217 lines
7.9 KiB
C
217 lines
7.9 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:49 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include dft/simd/t1b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 36 FP additions, 36 FP multiplications,
|
|
* (or, 15 additions, 15 multiplications, 21 fused multiply/add),
|
|
* 30 stack variables, 6 constants, and 14 memory accesses
|
|
*/
|
|
#include "dft/simd/t1b.h"
|
|
|
|
static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
|
DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
|
DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
|
DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
|
DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
|
DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
|
|
V T1, Tk, Tm, Tl, T6, Tg, Tb, Th, Tu, Tp;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
{
|
|
V T3, T5, Tf, Td, Ta, T8;
|
|
{
|
|
V T2, T4, Te, Tc, T9, T7;
|
|
T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T3 = BYTW(&(W[0]), T2);
|
|
T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
T5 = BYTW(&(W[TWVL * 10]), T4);
|
|
Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
Tf = BYTW(&(W[TWVL * 6]), Te);
|
|
Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
Td = BYTW(&(W[TWVL * 4]), Tc);
|
|
T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Ta = BYTW(&(W[TWVL * 8]), T9);
|
|
T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
T8 = BYTW(&(W[TWVL * 2]), T7);
|
|
}
|
|
Tk = VSUB(Td, Tf);
|
|
Tm = VSUB(T3, T5);
|
|
Tl = VSUB(T8, Ta);
|
|
T6 = VADD(T3, T5);
|
|
Tg = VADD(Td, Tf);
|
|
Tb = VADD(T8, Ta);
|
|
Th = VFNMS(LDK(KP356895867), Tg, Tb);
|
|
Tu = VFNMS(LDK(KP356895867), Tb, T6);
|
|
Tp = VFNMS(LDK(KP356895867), T6, Tg);
|
|
}
|
|
ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
|
|
{
|
|
V Tw, Ty, Tv, Tx;
|
|
Tv = VFNMS(LDK(KP692021471), Tu, Tg);
|
|
Tw = VFNMS(LDK(KP900968867), Tv, T1);
|
|
Tx = VFMA(LDK(KP554958132), Tk, Tm);
|
|
Ty = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tx, Tl));
|
|
ST(&(x[WS(rs, 1)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 6)]), VFNMSI(Ty, Tw), ms, &(x[0]));
|
|
}
|
|
{
|
|
V Tj, To, Ti, Tn;
|
|
Ti = VFNMS(LDK(KP692021471), Th, T6);
|
|
Tj = VFNMS(LDK(KP900968867), Ti, T1);
|
|
Tn = VFNMS(LDK(KP554958132), Tm, Tl);
|
|
To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk));
|
|
ST(&(x[WS(rs, 3)]), VFMAI(To, Tj), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 4)]), VFNMSI(To, Tj), ms, &(x[0]));
|
|
}
|
|
{
|
|
V Tr, Tt, Tq, Ts;
|
|
Tq = VFNMS(LDK(KP692021471), Tp, Tb);
|
|
Tr = VFNMS(LDK(KP900968867), Tq, T1);
|
|
Ts = VFMA(LDK(KP554958132), Tl, Tk);
|
|
Tt = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Ts, Tm));
|
|
ST(&(x[WS(rs, 2)]), VFMAI(Tt, Tr), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 5)]), VFNMSI(Tt, Tr), ms, &(x[WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, { 15, 15, 21, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t1bv_7) (planner *p) {
|
|
X(kdft_dit_register) (p, t1bv_7, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include dft/simd/t1b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 36 FP additions, 30 FP multiplications,
|
|
* (or, 24 additions, 18 multiplications, 12 fused multiply/add),
|
|
* 21 stack variables, 6 constants, and 14 memory accesses
|
|
*/
|
|
#include "dft/simd/t1b.h"
|
|
|
|
static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
|
|
DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
|
DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
|
|
DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
|
|
DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
|
|
DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
|
|
V Th, Tf, Ti, T5, Tk, Ta, Tj, To, Tp;
|
|
Th = LD(&(x[0]), ms, &(x[0]));
|
|
{
|
|
V Tc, Te, Tb, Td;
|
|
Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
Tc = BYTW(&(W[TWVL * 2]), Tb);
|
|
Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
|
Te = BYTW(&(W[TWVL * 8]), Td);
|
|
Tf = VSUB(Tc, Te);
|
|
Ti = VADD(Tc, Te);
|
|
}
|
|
{
|
|
V T2, T4, T1, T3;
|
|
T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T2 = BYTW(&(W[0]), T1);
|
|
T3 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
|
T4 = BYTW(&(W[TWVL * 10]), T3);
|
|
T5 = VSUB(T2, T4);
|
|
Tk = VADD(T2, T4);
|
|
}
|
|
{
|
|
V T7, T9, T6, T8;
|
|
T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
T7 = BYTW(&(W[TWVL * 4]), T6);
|
|
T8 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
|
T9 = BYTW(&(W[TWVL * 6]), T8);
|
|
Ta = VSUB(T7, T9);
|
|
Tj = VADD(T7, T9);
|
|
}
|
|
ST(&(x[0]), VADD(Th, VADD(Tk, VADD(Ti, Tj))), ms, &(x[0]));
|
|
To = VBYI(VFNMS(LDK(KP781831482), Ta, VFNMS(LDK(KP433883739), Tf, VMUL(LDK(KP974927912), T5))));
|
|
Tp = VFMA(LDK(KP623489801), Tj, VFNMS(LDK(KP900968867), Ti, VFNMS(LDK(KP222520933), Tk, Th)));
|
|
ST(&(x[WS(rs, 2)]), VADD(To, Tp), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 5)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
|
|
{
|
|
V Tg, Tl, Tm, Tn;
|
|
Tg = VBYI(VFMA(LDK(KP433883739), T5, VFNMS(LDK(KP781831482), Tf, VMUL(LDK(KP974927912), Ta))));
|
|
Tl = VFMA(LDK(KP623489801), Ti, VFNMS(LDK(KP222520933), Tj, VFNMS(LDK(KP900968867), Tk, Th)));
|
|
ST(&(x[WS(rs, 3)]), VADD(Tg, Tl), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 4)]), VSUB(Tl, Tg), ms, &(x[0]));
|
|
Tm = VBYI(VFMA(LDK(KP781831482), T5, VFMA(LDK(KP974927912), Tf, VMUL(LDK(KP433883739), Ta))));
|
|
Tn = VFMA(LDK(KP623489801), Tk, VFNMS(LDK(KP900968867), Tj, VFNMS(LDK(KP222520933), Ti, Th)));
|
|
ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 6)]), VSUB(Tn, Tm), ms, &(x[0]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
VTW(0, 4),
|
|
VTW(0, 5),
|
|
VTW(0, 6),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, { 24, 18, 12, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_t1bv_7) (planner *p) {
|
|
X(kdft_dit_register) (p, t1bv_7, &desc);
|
|
}
|
|
#endif
|