iup-stack/fftw/rdft/scalar/r2cb/hb_12.c

598 lines
14 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:50 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include rdft/scalar/hb.h */
/*
* This function contains 118 FP additions, 68 FP multiplications,
* (or, 72 additions, 22 multiplications, 46 fused multiply/add),
* 47 stack variables, 2 constants, and 48 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
E T18, T20, T1b, T21, T1s, T2a, T1p, T29, TI, TN, TO, Tb, To, T1f, T23;
E T1i, T24, T1z, T2d, T1w, T2c, Tt, Ty, Tz, Tm, TD;
{
E T1, TE, TM, T6, T4, T1o, TH, T17, TL, T1a, T9, T1r;
T1 = cr[0];
TE = ci[WS(rs, 11)];
TM = cr[WS(rs, 6)];
T6 = ci[WS(rs, 5)];
{
E T2, T3, TF, TG;
T2 = cr[WS(rs, 4)];
T3 = ci[WS(rs, 3)];
T4 = T2 + T3;
T1o = T2 - T3;
TF = ci[WS(rs, 7)];
TG = cr[WS(rs, 8)];
TH = TF - TG;
T17 = TF + TG;
}
{
E TJ, TK, T7, T8;
TJ = ci[WS(rs, 9)];
TK = cr[WS(rs, 10)];
TL = TJ - TK;
T1a = TJ + TK;
T7 = ci[WS(rs, 1)];
T8 = cr[WS(rs, 2)];
T9 = T7 + T8;
T1r = T7 - T8;
}
{
E T16, T19, T1q, T1n, T5, Ta;
T16 = FNMS(KP500000000, T4, T1);
T18 = FNMS(KP866025403, T17, T16);
T20 = FMA(KP866025403, T17, T16);
T19 = FNMS(KP500000000, T9, T6);
T1b = FMA(KP866025403, T1a, T19);
T21 = FNMS(KP866025403, T1a, T19);
T1q = FMA(KP500000000, TL, TM);
T1s = FNMS(KP866025403, T1r, T1q);
T2a = FMA(KP866025403, T1r, T1q);
T1n = FNMS(KP500000000, TH, TE);
T1p = FMA(KP866025403, T1o, T1n);
T29 = FNMS(KP866025403, T1o, T1n);
TI = TE + TH;
TN = TL - TM;
TO = TI - TN;
T5 = T1 + T4;
Ta = T6 + T9;
Tb = T5 + Ta;
To = T5 - Ta;
}
}
{
E Tc, Tp, Tx, Th, Tf, T1v, Ts, T1e, Tw, T1h, Tk, T1y;
Tc = cr[WS(rs, 3)];
Tp = ci[WS(rs, 8)];
Tx = cr[WS(rs, 9)];
Th = ci[WS(rs, 2)];
{
E Td, Te, Tq, Tr;
Td = ci[WS(rs, 4)];
Te = ci[0];
Tf = Td + Te;
T1v = Td - Te;
Tq = cr[WS(rs, 7)];
Tr = cr[WS(rs, 11)];
Ts = Tq + Tr;
T1e = Tq - Tr;
}
{
E Tu, Tv, Ti, Tj;
Tu = ci[WS(rs, 10)];
Tv = ci[WS(rs, 6)];
Tw = Tu + Tv;
T1h = Tv - Tu;
Ti = cr[WS(rs, 1)];
Tj = cr[WS(rs, 5)];
Tk = Ti + Tj;
T1y = Ti - Tj;
}
{
E T1d, T1g, T1x, T1u, Tg, Tl;
T1d = FNMS(KP500000000, Tf, Tc);
T1f = FMA(KP866025403, T1e, T1d);
T23 = FNMS(KP866025403, T1e, T1d);
T1g = FNMS(KP500000000, Tk, Th);
T1i = FMA(KP866025403, T1h, T1g);
T24 = FNMS(KP866025403, T1h, T1g);
T1x = FMA(KP500000000, Tw, Tx);
T1z = FNMS(KP866025403, T1y, T1x);
T2d = FMA(KP866025403, T1y, T1x);
T1u = FMA(KP500000000, Ts, Tp);
T1w = FMA(KP866025403, T1v, T1u);
T2c = FNMS(KP866025403, T1v, T1u);
Tt = Tp - Ts;
Ty = Tw - Tx;
Tz = Tt - Ty;
Tg = Tc + Tf;
Tl = Th + Tk;
Tm = Tg + Tl;
TD = Tg - Tl;
}
}
