iup-stack/fftw/rdft/scalar/r2cb/hc2cb_8.c

374 lines
9.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:07 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include rdft/scalar/hc2cb.h */
/*
* This function contains 66 FP additions, 36 FP multiplications,
* (or, 44 additions, 14 multiplications, 22 fused multiply/add),
* 33 stack variables, 1 constants, and 32 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
E T7, T1i, T1n, Tk, TD, TV, T1b, TQ, Te, T1e, T1o, T1j, TE, TF, TR;
E Tv, TW;
{
E T3, Tg, TC, T19, T6, Tz, Tj, T1a;
{
E T1, T2, TA, TB;
T1 = Rp[0];
T2 = Rm[WS(rs, 3)];
T3 = T1 + T2;
Tg = T1 - T2;
TA = Ip[0];
TB = Im[WS(rs, 3)];
TC = TA + TB;
T19 = TA - TB;
}
{
E T4, T5, Th, Ti;
T4 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 1)];
T6 = T4 + T5;
Tz = T4 - T5;
Th = Ip[WS(rs, 2)];
Ti = Im[WS(rs, 1)];
Tj = Th + Ti;
T1a = Th - Ti;
}
T7 = T3 + T6;
T1i = T3 - T6;
T1n = T19 - T1a;
Tk = Tg - Tj;
TD = Tz + TC;
TV = TC - Tz;
T1b = T19 + T1a;
TQ = Tg + Tj;
}
{
E Ta, Tl, To, T1c, Td, Tq, Tt, T1d, Tp, Tu;
{
E T8, T9, Tm, Tn;
T8 = Rp[WS(rs, 1)];
T9 = Rm[WS(rs, 2)];
Ta = T8 + T9;
Tl = T8 - T9;
Tm = Ip[WS(rs, 1)];
Tn = Im[WS(rs, 2)];
To = Tm + Tn;
T1c = Tm - Tn;
}
{
E Tb, Tc, Tr, Ts;
Tb = Rm[0];
Tc = Rp[WS(rs, 3)];
Td = Tb + Tc;
Tq = Tb - Tc;
Tr = Ip[WS(rs, 3)];
Ts = Im[0];
Tt = Tr + Ts;
T1d = Tr - Ts;
}
Te = Ta + Td;
T1e = T1c + T1d;
T1o = Ta - Td;
T1j = T1d - T1c;
TE = Tl + To;
TF = Tq + Tt;
TR = TE + TF;
Tp = Tl - To;
Tu = Tq - Tt;
Tv = Tp + Tu;
TW = Tp - Tu;
}
Rp[0] = T7 + Te;
Rm[0] = T1b + T1e;
{
E TS, TX, TT, TY, TP, TU;
TS = FNMS(KP707106781, TR, TQ);
TX = FMA(KP707106781, TW, TV);
TP = W[4];
TT = TP * TS;
TY = TP * TX;
TU = W[5];
Ip[WS(rs, 1)] = FNMS(TU, TX, TT);
Im[WS(rs, 1)] = FMA(TU, TS, TY);
}
{
E T1s, T1v, T1t, T1w, T1r, T1u;
T1s = T1i + T1j;
T1v = T1o + T1n;
T1r = W[2];
T1t = T1r * T1s;
T1w = T1r * T1v;
T1u = W[3];
Rp[WS(rs, 1)] = FNMS(T1u, T1v, T1t);
Rm[WS(rs, 1)] = FMA(T1u, T1s, T1w);
}
{
E T10, T13, T11, T14, TZ, T12;
T10 = FMA(KP707106781, TR, TQ);
T13 = FNMS(KP707106781, TW, TV);
TZ = W[12];
T11 = TZ * T10;
T14 = TZ * T13;
T12 = W[13];
Ip[WS(rs, 3)] = FNMS(T12, T13, T11);
Im[WS(rs, 3)] = FMA(T12, T10, T14);
}
{
E T1f, T15, T17, T18, T1g, T16;
T1f = T1b - T1e;
T16 = T7 - Te;
T15 = W[6];
T17 = T15 * T16;
T18 = W[7];
T1g = T18 * T16;
Rp[WS(rs, 2)] = FNMS(T18, T1f, T17);
Rm[WS(rs, 2)] = FMA(T15, T1f, T1g);
}
{
E T1k, T1p, T1l, T1q, T1h, T1m;
T1k = T1i - T1j;
T1p = T1n - T1o;
T1h = W[10];
T1l = T1h * T1k;
T1q = T1h * T1p;
T1m = W[11];
Rp[WS(rs, 3)] = FNMS(T1m, T1p, T1l);
Rm[WS(rs, 3)] = FMA(T1m, T1k, T1q);
}
{
E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw;
TG = TE - TF;
TH = FNMS(KP707106781, TG, TD);
TN = FMA(KP707106781, TG, TD);
TK = FMA(KP707106781, Tv, Tk);
TJ = W[0];
TL = TJ * TK;
TM = W[1];
TO = TM * TK;
Tw = FNMS(KP707106781, Tv, Tk);
Tf = W[8];
Tx = Tf * Tw;
Ty = W[9];
TI = Ty * Tw;
Ip[WS(rs, 2)] = FNMS(Ty, TH, Tx);
Im[WS(rs, 2)] = FMA(Tf, TH, TI);
