233 lines
7.2 KiB
C
233 lines
7.2 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:55 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include dft/simd/t3b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 37 FP additions, 32 FP multiplications,
|
|
* (or, 27 additions, 22 multiplications, 10 fused multiply/add),
|
|
* 31 stack variables, 1 constants, and 16 memory accesses
|
|
*/
|
|
#include "dft/simd/t3b.h"
|
|
|
|
static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
|
|
V T2, T3, Ta, T4, Tb, Tc, Tp;
|
|
T2 = LDW(&(W[0]));
|
|
T3 = LDW(&(W[TWVL * 2]));
|
|
Ta = VZMULJ(T2, T3);
|
|
T4 = VZMUL(T2, T3);
|
|
Tb = LDW(&(W[TWVL * 4]));
|
|
Tc = VZMULJ(Ta, Tb);
|
|
Tp = VZMULJ(T2, Tb);
|
|
{
|
|
V T7, Tx, Ts, Ty, Tf, TA, Tk, TB, T1, T6, T5;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
T6 = VZMUL(T4, T5);
|
|
T7 = VSUB(T1, T6);
|
|
Tx = VADD(T1, T6);
|
|
{
|
|
V To, Tr, Tn, Tq;
|
|
Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
To = VZMUL(Ta, Tn);
|
|
Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tr = VZMUL(Tp, Tq);
|
|
Ts = VSUB(To, Tr);
|
|
Ty = VADD(To, Tr);
|
|
}
|
|
{
|
|
V T9, Te, T8, Td;
|
|
T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T9 = VZMUL(T2, T8);
|
|
Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Te = VZMUL(Tc, Td);
|
|
Tf = VSUB(T9, Te);
|
|
TA = VADD(T9, Te);
|
|
}
|
|
{
|
|
V Th, Tj, Tg, Ti;
|
|
Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Th = VZMUL(Tb, Tg);
|
|
Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Tj = VZMUL(T3, Ti);
|
|
Tk = VSUB(Th, Tj);
|
|
TB = VADD(Th, Tj);
|
|
}
|
|
{
|
|
V Tz, TC, TD, TE;
|
|
Tz = VSUB(Tx, Ty);
|
|
TC = VSUB(TA, TB);
|
|
ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0]));
|
|
TD = VADD(Tx, Ty);
|
|
TE = VADD(TA, TB);
|
|
ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
|
|
ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
|
|
{
|
|
V Tm, Tv, Tu, Tw, Tl, Tt;
|
|
Tl = VADD(Tf, Tk);
|
|
Tm = VFNMS(LDK(KP707106781), Tl, T7);
|
|
Tv = VFMA(LDK(KP707106781), Tl, T7);
|
|
Tt = VSUB(Tf, Tk);
|
|
Tu = VFNMS(LDK(KP707106781), Tt, Ts);
|
|
Tw = VFMA(LDK(KP707106781), Tt, Ts);
|
|
ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 3),
|
|
VTW(0, 7),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, { 27, 22, 10, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t3bv_8) (planner *p) {
|
|
X(kdft_dit_register) (p, t3bv_8, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include dft/simd/t3b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 37 FP additions, 24 FP multiplications,
|
|
* (or, 37 additions, 24 multiplications, 0 fused multiply/add),
|
|
* 31 stack variables, 1 constants, and 16 memory accesses
|
|
*/
|
|
#include "dft/simd/t3b.h"
|
|
|
|
static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
|
|
V T1, T4, T5, Tp, T6, T7, Tj;
|
|
T1 = LDW(&(W[0]));
|
|
T4 = LDW(&(W[TWVL * 2]));
|
|
T5 = VZMULJ(T1, T4);
|
|
Tp = VZMUL(T1, T4);
|
|
T6 = LDW(&(W[TWVL * 4]));
|
|
T7 = VZMULJ(T5, T6);
|
|
Tj = VZMULJ(T1, T6);
|
|
{
|
|
V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;
|
|
To = LD(&(x[0]), ms, &(x[0]));
|
|
Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tr = VZMUL(Tp, Tq);
|
|
Ts = VSUB(To, Tr);
|
|
Tx = VADD(To, Tr);
|
|
{
|
|
V Ti, Tl, Th, Tk;
|
|
Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Ti = VZMUL(T5, Th);
|
|
Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
Tl = VZMUL(Tj, Tk);
|
|
Tm = VSUB(Ti, Tl);
|
|
Ty = VADD(Ti, Tl);
|
|
}
|
|
{
|
|
V T3, T9, T2, T8;
|
|
T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T3 = VZMUL(T1, T2);
|
|
T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
T9 = VZMUL(T7, T8);
|
|
Ta = VSUB(T3, T9);
|
|
TA = VADD(T3, T9);
|
|
}
|
|
{
|
|
V Tc, Te, Tb, Td;
|
|
Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
|
Tc = VZMUL(T6, Tb);
|
|
Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Te = VZMUL(T4, Td);
|
|
Tf = VSUB(Tc, Te);
|
|
TB = VADD(Tc, Te);
|
|
}
|
|
{
|
|
V Tz, TC, TD, TE;
|
|
Tz = VSUB(Tx, Ty);
|
|
TC = VBYI(VSUB(TA, TB));
|
|
ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0]));
|
|
TD = VADD(Tx, Ty);
|
|
TE = VADD(TA, TB);
|
|
ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
|
|
ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
|
|
{
|
|
V Tn, Tv, Tu, Tw, Tg, Tt;
|
|
Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));
|
|
Tn = VBYI(VSUB(Tg, Tm));
|
|
Tv = VBYI(VADD(Tm, Tg));
|
|
Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));
|
|
Tu = VSUB(Ts, Tt);
|
|
Tw = VADD(Ts, Tt);
|
|
ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 3),
|
|
VTW(0, 7),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, { 37, 24, 0, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t3bv_8) (planner *p) {
|
|
X(kdft_dit_register) (p, t3bv_8, &desc);
|
|
}
|
|
#endif
|