iup-stack/fftw/rdft/scalar/r2cb/hc2cb2_4.c

195 lines
5.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:09 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 4 -dif -name hc2cb2_4 -include rdft/scalar/hc2cb.h */
/*
* This function contains 24 FP additions, 16 FP multiplications,
* (or, 16 additions, 8 multiplications, 8 fused multiply/add),
* 33 stack variables, 0 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) {
E T7, Tb, T8, Ta, Tc, Tg, T9, Tf;
T7 = W[0];
Tb = W[3];
T8 = W[2];
T9 = T7 * T8;
Tf = T7 * Tb;
Ta = W[1];
Tc = FMA(Ta, Tb, T9);
Tg = FNMS(Ta, T8, Tf);
{
E T3, T6, Td, Tj, Tz, Tx, Tr, Tm, Tv, Ts, Tw, TA;
{
E Th, Ti, Tu, Tp, Tk, Tl, Tq, Tt;
{
E T1, T2, T4, T5;
Th = Ip[0];
Ti = Im[WS(rs, 1)];
Tu = Th + Ti;
T1 = Rp[0];
T2 = Rm[WS(rs, 1)];
T3 = T1 + T2;
Tp = T1 - T2;
Tk = Ip[WS(rs, 1)];
Tl = Im[0];
Tq = Tk + Tl;
T4 = Rp[WS(rs, 1)];
T5 = Rm[0];
T6 = T4 + T5;
Tt = T4 - T5;
}
Td = T3 - T6;
Tj = Th - Ti;
Tz = Tu - Tt;
Tx = Tp + Tq;
Tr = Tp - Tq;
Tm = Tk - Tl;
Tv = Tt + Tu;
}
Rp[0] = T3 + T6;
Rm[0] = Tj + Tm;
Ts = T7 * Tr;
Ip[0] = FNMS(Ta, Tv, Ts);
Tw = T7 * Tv;
Im[0] = FMA(Ta, Tr, Tw);
TA = T8 * Tz;
Im[WS(rs, 1)] = FMA(Tb, Tx, TA);
{
E Ty, Te, To, Tn;
Ty = T8 * Tx;
Ip[WS(rs, 1)] = FNMS(Tb, Tz, Ty);
Te = Tc * Td;
To = Tg * Td;
Tn = Tj - Tm;
Rp[WS(rs, 1)] = FNMS(Tg, Tn, Te);
Rm[WS(rs, 1)] = FMA(Tc, Tn, To);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cb2_4", twinstr, &GENUS, { 16, 8, 8, 0 } };
void X(codelet_hc2cb2_4) (planner *p) {
X(khc2c_register) (p, hc2cb2_4, &desc, HC2C_VIA_RDFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 4 -dif -name hc2cb2_4 -include rdft/scalar/hc2cb.h */
/*
* This function contains 24 FP additions, 16 FP multiplications,
* (or, 16 additions, 8 multiplications, 8 fused multiply/add),
* 21 stack variables, 0 constants, and 16 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
{
INT m;
for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) {
E T7, T9, T8, Ta, Tb, Td;
T7 = W[0];
T9 = W[1];
T8 = W[2];
Ta = W[3];
Tb = FMA(T7, T8, T9 * Ta);
Td = FNMS(T9, T8, T7 * Ta);
{
E T3, Tl, Tg, Tp, T6, To, Tj, Tm, Tc, Tk;
{
E T1, T2, Te, Tf;
T1 = Rp[0];
T2 = Rm[WS(rs, 1)];
T3 = T1 + T2;
Tl = T1 - T2;
Te = Ip[0];
Tf = Im[WS(rs, 1)];
Tg = Te - Tf;
Tp = Te + Tf;
}
{
E T4, T5, Th, Ti;
T4 = Rp[WS(rs, 1)];
T5 = Rm[0];
T6 = T4 + T5;
To = T4 - T5;
Th = Ip[WS(rs, 1)];
Ti = Im[0];
Tj = Th - Ti;
Tm = Th + Ti;
}
Rp[0] = T3 + T6;
Rm[0] = Tg + Tj;
Tc = T3 - T6;
Tk = Tg - Tj;
Rp[WS(rs, 1)] = FNMS(Td, Tk, Tb * Tc);
Rm[WS(rs, 1)] = FMA(Td, Tc, Tb * Tk);
{
E Tn, Tq, Tr, Ts;
Tn = Tl - Tm;
Tq = To + Tp;
Ip[0] = FNMS(T9, Tq, T7 * Tn);
Im[0] = FMA(T7, Tq, T9 * Tn);
Tr = Tl + Tm;
Ts = Tp - To;
Ip[WS(rs, 1)] = FNMS(Ta, Ts, T8 * Tr);
Im[WS(rs, 1)] = FMA(T8, Ts, Ta * Tr);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 4, "hc2cb2_4", twinstr, &GENUS, { 16, 8, 8, 0 } };
void X(codelet_hc2cb2_4) (planner *p) {
X(khc2c_register) (p, hc2cb2_4, &desc, HC2C_VIA_RDFT);
}
#endif