9];
T4O = FMA(T4u, T4F, T4G * T4N);
T4Q = FNMS(T4G, T4F, T4u * T4N);
}
Rp[WS(rs, 2)] = T4t - T4O;
Ip[WS(rs, 2)] = T4P + T4Q;
Rm[WS(rs, 2)] = T4t + T4O;
Im[WS(rs, 2)] = T4Q - T4P;
}
{
E T5r, T5x, T5w, T5y;
{
E T5n, T5p, T5s, T5u;
T5n = W[54];
T5p = W[55];
T5r = FNMS(T5p, T5q, T5n * T5o);
T5x = FMA(T5p, T5o, T5n * T5q);
T5s = W[56];
T5u = W[57];
T5w = FMA(T5s, T5t, T5u * T5v);
T5y = FNMS(T5u, T5t, T5s * T5v);
}
Rp[WS(rs, 14)] = T5r - T5w;
Ip[WS(rs, 14)] = T5x + T5y;
Rm[WS(rs, 14)] = T5r + T5w;
Im[WS(rs, 14)] = T5y - T5x;
}
{
E T4V, T51, T50, T52;
{
E T4R, T4T, T4W, T4Y;
T4R = W[38];
T4T = W[39];
T4V = FNMS(T4T, T4U, T4R * T4S);
T51 = FMA(T4T, T4S, T4R * T4U);
T4W = W[40];
T4Y = W[41];
T50 = FMA(T4W, T4X, T4Y * T4Z);
T52 = FNMS(T4Y, T4X, T4W * T4Z);
}
Rp[WS(rs, 10)] = T4V - T50;
Ip[WS(rs, 10)] = T51 + T52;
Rm[WS(rs, 10)] = T4V + T50;
Im[WS(rs, 10)] = T52 - T51;
}
{
E T5b, T5l, T5k, T5m;
{
E T53, T57, T5c, T5g;
T53 = W[22];
T57 = W[23];
T5b = FNMS(T57, T5a, T53 * T56);
T5l = FMA(T57, T56, T53 * T5a);
T5c = W[24];
T5g = W[25];
T5k = FMA(T5c, T5f, T5g * T5j);
T5m = FNMS(T5g, T5f, T5c * T5j);
}
Rp[WS(rs, 6)] = T5b - T5k;
Ip[WS(rs, 6)] = T5l + T5m;
Rm[WS(rs, 6)] = T5b + T5k;
Im[WS(rs, 6)] = T5m - T5l;
}
}
{
E T60, T6W, T6c, T6Y, T7e, T7u, T7a, T7s, T6R, T7x, T73, T7j, T6F, T7z, T71;
E T7n;
{
E T5K, T5Z, T78, T79;
T5K = T5C + T5J;
T5Z = T5R + T5Y;
T60 = T5K + T5Z;
T6W = T5K - T5Z;
{
E T64, T6b, T7c, T7d;
T64 = T62 + T63;
T6b = T67 + T6a;
T6c = T64 + T6b;
T6Y = T6b - T64;
T7c = T5R - T5Y;
T7d = T6a - T67;
T7e = T7c + T7d;
T7u = T7d - T7c;
}
T78 = T5C - T5J;
T79 = T63 - T62;
T7a = T78 + T79;
T7s = T78 - T79;
{
E T6Q, T7h, T6J, T7i, T6H, T6I;
T6Q = T6M + T6P;
T7h = T6h - T6o;
T6H = FNMS(KP555570233, T6s, KP831469612 * T6v);
T6I = FMA(KP555570233, T6z, KP831469612 * T6C);
T6J = T6H + T6I;
T7i = T6H - T6I;
T6R = T6J + T6Q;
T7x = T7h - T7i;
T73 = T6Q - T6J;
T7j = T7h + T7i;
}
{
E T6p, T7m, T6E, T7l, T6w, T6D;
T6p = T6h + T6o;
T7m = T6P - T6M;
T6w = FMA(KP831469612, T6s, KP555570233 * T6v);
T6D = FNMS(KP555570233, T6C, KP831469612 * T6z);
T6E = T6w + T6D;
T7l = T6D - T6w;
T6F = T6p + T6E;
T7z = T7m - T7l;
T71 = T6p - T6E;
T7n = T7l + T7m;
}
}
{
E T6d, T6T, T6S, T6U;
{
E T5z, T61, T6e, T6G;
T5z = W[2];
T61 = W[3];
T6d = FNMS(T61, T6c, T5z * T60);
T6T = FMA(T61, T60, T5z * T6c);
T6e = W[4];
T6G = W[5];
T6S = FMA(T6e, T6F, T6G * T6R);
T6U = FNMS(T6G, T6F, T6e * T6R);
}
Rp[WS(rs, 1)] = T6d - T6S;
Ip[WS(rs, 1)] = T6T + T6U;
Rm[WS(rs, 1)] = T6d + T6S;
Im[WS(rs, 1)] = T6U - T6T;
}
{
E T7v, T7B, T7A, T7C;
{
E T7r, T7t, T7w, T7y;
T7r = W[50];
T7t = W[51];
T7v = FNMS(T7t, T7u, T7r * T7s);
T7B = FMA(T7t, T7s, T7r * T7u);
T7w = W[52];
T7y = W[53];
T7A = FMA(T7w, T7x, T7y * T7z);
T7C = FNMS(T7y, T7x, T7w * T7z);
}
Rp[WS(rs, 13)] = T7v - T7A;
Ip[WS(rs, 13)] = T7B + T7C;
Rm[WS(rs, 13)] = T7v + T7A;
Im[WS(rs, 13)] = T7C - T7B;
}
{
E T6Z, T75, T74, T76;
{
E T6V, T6X, T70, T72;
T6V = W[34];
T6X = W[35];
T6Z = FNMS(T6X, T6Y, T6V * T6W);
T75 = FMA(T6X, T6W, T6V * T6Y);
T70 = W[36];
T72 = W[37];
T74 = FMA(T70, T71, T72 * T73);
T76 = FNMS(T72, T71, T70 * T73);
}
Rp[WS(rs, 9)] = T6Z - T74;
Ip[WS(rs, 9)] = T75 + T76;
Rm[WS(rs, 9)] = T6Z + T74;
Im[WS(rs, 9)] = T76 - T75;
}
{
E T7f, T7p, T7o, T7q;
{
E T77, T7b, T7g, T7k;
T77 = W[18];
T7b = W[19];
T7f = FNMS(T7b, T7e, T77 * T7a);
T7p = FMA(T7b, T7a, T77 * T7e);
T7g = W[20];
T7k = W[21];
T7o = FMA(T7g, T7j, T7k * T7n);
T7q = FNMS(T7k, T7j, T7g * T7n);
}
Rp[WS(rs, 5)] = T7f - T7o;
Ip[WS(rs, 5)] = T7p + T7q;
Rm[WS(rs, 5)] = T7f + T7o;
Im[WS(rs, 5)] = T7q - T7p;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 32 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 32, "hc2cbdft2_32", twinstr, &GENUS, { 404, 114, 94, 0 } };
void X(codelet_hc2cbdft2_32) (planner *p) {
X(khc2c_register) (p, hc2cbdft2_32, &desc, HC2C_VIA_DFT);
}
#endif