iup-stack/fftw/genfft/algsimp.ml

581 lines
18 KiB
OCaml

(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
open Util
open Expr
let node_insert x = Assoctable.insert Expr.hash x
let node_lookup x = Assoctable.lookup Expr.hash (==) x
(*************************************************************
* Algebraic simplifier/elimination of common subexpressions
*************************************************************)
module AlgSimp : sig
val algsimp : expr list -> expr list
end = struct
open Monads.StateMonad
open Monads.MemoMonad
open Assoctable
let fetchSimp =
fetchState >>= fun (s, _) -> returnM s
let storeSimp s =
fetchState >>= (fun (_, c) -> storeState (s, c))
let lookupSimpM key =
fetchSimp >>= fun table ->
returnM (node_lookup key table)
let insertSimpM key value =
fetchSimp >>= fun table ->
storeSimp (node_insert key value table)
let subset a b =
List.for_all (fun x -> List.exists (fun y -> x == y) b) a
let structurallyEqualCSE a b =
match (a, b) with
| (Num a, Num b) -> Number.equal a b
| (NaN a, NaN b) -> a == b
| (Load a, Load b) -> Variable.same a b
| (Times (a, a'), Times (b, b')) ->
((a == b) && (a' == b')) ||
((a == b') && (a' == b))
| (CTimes (a, a'), CTimes (b, b')) ->
((a == b) && (a' == b')) ||
((a == b') && (a' == b))
| (CTimesJ (a, a'), CTimesJ (b, b')) -> ((a == b) && (a' == b'))
| (Plus a, Plus b) -> subset a b && subset b a
| (Uminus a, Uminus b) -> (a == b)
| _ -> false
let hashCSE x =
if (!Magic.randomized_cse) then
Oracle.hash x
else
Expr.hash x
let equalCSE a b =
if (!Magic.randomized_cse) then
(structurallyEqualCSE a b || Oracle.likely_equal a b)
else
structurallyEqualCSE a b
let fetchCSE =
fetchState >>= fun (_, c) -> returnM c
let storeCSE c =
fetchState >>= (fun (s, _) -> storeState (s, c))
let lookupCSEM key =
fetchCSE >>= fun table ->
returnM (Assoctable.lookup hashCSE equalCSE key table)
let insertCSEM key value =
fetchCSE >>= fun table ->
storeCSE (Assoctable.insert hashCSE key value table)
(* memoize both x and Uminus x (unless x is already negated) *)
let identityM x =
let memo x = memoizing lookupCSEM insertCSEM returnM x in
match x with
Uminus _ -> memo x
| _ -> memo x >>= fun x' -> memo (Uminus x') >> returnM x'
let makeNode = identityM
(* simplifiers for various kinds of nodes *)
let rec snumM = function
n when Number.is_zero n ->
makeNode (Num (Number.zero))
| n when Number.negative n ->
makeNode (Num (Number.negate n)) >>= suminusM
| n -> makeNode (Num n)
and suminusM = function
Uminus x -> makeNode x
| Num a when (Number.is_zero a) -> snumM Number.zero
| a -> makeNode (Uminus a)
and stimesM = function
| (Uminus a, b) -> stimesM (a, b) >>= suminusM
| (a, Uminus b) -> stimesM (a, b) >>= suminusM
| (NaN I, CTimes (a, b)) -> stimesM (NaN I, b) >>=
fun ib -> sctimesM (a, ib)
| (NaN I, CTimesJ (a, b)) -> stimesM (NaN I, b) >>=
fun ib -> sctimesjM (a, ib)
| (Num a, Num b) -> snumM (Number.mul a b)
| (Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x -> stimesM (x, c)
| (Num a, b) when Number.is_zero a -> snumM Number.zero
| (Num a, b) when Number.is_one a -> makeNode b
| (Num a, b) when Number.is_mone a -> suminusM b