cr[0] = Tb + Tm;
{
E TA, TP, TB, TQ, Tn, TC;
TA = To - Tz;
TP = TD + TO;
Tn = W[16];
TB = Tn * TA;
TQ = Tn * TP;
TC = W[17];
cr[WS(rs, 9)] = FNMS(TC, TP, TB);
ci[WS(rs, 9)] = FMA(TC, TA, TQ);
}
{
E TS, TV, TT, TW, TR, TU;
TS = To + Tz;
TV = TO - TD;
TR = W[4];
TT = TR * TS;
TW = TR * TV;
TU = W[5];
cr[WS(rs, 3)] = FNMS(TU, TV, TT);
ci[WS(rs, 3)] = FMA(TU, TS, TW);
}
{
E T11, T12, T13, TX, TZ, T10, T14, TY;
T11 = TI + TN;
T12 = Tt + Ty;
T13 = T11 - T12;
TY = Tb - Tm;
TX = W[10];
TZ = TX * TY;
T10 = W[11];
T14 = T10 * TY;
ci[0] = T11 + T12;
ci[WS(rs, 6)] = FMA(TX, T13, T14);
cr[WS(rs, 6)] = FNMS(T10, T13, TZ);
}
{
E T1k, T1E, T1B, T1H;
{
E T1c, T1j, T1t, T1A;
T1c = T18 + T1b;
T1j = T1f + T1i;
T1k = T1c - T1j;
T1E = T1c + T1j;
T1t = T1p - T1s;
T1A = T1w - T1z;
T1B = T1t - T1A;
T1H = T1t + T1A;
}
{
E T15, T1l, T1m, T1C;
T15 = W[18];
T1l = T15 * T1k;
T1m = W[19];
T1C = T1m * T1k;
cr[WS(rs, 10)] = FNMS(T1m, T1B, T1l);
ci[WS(rs, 10)] = FMA(T15, T1B, T1C);
}
{
E T1D, T1F, T1G, T1I;
T1D = W[6];
T1F = T1D * T1E;
T1G = W[7];
T1I = T1G * T1E;
cr[WS(rs, 4)] = FNMS(T1G, T1H, T1F);
ci[WS(rs, 4)] = FMA(T1D, T1H, T1I);
}
}
{
E T26, T2i, T2f, T2l;
{
E T22, T25, T2b, T2e;
T22 = T20 + T21;
T25 = T23 + T24;
T26 = T22 - T25;
T2i = T22 + T25;
T2b = T29 - T2a;
T2e = T2c - T2d;
T2f = T2b - T2e;
T2l = T2b + T2e;
}
{
E T1Z, T27, T28, T2g;
T1Z = W[2];
T27 = T1Z * T26;
T28 = W[3];
T2g = T28 * T26;
cr[WS(rs, 2)] = FNMS(T28, T2f, T27);
ci[WS(rs, 2)] = FMA(T1Z, T2f, T2g);
}
{
E T2h, T2j, T2k, T2m;
T2h = W[14];
T2j = T2h * T2i;
T2k = W[15];
T2m = T2k * T2i;
cr[WS(rs, 8)] = FNMS(T2k, T2l, T2j);
ci[WS(rs, 8)] = FMA(T2h, T2l, T2m);
}
}
{
E T2q, T2y, T2v, T2B;
{
E T2o, T2p, T2t, T2u;
T2o = T20 - T21;
T2p = T2c + T2d;
T2q = T2o - T2p;
T2y = T2o + T2p;
T2t = T29 + T2a;
T2u = T23 - T24;
T2v = T2t + T2u;
T2B = T2t - T2u;
}
{
E T2r, T2w, T2n, T2s;
T2n = W[8];
T2r = T2n * T2q;
T2w = T2n * T2v;
T2s = W[9];
cr[WS(rs, 5)] = FNMS(T2s, T2v, T2r);
ci[WS(rs, 5)] = FMA(T2s, T2q, T2w);
}
{
E T2z, T2C, T2x, T2A;
T2x = W[20];
T2z = T2x * T2y;
T2C = T2x * T2B;
T2A = W[21];
cr[WS(rs, 11)] = FNMS(T2A, T2B, T2z);
ci[WS(rs, 11)] = FMA(T2A, T2y, T2C);
}
}
{
E T1M, T1U, T1R, T1X;
{
E T1K, T1L, T1P, T1Q;
T1K = T18 - T1b;
T1L = T1w + T1z;
T1M = T1K - T1L;
T1U = T1K + T1L;
T1P = T1p + T1s;
T1Q = T1f - T1i;
T1R = T1P + T1Q;
T1X = T1P - T1Q;
}
{
E T1N, T1S, T1J, T1O;
T1J = W[0];
T1N = T1J * T1M;
T1S = T1J * T1R;
T1O = W[1];
cr[WS(rs, 1)] = FNMS(T1O, T1R, T1N);
ci[WS(rs, 1)] = FMA(T1O, T1M, T1S);
}
{
E T1V, T1Y, T1T, T1W;
T1T = W[12];
T1V = T1T * T1U;
T1Y = T1T * T1X;
