iup-stack/fftw/dft/simd/common/t2fv_5.c

177 lines
5.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:44 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t2fv_5 -include dft/simd/t2f.h */
/*
* This function contains 20 FP additions, 19 FP multiplications,
* (or, 11 additions, 10 multiplications, 9 fused multiply/add),
* 20 stack variables, 4 constants, and 10 memory accesses
*/
#include "dft/simd/t2f.h"
static void t2fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
V T1, Tg, Th, T6, Tb, Tc;
T1 = LD(&(x[0]), ms, &(x[0]));
{
V T3, Ta, T5, T8;
{
V T2, T9, T4, T7;
T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T3 = BYTWJ(&(W[0]), T2);
T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Ta = BYTWJ(&(W[TWVL * 4]), T9);
T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
T5 = BYTWJ(&(W[TWVL * 6]), T4);
T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T8 = BYTWJ(&(W[TWVL * 2]), T7);
}
Tg = VSUB(T3, T5);
Th = VSUB(T8, Ta);
T6 = VADD(T3, T5);
Tb = VADD(T8, Ta);
Tc = VADD(T6, Tb);
}
ST(&(x[0]), VADD(T1, Tc), ms, &(x[0]));
{
V Ti, Tk, Tf, Tj, Td, Te;
Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg));
Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th));
Td = VFNMS(LDK(KP250000000), Tc, T1);
Te = VSUB(T6, Tb);
Tf = VFMA(LDK(KP559016994), Te, Td);
Tj = VFNMS(LDK(KP559016994), Te, Td);
ST(&(x[WS(rs, 1)]), VFNMSI(Ti, Tf), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VFNMSI(Tk, Tj), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 4)]), VFMAI(Ti, Tf), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VFMAI(Tk, Tj), ms, &(x[0]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
VTW(0, 4),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 5, XSIMD_STRING("t2fv_5"), twinstr, &GENUS, { 11, 10, 9, 0 }, 0, 0, 0 };
void XSIMD(codelet_t2fv_5) (planner *p) {
X(kdft_dit_register) (p, t2fv_5, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t2fv_5 -include dft/simd/t2f.h */
/*
* This function contains 20 FP additions, 14 FP multiplications,
* (or, 17 additions, 11 multiplications, 3 fused multiply/add),
* 20 stack variables, 4 constants, and 10 memory accesses
*/
#include "dft/simd/t2f.h"
static void t2fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
V Tc, Tg, Th, T5, Ta, Td;
Tc = LD(&(x[0]), ms, &(x[0]));
{
V T2, T9, T4, T7;
{
V T1, T8, T3, T6;
T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T2 = BYTWJ(&(W[0]), T1);
T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
T9 = BYTWJ(&(W[TWVL * 4]), T8);
T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
T4 = BYTWJ(&(W[TWVL * 6]), T3);
T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T7 = BYTWJ(&(W[TWVL * 2]), T6);
}
Tg = VSUB(T2, T4);
Th = VSUB(T7, T9);
T5 = VADD(T2, T4);
Ta = VADD(T7, T9);
Td = VADD(T5, Ta);
}
ST(&(x[0]), VADD(Tc, Td), ms, &(x[0]));
{
V Ti, Tj, Tf, Tk, Tb, Te;
Ti = VBYI(VFMA(LDK(KP951056516), Tg, VMUL(LDK(KP587785252), Th)));
Tj = VBYI(VFNMS(LDK(KP587785252), Tg, VMUL(LDK(KP951056516), Th)));
Tb = VMUL(LDK(KP559016994), VSUB(T5, Ta));
Te = VFNMS(LDK(KP250000000), Td, Tc);
Tf = VADD(Tb, Te);
Tk = VSUB(Te, Tb);
ST(&(x[WS(rs, 1)]), VSUB(Tf, Ti), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 4)]), VADD(Ti, Tf), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
VTW(0, 4),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 5, XSIMD_STRING("t2fv_5"), twinstr, &GENUS, { 17, 11, 3, 0 }, 0, 0, 0 };
void XSIMD(codelet_t2fv_5) (planner *p) {
X(kdft_dit_register) (p, t2fv_5, &desc);
}
#endif