| (a, b) when is_known_constant b && not (is_known_constant a) ->
stimesM (b, a)
| (a, b) -> makeNode (Times (a, b))
and sctimesM = function
| (Uminus a, b) -> sctimesM (a, b) >>= suminusM
| (a, Uminus b) -> sctimesM (a, b) >>= suminusM
| (a, b) -> makeNode (CTimes (a, b))
and sctimesjM = function
| (Uminus a, b) -> sctimesjM (a, b) >>= suminusM
| (a, Uminus b) -> sctimesjM (a, b) >>= suminusM
| (a, b) -> makeNode (CTimesJ (a, b))
and reduce_sumM x = match x with
[] -> returnM []
| [Num a] ->
if (Number.is_zero a) then
returnM []
else returnM x
| [Uminus (Num a)] ->
if (Number.is_zero a) then
returnM []
else returnM x
| (Num a) :: (Num b) :: s ->
snumM (Number.add a b) >>= fun x ->
reduce_sumM (x :: s)
| (Num a) :: (Uminus (Num b)) :: s ->
snumM (Number.sub a b) >>= fun x ->
reduce_sumM (x :: s)
| (Uminus (Num a)) :: (Num b) :: s ->
snumM (Number.sub b a) >>= fun x ->
reduce_sumM (x :: s)
| (Uminus (Num a)) :: (Uminus (Num b)) :: s ->
snumM (Number.add a b) >>=
suminusM >>= fun x ->
reduce_sumM (x :: s)
| ((Num _) as a) :: b :: s -> reduce_sumM (b :: a :: s)
| ((Uminus (Num _)) as a) :: b :: s -> reduce_sumM (b :: a :: s)
| a :: s ->
reduce_sumM s >>= fun s' -> returnM (a :: s')
and collectible1 = function
| NaN _ -> false
| Uminus x -> collectible1 x
| _ -> true
and collectible (a, b) = collectible1 a
(* collect common factors: ax + bx -> (a+b)x *)
and collectM which x =
let rec findCoeffM which = function
| Times (a, b) when collectible (which (a, b)) -> returnM (which (a, b))
| Uminus x ->
findCoeffM which x >>= fun (coeff, b) ->
suminusM coeff >>= fun mcoeff ->
returnM (mcoeff, b)
| x -> snumM Number.one >>= fun one -> returnM (one, x)
and separateM xpr = function
[] -> returnM ([], [])
| a :: b ->
separateM xpr b >>= fun (w, wo) ->
(* try first factor *)
findCoeffM (fun (a, b) -> (a, b)) a >>= fun (c, x) ->
if (xpr == x) && collectible (c, x) then returnM (c :: w, wo)
else
(* try second factor *)
findCoeffM (fun (a, b) -> (b, a)) a >>= fun (c, x) ->
if (xpr == x) && collectible (c, x) then returnM (c :: w, wo)
else returnM (w, a :: wo)
in match x with
[] -> returnM x
| [a] -> returnM x
| a :: b ->
findCoeffM which a >>= fun (_, xpr) ->
separateM xpr x >>= fun (w, wo) ->
collectM which wo >>= fun wo' ->
splusM w >>= fun w' ->
stimesM (w', xpr) >>= fun t' ->
returnM (t':: wo')
and mangleSumM x = returnM x
>>= reduce_sumM
>>= collectM (fun (a, b) -> (a, b))
>>= collectM (fun (a, b) -> (b, a))
>>= reduce_sumM
>>= deepCollectM !Magic.deep_collect_depth
>>= reduce_sumM
and reorder_uminus = function (* push all Uminuses to the end *)
[] -> []
| ((Uminus _) as a' :: b) -> (reorder_uminus b) @ [a']
| (a :: b) -> a :: (reorder_uminus b)
and canonicalizeM = function
[] -> snumM Number.zero
| [a] -> makeNode a (* one term *)
| a -> generateFusedMultAddM (reorder_uminus a)
and generateFusedMultAddM =
let rec is_multiplication = function
| Times (Num a, b) -> true
| Uminus (Times (Num a, b)) -> true
| _ -> false
and separate = function
[] -> ([], [], Number.zero)
| (Times (Num a, b)) as this :: c ->
let (x, y, max) = separate c in
let newmax = if (Number.greater a max) then a else max in
(this :: x, y, newmax)