Ip[0] = FNMS(TM, TN, TL);
Im[0] = FMA(TJ, TN, TO);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 8 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, { 44, 14, 22, 0 } };
void X(codelet_hc2cb_8) (planner *p) {
X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include rdft/scalar/hc2cb.h */
/*
* This function contains 66 FP additions, 32 FP multiplications,
* (or, 52 additions, 18 multiplications, 14 fused multiply/add),
* 30 stack variables, 1 constants, and 32 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS;
E TD;
{
E T3, TK, Tk, TX, T6, TW, Tn, TL;
{
E T1, T2, Ti, Tj;
T1 = Rp[0];
T2 = Rm[WS(rs, 3)];
T3 = T1 + T2;
TK = T1 - T2;
Ti = Ip[0];
Tj = Im[WS(rs, 3)];
Tk = Ti - Tj;
TX = Ti + Tj;
}
{
E T4, T5, Tl, Tm;
T4 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 1)];
T6 = T4 + T5;
TW = T4 - T5;
Tl = Ip[WS(rs, 2)];
Tm = Im[WS(rs, 1)];
Tn = Tl - Tm;
TL = Tl + Tm;
}
T7 = T3 + T6;
T18 = TK + TL;
T1c = TX - TW;
To = Tk + Tn;
Ty = T3 - T6;
TM = TK - TL;
TY = TW + TX;
TC = Tk - Tn;
}
{
E Ta, TN, Tr, TO, Td, TQ, Tu, TR;
{
E T8, T9, Tp, Tq;
T8 = Rp[WS(rs, 1)];
T9 = Rm[WS(rs, 2)];
Ta = T8 + T9;
TN = T8 - T9;
Tp = Ip[WS(rs, 1)];
Tq = Im[WS(rs, 2)];
Tr = Tp - Tq;
TO = Tp + Tq;
}
{
E Tb, Tc, Ts, Tt;
Tb = Rm[0];
Tc = Rp[WS(rs, 3)];
Td = Tb + Tc;
TQ = Tb - Tc;
Ts = Ip[WS(rs, 3)];
Tt = Im[0];
Tu = Ts - Tt;
TR = Ts + Tt;
}
Te = Ta + Td;
TZ = TN + TO;
T10 = TQ + TR;
Tv = Tr + Tu;
Tz = Tu - Tr;
TP = TN - TO;
TS = TQ - TR;
TD = Ta - Td;
}
Rp[0] = T7 + Te;
Rm[0] = To + Tv;
{
E Tg, Tw, Tf, Th;
Tg = T7 - Te;
Tw = To - Tv;
Tf = W[6];
Th = W[7];
Rp[WS(rs, 2)] = FNMS(Th, Tw, Tf * Tg);
Rm[WS(rs, 2)] = FMA(Th, Tg, Tf * Tw);
}
{
E TG, TI, TF, TH;
TG = Ty + Tz;
TI = TD + TC;
TF = W[2];
TH = W[3];
Rp[WS(rs, 1)] = FNMS(TH, TI, TF * TG);
Rm[WS(rs, 1)] = FMA(TF, TI, TH * TG);
}
{
E TA, TE, Tx, TB;
TA = Ty - Tz;
TE = TC - TD;
Tx = W[10];
TB = W[11];
Rp[WS(rs, 3)] = FNMS(TB, TE, Tx * TA);
Rm[WS(rs, 3)] = FMA(Tx, TE, TB * TA);
}
{
E T1a, T1g, T1e, T1i, T19, T1d;
T19 = KP707106781 * (TZ + T10);
T1a = T18 - T19;
T1g = T18 + T19;
T1d = KP707106781 * (TP - TS);
T1e = T1c + T1d;
T1i = T1c - T1d;
{
E T17, T1b, T1f, T1h;
T17 = W[4];
T1b = W[5];
Ip[WS(rs, 1)] = FNMS(T1b, T1e, T17 * T1a);
Im[WS(rs, 1)] = FMA(T17, T1e, T1b * T1a);
T1f = W[12];
T1h = W[13];
Ip[WS(rs, 3)] = FNMS(T1h, T1i, T1f * T1g);
Im[WS(rs, 3)] = FMA(T1f, T1i, T1h * T1g);
}
}
{
E TU, T14, T12, T16, TT, T11;
TT = KP707106781 * (TP + TS);
TU = TM - TT;
T14 = TM + TT;
T11 = KP707106781 * (TZ - T10);
T12 = TY - T11;
T16 = TY + T11;
{
E TJ, TV, T13, T15;
TJ = W[8];
TV = W[9];
Ip[WS(rs, 2)] = FNMS(TV, T12, TJ * TU);
Im[WS(rs, 2)] = FMA(TV, TU, TJ * T12);
T13 = W[0];
T15 = W[1];
Ip[0] = FNMS(T15, T16, T13 * T14);
Im[0] = FMA(T15, T14, T13 * T16);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 8 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, { 52, 18, 14, 0 } };
void X(codelet_hc2cb_8) (planner *p) {
X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
}
#endif