T1W = W[13];
cr[WS(rs, 7)] = FNMS(T1W, T1X, T1V);
ci[WS(rs, 7)] = FMA(T1W, T1U, T1Y);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 12 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, { 72, 22, 46, 0 } };
void X(codelet_hb_12) (planner *p) {
X(khc2hc_register) (p, hb_12, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include rdft/scalar/hb.h */
/*
* This function contains 118 FP additions, 60 FP multiplications,
* (or, 88 additions, 30 multiplications, 30 fused multiply/add),
* 39 stack variables, 2 constants, and 48 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
E T5, TH, T12, T1M, T1i, T1U, Tg, Tt, T19, T1X, T1p, T1P, Ta, TM, T15;
E T1N, T1l, T1V, Tl, Ty, T1c, T1Y, T1s, T1Q;
{
E T1, TD, T4, T1g, TG, T11, T10, T1h;
T1 = cr[0];
TD = ci[WS(rs, 11)];
{
E T2, T3, TE, TF;
T2 = cr[WS(rs, 4)];
T3 = ci[WS(rs, 3)];
T4 = T2 + T3;
T1g = KP866025403 * (T2 - T3);
TE = ci[WS(rs, 7)];
TF = cr[WS(rs, 8)];
TG = TE - TF;
T11 = KP866025403 * (TE + TF);
}
T5 = T1 + T4;
TH = TD + TG;
T10 = FNMS(KP500000000, T4, T1);
T12 = T10 - T11;
T1M = T10 + T11;
T1h = FNMS(KP500000000, TG, TD);
T1i = T1g + T1h;
T1U = T1h - T1g;
}
{
E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n;
Tc = cr[WS(rs, 3)];
Tp = ci[WS(rs, 8)];
{
E Td, Te, Tq, Tr;
Td = ci[WS(rs, 4)];
Te = ci[0];
Tf = Td + Te;
T17 = KP866025403 * (Td - Te);
Tq = cr[WS(rs, 7)];
Tr = cr[WS(rs, 11)];
Ts = Tq + Tr;
T1o = KP866025403 * (Tq - Tr);
}
Tg = Tc + Tf;
Tt = Tp - Ts;
T18 = FMA(KP500000000, Ts, Tp);
T19 = T17 + T18;
T1X = T18 - T17;
T1n = FNMS(KP500000000, Tf, Tc);
T1p = T1n + T1o;
T1P = T1n - T1o;
}
{
E T6, TL, T9, T1j, TK, T14, T13, T1k;
T6 = ci[WS(rs, 5)];
TL = cr[WS(rs, 6)];
{
E T7, T8, TI, TJ;
T7 = ci[WS(rs, 1)];
T8 = cr[WS(rs, 2)];
T9 = T7 + T8;
T1j = KP866025403 * (T7 - T8);
TI = ci[WS(rs, 9)];
TJ = cr[WS(rs, 10)];
TK = TI - TJ;
T14 = KP866025403 * (TI + TJ);
}
Ta = T6 + T9;
TM = TK - TL;
T13 = FNMS(KP500000000, T9, T6);
T15 = T13 + T14;
T1N = T13 - T14;
T1k = FMA(KP500000000, TK, TL);
T1l = T1j - T1k;
T1V = T1j + T1k;
}
{
E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q;
Th = ci[WS(rs, 2)];
Tx = cr[WS(rs, 9)];
{
E Ti, Tj, Tu, Tv;
Ti = cr[WS(rs, 1)];
Tj = cr[WS(rs, 5)];
Tk = Ti + Tj;
T1a = KP866025403 * (Ti - Tj);
Tu = ci[WS(rs, 10)];
Tv = ci[WS(rs, 6)];
Tw = Tu + Tv;
T1r = KP866025403 * (Tv - Tu);
}
Tl = Th + Tk;
Ty = Tw - Tx;
T1b = FMA(KP500000000, Tw, Tx);
T1c = T1a - T1b;
T1Y = T1a + T1b;
T1q = FNMS(KP500000000, Tk, Th);
T1s = T1q + T1r;
T1Q = T1q - T1r;
}
{
E Tb, Tm, TU, TW, TX, TY, TT, TV;
Tb = T5 + Ta;