| (Uminus (Times (Num a, b))) as this :: c ->
let (x, y, max) = separate c in
let newmax = if (Number.greater a max) then a else max in
(this :: x, y, newmax)
| this :: c ->
let (x, y, max) = separate c in
(x, this :: y, max)
in fun l ->
if !Magic.enable_fma && count is_multiplication l >= 2 then
let (w, wo, max) = separate l in
snumM (Number.div Number.one max) >>= fun invmax' ->
snumM max >>= fun max' ->
mapM (fun x -> stimesM (invmax', x)) w >>= splusM >>= fun pw' ->
stimesM (max', pw') >>= fun mw' ->
splusM (wo @ [mw'])
else
makeNode (Plus l)
and negative = function
Uminus _ -> true
| _ -> false
(*
* simplify patterns of the form
*
* ((c_1 * a + ...) + ...) + (c_2 * a + ...)
*
* The pattern includes arbitrary coefficients and minus signs.
* A common case of this pattern is the butterfly
* (a + b) + (a - b)
* (a + b) - (a - b)
*)
(* this whole procedure needs much more thought *)
and deepCollectM maxdepth l =
let rec findTerms depth x = match x with
| Uminus x -> findTerms depth x
| Times (Num _, b) -> (findTerms (depth - 1) b)
| Plus l when depth > 0 ->
x :: List.flatten (List.map (findTerms (depth - 1)) l)
| x -> [x]
and duplicates = function
[] -> []
| a :: b -> if List.memq a b then a :: duplicates b
else duplicates b
in let rec splitDuplicates depth d x =
if (List.memq x d) then
snumM (Number.zero) >>= fun zero ->
returnM (zero, x)
else match x with
| Times (a, b) ->
splitDuplicates (depth - 1) d a >>= fun (a', xa) ->
splitDuplicates (depth - 1) d b >>= fun (b', xb) ->
stimesM (a', b') >>= fun ab ->
stimesM (a, xb) >>= fun xb' ->
stimesM (xa, b) >>= fun xa' ->
stimesM (xa, xb) >>= fun xab ->
splusM [xa'; xb'; xab] >>= fun x ->
returnM (ab, x)
| Uminus a ->
splitDuplicates depth d a >>= fun (x, y) ->
suminusM x >>= fun ux ->
suminusM y >>= fun uy ->
returnM (ux, uy)
| Plus l when depth > 0 ->
mapM (splitDuplicates (depth - 1) d) l >>= fun ld ->
let (l', d') = List.split ld in
splusM l' >>= fun p ->
splusM d' >>= fun d'' ->
returnM (p, d'')
| x ->
snumM (Number.zero) >>= fun zero' ->
returnM (x, zero')
in let l' = List.flatten (List.map (findTerms maxdepth) l)
in match duplicates l' with
| [] -> returnM l
| d ->
mapM (splitDuplicates maxdepth d) l >>= fun ld ->
let (l', d') = List.split ld in
splusM l' >>= fun l'' ->
let rec flattenPlusM = function
| Plus l -> returnM l
| Uminus x ->
flattenPlusM x >>= mapM suminusM
| x -> returnM [x]
in
mapM flattenPlusM d' >>= fun d'' ->
splusM (List.flatten d'') >>= fun d''' ->
mangleSumM [l''; d''']
and splusM l =
let fma_heuristics x =
if !Magic.enable_fma then
match x with
| [Uminus (Times _); Times _] -> Some false
| [Times _; Uminus (Times _)] -> Some false
| [Uminus (_); Times _] -> Some true
| [Times _; Uminus (Plus _)] -> Some true
| [_; Uminus (Times _)] -> Some false
| [Uminus (Times _); _] -> Some false
| _ -> None
else
None
in
mangleSumM l >>= fun l' ->
(* no terms are negative. Don't do anything *)
if not (List.exists negative l') then
canonicalizeM l'
(* all terms are negative. Negate them all and collect the minus sign *)
else if List.for_all negative l' then
mapM suminusM l' >>= splusM >>= suminusM
else match fma_heuristics l' with