Tm = Tg + Tl;
TU = Tb - Tm;
TW = TH + TM;
TX = Tt + Ty;
TY = TW - TX;
cr[0] = Tb + Tm;
ci[0] = TW + TX;
TT = W[10];
TV = W[11];
cr[WS(rs, 6)] = FNMS(TV, TY, TT * TU);
ci[WS(rs, 6)] = FMA(TV, TU, TT * TY);
}
{
E TA, TQ, TO, TS;
{
E To, Tz, TC, TN;
To = T5 - Ta;
Tz = Tt - Ty;
TA = To - Tz;
TQ = To + Tz;
TC = Tg - Tl;
TN = TH - TM;
TO = TC + TN;
TS = TN - TC;
}
{
E Tn, TB, TP, TR;
Tn = W[16];
TB = W[17];
cr[WS(rs, 9)] = FNMS(TB, TO, Tn * TA);
ci[WS(rs, 9)] = FMA(Tn, TO, TB * TA);
TP = W[4];
TR = W[5];
cr[WS(rs, 3)] = FNMS(TR, TS, TP * TQ);
ci[WS(rs, 3)] = FMA(TP, TS, TR * TQ);
}
}
{
E T28, T2e, T2c, T2g;
{
E T26, T27, T2a, T2b;
T26 = T1M - T1N;
T27 = T1X + T1Y;
T28 = T26 - T27;
T2e = T26 + T27;
T2a = T1U + T1V;
T2b = T1P - T1Q;
T2c = T2a + T2b;
T2g = T2a - T2b;
}
{
E T25, T29, T2d, T2f;
T25 = W[8];
T29 = W[9];
cr[WS(rs, 5)] = FNMS(T29, T2c, T25 * T28);
ci[WS(rs, 5)] = FMA(T25, T2c, T29 * T28);
T2d = W[20];
T2f = W[21];
cr[WS(rs, 11)] = FNMS(T2f, T2g, T2d * T2e);
ci[WS(rs, 11)] = FMA(T2d, T2g, T2f * T2e);
}
}
{
E T1S, T22, T20, T24;
{
E T1O, T1R, T1W, T1Z;
T1O = T1M + T1N;
T1R = T1P + T1Q;
T1S = T1O - T1R;
T22 = T1O + T1R;
T1W = T1U - T1V;
T1Z = T1X - T1Y;
T20 = T1W - T1Z;
T24 = T1W + T1Z;
}
{
E T1L, T1T, T21, T23;
T1L = W[2];
T1T = W[3];
cr[WS(rs, 2)] = FNMS(T1T, T20, T1L * T1S);
ci[WS(rs, 2)] = FMA(T1T, T1S, T1L * T20);
T21 = W[14];
T23 = W[15];
cr[WS(rs, 8)] = FNMS(T23, T24, T21 * T22);
ci[WS(rs, 8)] = FMA(T23, T22, T21 * T24);
}
}
{
E T1C, T1I, T1G, T1K;
{
E T1A, T1B, T1E, T1F;
T1A = T12 + T15;
T1B = T1p + T1s;
T1C = T1A - T1B;
T1I = T1A + T1B;
T1E = T1i + T1l;
T1F = T19 + T1c;
T1G = T1E - T1F;
T1K = T1E + T1F;
}
{
E T1z, T1D, T1H, T1J;
T1z = W[18];
T1D = W[19];
cr[WS(rs, 10)] = FNMS(T1D, T1G, T1z * T1C);
ci[WS(rs, 10)] = FMA(T1D, T1C, T1z * T1G);
T1H = W[6];
T1J = W[7];
cr[WS(rs, 4)] = FNMS(T1J, T1K, T1H * T1I);
ci[WS(rs, 4)] = FMA(T1J, T1I, T1H * T1K);
}
}
{
E T1e, T1w, T1u, T1y;
{
E T16, T1d, T1m, T1t;
T16 = T12 - T15;
T1d = T19 - T1c;
T1e = T16 - T1d;
T1w = T16 + T1d;
T1m = T1i - T1l;
T1t = T1p - T1s;
T1u = T1m + T1t;
T1y = T1m - T1t;
}
{
E TZ, T1f, T1v, T1x;
TZ = W[0];
T1f = W[1];
cr[WS(rs, 1)] = FNMS(T1f, T1u, TZ * T1e);
ci[WS(rs, 1)] = FMA(TZ, T1u, T1f * T1e);
T1v = W[12];
T1x = W[13];
cr[WS(rs, 7)] = FNMS(T1x, T1y, T1v * T1w);
ci[WS(rs, 7)] = FMA(T1v, T1y, T1x * T1w);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 12 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, { 88, 30, 30, 0 } };
void X(codelet_hb_12) (planner *p) {
X(khc2hc_register) (p, hb_12, &desc);
}
#endif