| Some true -> mapM suminusM l' >>= splusM >>= suminusM
| Some false -> canonicalizeM l'
| None ->
(* Ask the Oracle for the canonical form *)
if (not !Magic.randomized_cse) &&
Oracle.should_flip_sign (Plus l') then
mapM suminusM l' >>= splusM >>= suminusM
else
canonicalizeM l'
(* monadic style algebraic simplifier for the dag *)
let rec algsimpM x =
memoizing lookupSimpM insertSimpM
(function
| Num a -> snumM a
| NaN _ as x -> makeNode x
| Plus a ->
mapM algsimpM a >>= splusM
| Times (a, b) ->
(algsimpM a >>= fun a' ->
algsimpM b >>= fun b' ->
stimesM (a', b'))
| CTimes (a, b) ->
(algsimpM a >>= fun a' ->
algsimpM b >>= fun b' ->
sctimesM (a', b'))
| CTimesJ (a, b) ->
(algsimpM a >>= fun a' ->
algsimpM b >>= fun b' ->
sctimesjM (a', b'))
| Uminus a ->
algsimpM a >>= suminusM
| Store (v, a) ->
algsimpM a >>= fun a' ->
makeNode (Store (v, a'))
| Load _ as x -> makeNode x)
x
let initialTable = (empty, empty)
let simp_roots = mapM algsimpM
let algsimp = runM initialTable simp_roots
end
(*************************************************************
* Network transposition algorithm
*************************************************************)
module Transpose = struct
open Monads.StateMonad
open Monads.MemoMonad
open Littlesimp
let fetchDuals = fetchState
let storeDuals = storeState
let lookupDualsM key =
fetchDuals >>= fun table ->
returnM (node_lookup key table)
let insertDualsM key value =
fetchDuals >>= fun table ->
storeDuals (node_insert key value table)
let rec visit visited vtable parent_table = function
[] -> (visited, parent_table)
| node :: rest ->
match node_lookup node vtable with
| Some _ -> visit visited vtable parent_table rest
| None ->
let children = match node with
| Store (v, n) -> [n]
| Plus l -> l
| Times (a, b) -> [a; b]
| CTimes (a, b) -> [a; b]
| CTimesJ (a, b) -> [a; b]
| Uminus x -> [x]
| _ -> []
in let rec loop t = function
[] -> t
| a :: rest ->
(match node_lookup a t with
None -> loop (node_insert a [node] t) rest
| Some c -> loop (node_insert a (node :: c) t) rest)
in
(visit
(node :: visited)
(node_insert node () vtable)
(loop parent_table children)
(children @ rest))
let make_transposer parent_table =
let rec termM node candidate_parent =
match candidate_parent with
| Store (_, n) when n == node ->
dualM candidate_parent >>= fun x' -> returnM [x']
| Plus (l) when List.memq node l ->
dualM candidate_parent >>= fun x' -> returnM [x']
| Times (a, b) when b == node ->
dualM candidate_parent >>= fun x' ->
returnM [makeTimes (a, x')]
| CTimes (a, b) when b == node ->
dualM candidate_parent >>= fun x' ->
returnM [CTimes (a, x')]
| CTimesJ (a, b) when b == node ->
dualM candidate_parent >>= fun x' ->
returnM [CTimesJ (a, x')]
| Uminus n when n == node ->
dualM candidate_parent >>= fun x' ->
returnM [makeUminus x']
| _ -> returnM []
and dualExpressionM this_node =
mapM (termM this_node)
(match node_lookup this_node parent_table with
| Some a -> a
| None -> failwith "bug in dualExpressionM"
) >>= fun l ->
returnM (makePlus (List.flatten l))
and dualM this_node =
memoizing lookupDualsM insertDualsM
(function
| Load v as x ->
if (Variable.is_constant v) then
returnM (Load v)
else
(dualExpressionM x >>= fun d ->
returnM (Store (v, d)))
| Store (v, x) -> returnM (Load v)
| x -> dualExpressionM x)
this_node
in dualM
let is_store = function
| Store _ -> true
| _ -> false
let transpose dag =
let _ = Util.info "begin transpose" in
let (all_nodes, parent_table) =
visit [] Assoctable.empty Assoctable.empty dag in
let transposerM = make_transposer parent_table in
let mapTransposerM = mapM transposerM in
let duals = runM Assoctable.empty mapTransposerM all_nodes in
let roots = List.filter is_store duals in
let _ = Util.info "end transpose" in
roots
end
(*************************************************************
* Various dag statistics
*************************************************************)
module Stats : sig
type complexity
val complexity : Expr.expr list -> complexity
val same_complexity : complexity -> complexity -> bool
val leq_complexity : complexity -> complexity -> bool
val to_string : complexity -> string
end = struct
type complexity = int * int * int * int * int * int
let rec visit visited vtable = function
[] -> visited
| node :: rest ->
match node_lookup node vtable with
Some _ -> visit visited vtable rest
| None ->
let children = match node with
Store (v, n) -> [n]
| Plus l -> l
| Times (a, b) -> [a; b]
| Uminus x -> [x]
| _ -> []
in visit (node :: visited)
(node_insert node () vtable)
(children @ rest)
let complexity dag =
let rec loop (load, store, plus, times, uminus, num) = function
[] -> (load, store, plus, times, uminus, num)
| node :: rest ->
loop
(match node with
| Load _ -> (load + 1, store, plus, times, uminus, num)
| Store _ -> (load, store + 1, plus, times, uminus, num)
| Plus x -> (load, store, plus + (List.length x - 1), times, uminus, num)
| Times _ -> (load, store, plus, times + 1, uminus, num)
| Uminus _ -> (load, store, plus, times, uminus + 1, num)
| Num _ -> (load, store, plus, times, uminus, num + 1)
| CTimes _ -> (load, store, plus, times, uminus, num)
| CTimesJ _ -> (load, store, plus, times, uminus, num)
| NaN _ -> (load, store, plus, times, uminus, num))
rest
in let (l, s, p, t, u, n) =
loop (0, 0, 0, 0, 0, 0) (visit [] Assoctable.empty dag)
in (l, s, p, t, u, n)
let weight (l, s, p, t, u, n) =
l + s + 10 * p + 20 * t + u + n
let same_complexity a b = weight a = weight b
let leq_complexity a b = weight a <= weight b
let to_string (l, s, p, t, u, n) =
Printf.sprintf "ld=%d st=%d add=%d mul=%d uminus=%d num=%d\n"
l s p t u n
end
(* simplify the dag *)
let algsimp v =
let rec simplification_loop v =
let () = Util.info "simplification step" in
let complexity = Stats.complexity v in
let () = Util.info ("complexity = " ^ (Stats.to_string complexity)) in
let v = (AlgSimp.algsimp @@ Transpose.transpose @@
AlgSimp.algsimp @@ Transpose.transpose) v in
let complexity' = Stats.complexity v in
let () = Util.info ("complexity = " ^ (Stats.to_string complexity')) in
if (Stats.leq_complexity complexity' complexity) then
let () = Util.info "end algsimp" in
v
else
simplification_loop v
in
let () = Util.info "begin algsimp" in
let v = AlgSimp.algsimp v in
if !Magic.network_transposition then simplification_loop v else v